File: mapmfmul.cpp

package info (click to toggle)
pgadmin3 1.20.0~beta2-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 73,704 kB
  • ctags: 18,591
  • sloc: cpp: 193,786; ansic: 18,736; sh: 5,154; pascal: 1,120; yacc: 927; makefile: 516; lex: 421; xml: 126; perl: 40
file content (685 lines) | stat: -rw-r--r-- 15,719 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685

/*
 *  M_APM  -  mapmfmul.c
 *
 *  Copyright (C) 1999 - 2007   Michael C. Ring
 *
 *  Permission to use, copy, and distribute this software and its
 *  documentation for any purpose with or without fee is hereby granted,
 *  provided that the above copyright notice appear in all copies and
 *  that both that copyright notice and this permission notice appear
 *  in supporting documentation.
 *
 *  Permission to modify the software is granted. Permission to distribute
 *  the modified code is granted. Modifications are to be distributed by
 *  using the file 'license.txt' as a template to modify the file header.
 *  'license.txt' is available in the official MAPM distribution.
 *
 *  This software is provided "as is" without express or implied warranty.
 */

/*
 *      This file contains the divide-and-conquer FAST MULTIPLICATION
 *	function as well as its support functions.
 *
 */

#include "pgAdmin3.h"
#include "pgscript/utilities/mapm-lib/m_apm_lc.h"

static int M_firsttimef = TRUE;

/*
 *      specify the max size the FFT routine can handle
 *      (in MAPM, #digits = 2 * #bytes)
 *
 *      this number *must* be an exact power of 2.
 *
 *      **WORST** case input numbers (all 9's) has shown that
 *	the FFT math will overflow if the #define here is
 *      >= 1048576. On my system, 524,288 worked OK. I will
 *      factor down another factor of 2 to safeguard against
 *	other computers have less precise floating point math.
 *	If you are confident in your system, 524288 will
 *	theoretically work fine.
 *
 *      the define here allows the FFT algorithm to multiply two
 *      524,288 digit numbers yielding a 1,048,576 digit result.
 */

#define MAX_FFT_BYTES 262144

/*
 *      the Divide-and-Conquer multiplication kicks in when the size of
 *	the numbers exceed the capability of the FFT (#define just above).
 *
 *	#bytes    D&C call depth
 *	------    --------------
 *       512K           1
 *        1M            2
 *        2M            3
 *        4M            4
 *       ...           ...
 *    2.1990E+12       23
 *
 *	the following stack sizes are sized to meet the
 *      above 2.199E+12 example, though I wouldn't want to
 *	wait for it to finish...
 *
 *      Each call requires 7 stack variables to be saved so
 *	we need a stack depth of 23 * 7 + PAD.  (we use 164)
 *
 *      For 'exp_stack', 3 integers also are required to be saved
 *      for each recursive call so we need a stack depth of
 *      23 * 3 + PAD. (we use 72)
 *
 *
 *      If the FFT multiply is disabled, resize the arrays
 *	as follows:
 *
 *      the following stack sizes are sized to meet the
 *      worst case expected assuming we are multiplying
 *      numbers with 2.14E+9 (2 ^ 31) digits.
 *
 *      For sizeof(int) == 4 (32 bits) there may be up to 32 recursive
 *      calls. Each call requires 7 stack variables so we need a
 *      stack depth of 32 * 7 + PAD.  (we use 240)
 *
 *      For 'exp_stack', 3 integers also are required to be saved
 *      for each recursive call so we need a stack depth of
 *      32 * 3 + PAD. (we use 100)
 */

