1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
/*
* M_APM - mapmfact.c
*
* Copyright (C) 1999 - 2007 Michael C. Ring
*
* Permission to use, copy, and distribute this software and its
* documentation for any purpose with or without fee is hereby granted,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation.
*
* Permission to modify the software is granted. Permission to distribute
* the modified code is granted. Modifications are to be distributed by
* using the file 'license.txt' as a template to modify the file header.
* 'license.txt' is available in the official MAPM distribution.
*
* This software is provided "as is" without express or implied warranty.
*/
/*
*
* This file contains the FACTORIAL function.
*
*/
/*
* Brief explanation of the factorial algorithm.
* ----------------------------------------------
*
* The old algorithm simply multiplied N * (N-1) * (N-2) etc, until
* the number counted down to '2'. So one term of the multiplication
* kept getting bigger while multiplying by the next number in the
* sequence.
*
* The new algorithm takes advantage of the fast multiplication
* algorithm. The "ideal" setup for fast multiplication is when
* both numbers have approx the same number of significant digits
* and the number of digits is very near (but not over) an exact
* power of 2.
*
* So, we will multiply N * (N-1) * (N-2), etc until the number of
* significant digits is approx 256.
*
* Store this temp product into an array.
*
* Then we will multiply the next sequence until the number of
* significant digits is approx 256.
*
* Store this temp product into the next element of the array.
*
* Continue until we've counted down to 2.
*
* We now have an array of numbers with approx the same number
* of digits (except for the last element, depending on where it
* ended.) Now multiply each of the array elements together to
* get the final product.
*
* The array multiplies are done as follows (assume we used 11
* array elements for this example, indicated by [0] - [10] ) :
*
* initial iter-1 iter-2 iter-3 iter-4
*
* [0]
* * -> [0]
* [1]
* * -> [0]
*
* [2]
* * -> [1]
* [3]
* * -> [0]
*
* [4]
* * -> [2]
* [5]
*
* * -> [1]
*
* [6]
* * -> [3] * -> [0]
* [7]
*
*
* [8]
* * -> [4]
* [9]
* * -> [2] -> [1]
*
*
* [10] -> [5]
*
*/
#include "pgAdmin3.h"
#include "pgscript/utilities/mapm-lib/m_apm_lc.h"
/* define size of local array for temp storage */
#define NDIM 32
/****************************************************************************/
void m_apm_factorial(M_APM moutput, M_APM minput)
{
int ii, nmul, ndigits, nd, jj, kk, mm, ct;
M_APM array[NDIM];
M_APM iprod1, iprod2, tmp1, tmp2;
/* return 1 for any input <= 1 */
if (m_apm_compare(minput, MM_One) <= 0)
{
m_apm_copy(moutput, MM_One);
return;
}
ct = 0;
mm = NDIM - 2;
ndigits = 256;
nd = ndigits - 20;
tmp1 = m_apm_init();
tmp2 = m_apm_init();
iprod1 = m_apm_init();
iprod2 = m_apm_init();
array[0] = m_apm_init();
m_apm_copy(tmp2, minput);
/* loop until multiply count-down has reached '2' */
while (TRUE)
{
m_apm_copy(iprod1, MM_One);
/*
* loop until the number of significant digits in this
* partial result is slightly less than 256
*/
while (TRUE)
{
m_apm_multiply(iprod2, iprod1, tmp2);
m_apm_subtract(tmp1, tmp2, MM_One);
m_apm_multiply(iprod1, iprod2, tmp1);
/*
* I know, I know. There just isn't a *clean* way
* to break out of 2 nested loops.
*/
if (m_apm_compare(tmp1, MM_Two) <= 0)
goto PHASE2;
m_apm_subtract(tmp2, tmp1, MM_One);
if (iprod1->m_apm_datalength > nd)
break;
}
if (ct == (NDIM - 1))
{
/*
* if the array has filled up, start multiplying
* some of the partial products now.
*/
m_apm_copy(tmp1, array[mm]);
m_apm_multiply(array[mm], iprod1, tmp1);
if (mm == 0)
{
mm = NDIM - 2;
ndigits = ndigits << 1;
nd = ndigits - 20;
}
else
mm--;
}
else
{
/*
* store this partial product in the array
* and allocate the next array element
*/
m_apm_copy(array[ct], iprod1);
array[++ct] = m_apm_init();
}
}
PHASE2:
m_apm_copy(array[ct], iprod1);
kk = ct;
while (kk != 0)
{
ii = 0;
jj = 0;
nmul = (kk + 1) >> 1;
while (TRUE)
{
/* must use tmp var when ii,jj point to same element */
if (ii == 0)
{
m_apm_copy(tmp1, array[ii]);
m_apm_multiply(array[jj], tmp1, array[ii + 1]);
}
else
m_apm_multiply(array[jj], array[ii], array[ii + 1]);
if (++jj == nmul)
break;
ii += 2;
}
if ((kk & 1) == 0)
{
jj = kk >> 1;
m_apm_copy(array[jj], array[kk]);
}
kk = kk >> 1;
}
m_apm_copy(moutput, array[0]);
for (ii = 0; ii <= ct; ii++)
{
m_apm_free(array[ii]);
}
m_apm_free(tmp1);
m_apm_free(tmp2);
m_apm_free(iprod1);
m_apm_free(iprod2);
}
/****************************************************************************/
|