#ifdef NO_FFT_MULTIPLY
#define M_STACK_SIZE 240
#define M_ISTACK_SIZE 100
#else
#define M_STACK_SIZE 164
#define M_ISTACK_SIZE 72
#endif

static int    exp_stack[M_ISTACK_SIZE];
static int    exp_stack_ptr;

static UCHAR  *mul_stack_data[M_STACK_SIZE];
static int    mul_stack_data_size[M_STACK_SIZE];
static int    M_mul_stack_ptr;

static UCHAR  *fmul_a1, *fmul_a0, *fmul_a9, *fmul_b1, *fmul_b0,
       *fmul_b9, *fmul_t0;

static int    size_flag, bit_limit, stmp, itmp, mii;

static M_APM  M_ain;
static M_APM  M_bin;

static const char   *M_stack_ptr_error_msg = "\'M_get_stack_ptr\', Out of memory";

extern void   M_fast_multiply(M_APM, M_APM, M_APM);
extern void   M_fmul_div_conq(UCHAR *, UCHAR *, UCHAR *, int);
extern void   M_fmul_add(UCHAR *, UCHAR *, int, int);
extern int    M_fmul_subtract(UCHAR *, UCHAR *, UCHAR *, int);
extern void   M_fmul_split(UCHAR *, UCHAR *, UCHAR *, int);
extern int    M_next_power_of_2(int);
extern int    M_get_stack_ptr(int);
extern void   M_push_mul_int(int);
extern int    M_pop_mul_int(void);

#ifdef NO_FFT_MULTIPLY
extern void   M_4_byte_multiply(UCHAR *, UCHAR *, UCHAR *);
#else
extern void   M_fast_mul_fft(UCHAR *, UCHAR *, UCHAR *, int);
#endif

/*
 *      the following algorithm is used in this fast multiply routine
 *	(sometimes called the divide-and-conquer technique.)
 *
 *	assume we have 2 numbers (a & b) with 2N digits.
 *
 *      let : a = (2^N) * A1 + A0 , b = (2^N) * B1 + B0
 *
 *	where 'A1' is the 'most significant half' of 'a' and
 *      'A0' is the 'least significant half' of 'a'. Same for
 *	B1 and B0.
 *
 *	Now use the identity :
 *
 *               2N   N            N                    N
 *	ab  =  (2  + 2 ) A1B1  +  2 (A1-A0)(B0-B1)  + (2 + 1)A0B0
 *
 *
 *      The original problem of multiplying 2 (2N) digit numbers has
 *	been reduced to 3 multiplications of N digit numbers plus some
 *	additions, subtractions, and shifts.
 *
 *	The fast multiplication algorithm used here uses the above
 *	identity in a recursive process. This algorithm results in
 *	O(n ^ 1.585) growth.
 */


/****************************************************************************/
void	M_free_all_fmul()
{
	int	k;

	if (M_firsttimef == FALSE)
	{
		m_apm_free(M_ain);
		m_apm_free(M_bin);

		for (k = 0; k < M_STACK_SIZE; k++)
		{
			if (mul_stack_data_size[k] != 0)
			{
				MAPM_FREE(mul_stack_data[k]);
			}
		}

		M_firsttimef = TRUE;
	}
}
/****************************************************************************/
void	M_push_mul_int(int val)
{
	exp_stack[++exp_stack_ptr] = val;
}
/****************************************************************************/
int	M_pop_mul_int()
{
	return(exp_stack[exp_stack_ptr--]);
}
/****************************************************************************/
void   	M_fmul_split(UCHAR *x1, UCHAR *x0, UCHAR *xin, int nbytes)
{
	memcpy(x1, xin, nbytes);
	memcpy(x0, (xin + nbytes), nbytes);
}
/****************************************************************************/
void	M_fast_multiply(M_APM rr, M_APM aa, M_APM bb)
{
	void	*vp;
	int	ii, k, nexp, sign;

	if (M_firsttimef)
	{
		M_firsttimef = FALSE;

		for (k = 0; k < M_STACK_SIZE; k++)
			mul_stack_data_size[k] = 0;

		size_flag = M_get_sizeof_int();
		bit_limit = 8 * size_flag + 1;

		M_ain = m_apm_init();
		M_bin = m_apm_init();
	}

	exp_stack_ptr   = -1;
	M_mul_stack_ptr = -1;

	m_apm_copy(M_ain, aa);
	m_apm_copy(M_bin, bb);

	sign = M_ain->m_apm_sign * M_bin->m_apm_sign;
	nexp = M_ain->m_apm_exponent + M_bin->m_apm_exponent;

	if (M_ain->m_apm_datalength >= M_bin->m_apm_datalength)
		ii = M_ain->m_apm_datalength;
	else
		ii = M_bin->m_apm_datalength;

	ii = (ii + 1) >> 1;
	ii = M_next_power_of_2(ii);

	/* Note: 'ii' must be >= 4 here. this is guaranteed
	   by the caller: m_apm_multiply
	*/

	k = 2 * ii;                   /* required size of result, in bytes  */

	M_apm_pad(M_ain, k);          /* fill out the data so the number of */
	M_apm_pad(M_bin, k);          /* bytes is an exact power of 2       */

	if (k > rr->m_apm_malloclength)
	{
		if ((vp = MAPM_REALLOC(rr->m_apm_data, (k + 32))) == NULL)
		{
			/* fatal, this does not return */

			M_apm_log_error_msg(M_APM_FATAL, "\'M_fast_multiply\', Out of memory");
		}

		rr->m_apm_malloclength = k + 28;
		rr->m_apm_data = (UCHAR *)vp;
	}

#ifdef NO_FFT_MULTIPLY

	M_fmul_div_conq(rr->m_apm_data, M_ain->m_apm_data,
	                M_bin->m_apm_data, ii);
#else

	/*
	 *     if the numbers are *really* big, use the divide-and-conquer
	 *     routine first until the numbers are small enough to be handled
	 *     by the FFT algorithm. If the numbers are already small enough,
	 *     call the FFT multiplication now.
	 *
	 *     Note that 'ii' here is (and must be) an exact power of 2.
	 */

	if (size_flag == 2)   /* if still using 16 bit compilers .... */
	{
		M_fast_mul_fft(rr->m_apm_data, M_ain->m_apm_data,
		               M_bin->m_apm_data, ii);
	}
	else                  /* >= 32 bit compilers */
	{
		if (ii > (MAX_FFT_BYTES + 2))
		{
			M_fmul_div_conq(rr->m_apm_data, M_ain->m_apm_data,
			                M_bin->m_apm_data, ii);
		}
		else
		{
			M_fast_mul_fft(rr->m_apm_data, M_ain->m_apm_data,
			               M_bin->m_apm_data, ii);
		}
	}

#endif

	rr->m_apm_sign       = sign;
	rr->m_apm_exponent   = nexp;
	rr->m_apm_datalength = 4 * ii;

	M_apm_normalize(rr);
}
/****************************************************************************/
/*
 *      This is the recursive function to perform the multiply. The
 *      design intent here is to have no local variables. Any local
 *      data that needs to be saved is saved on one of the two stacks.
 */
void	M_fmul_div_conq(UCHAR *rr, UCHAR *aa, UCHAR *bb, int sz)
{

#ifdef NO_FFT_MULTIPLY

	if (sz == 4)                /* multiply 4x4 yielding an 8 byte result */
	{
		M_4_byte_multiply(rr, aa, bb);
		return;
	}

#else

	/*
	 *  if the numbers are now small enough, let the FFT algorithm
	 *  finish up.
	 */

	if (sz == MAX_FFT_BYTES)
	{
		M_fast_mul_fft(rr, aa, bb, sz);
		return;
	}

#endif

	memset(rr, 0, (2 * sz));    /* zero out the result */
	mii = sz >> 1;

	itmp = M_get_stack_ptr(mii);
	M_push_mul_int(itmp);

	fmul_a1 = mul_stack_data[itmp];

	itmp    = M_get_stack_ptr(mii);
	fmul_a0 = mul_stack_data[itmp];

	itmp    = M_get_stack_ptr(2 * sz);
	fmul_a9 = mul_stack_data[itmp];

	itmp    = M_get_stack_ptr(mii);
	fmul_b1 = mul_stack_data[itmp];

	itmp    = M_get_stack_ptr(mii);
	fmul_b0 = mul_stack_data[itmp];

	itmp    = M_get_stack_ptr(2 * sz);
	fmul_b9 = mul_stack_data[itmp];

	itmp    = M_get_stack_ptr(2 * sz);
	fmul_t0 = mul_stack_data[itmp];

	M_fmul_split(fmul_a1, fmul_a0, aa, mii);
	M_fmul_split(fmul_b1, fmul_b0, bb, mii);

	stmp  = M_fmul_subtract(fmul_a9, fmul_a1, fmul_a0, mii);
	stmp *= M_fmul_subtract(fmul_b9, fmul_b0, fmul_b1, mii);

	M_push_mul_int(stmp);
	M_push_mul_int(mii);

	M_fmul_div_conq(fmul_t0, fmul_a0, fmul_b0, mii);

	mii  = M_pop_mul_int();
	stmp = M_pop_mul_int();
	itmp = M_pop_mul_int();

	M_push_mul_int(itmp);
	M_push_mul_int(stmp);
	M_push_mul_int(mii);

	/*   to restore all stack variables ...
	fmul_a1 = mul_stack_data[itmp];
	fmul_a0 = mul_stack_data[itmp+1];
	fmul_a9 = mul_stack_data[itmp+2];
	fmul_b1 = mul_stack_data[itmp+3];
	fmul_b0 = mul_stack_data[itmp+4];
	fmul_b9 = mul_stack_data[itmp+5];
	fmul_t0 = mul_stack_data[itmp+6];
	*/

	fmul_a1 = mul_stack_data[itmp];
	fmul_b1 = mul_stack_data[itmp + 3];
	fmul_t0 = mul_stack_data[itmp + 6];

	memcpy((rr + sz), fmul_t0, sz);    /* first 'add', result is now zero */
	/* so we just copy in the bytes    */
	M_fmul_add(rr, fmul_t0, mii, sz);

	M_fmul_div_conq(fmul_t0, fmul_a1, fmul_b1, mii);

	mii  = M_pop_mul_int();
	stmp = M_pop_mul_int();
	itmp = M_pop_mul_int();

	M_push_mul_int(itmp);
	M_push_mul_int(stmp);
	M_push_mul_int(mii);

	fmul_a9 = mul_stack_data[itmp + 2];
	fmul_b9 = mul_stack_data[itmp + 5];
	fmul_t0 = mul_stack_data[itmp + 6];

	M_fmul_add(rr, fmul_t0, 0, sz);
	M_fmul_add(rr, fmul_t0, mii, sz);

	if (stmp != 0)
		M_fmul_div_conq(fmul_t0, fmul_a9, fmul_b9, mii);

	mii  = M_pop_mul_int();
	stmp = M_pop_mul_int();
	itmp = M_pop_mul_int();

	fmul_t0 = mul_stack_data[itmp + 6];

	/*
	 *  if the sign of (A1 - A0)(B0 - B1) is positive, ADD to
	 *  the result. if it is negative, SUBTRACT from the result.
	 */

	if (stmp < 0)
	{
		fmul_a9 = mul_stack_data[itmp + 2];
		fmul_b9 = mul_stack_data[itmp + 5];

		memset(fmul_b9, 0, (2 * sz));
		memcpy((fmul_b9 + mii), fmul_t0, sz);
		M_fmul_subtract(fmul_a9, rr, fmul_b9, (2 * sz));
		memcpy(rr, fmul_a9, (2 * sz));
	}

	if (stmp > 0)
		M_fmul_add(rr, fmul_t0, mii, sz);

	M_mul_stack_ptr -= 7;
}
/****************************************************************************/
/*
 *	special addition function for use with the fast multiply operation
 */
void    M_fmul_add(UCHAR *r, UCHAR *a, int offset, int sz)
{
	int	i, j;
	UCHAR   carry;

	carry = 0;
	j = offset + sz;
	i = sz;

	while (TRUE)
	{
		r[--j] += carry + a[--i];

		if (r[j] >= 100)
		{
			r[j] -= 100;
			carry = 1;
		}
		else
			carry = 0;

		if (i == 0)
			break;
	}

	if (carry)
	{
		while (TRUE)
		{
			r[--j] += 1;

			if (r[j] < 100)
				break;

			r[j] -= 100;
		}
	}
}
/****************************************************************************/
/*
 *	special subtraction function for use with the fast multiply operation
 */
int     M_fmul_subtract(UCHAR *r, UCHAR *a, UCHAR *b, int sz)
{
	int	k, jtmp, sflag, nb, borrow;

	nb    = sz;
	sflag = 0;      /* sign flag: assume the numbers are equal */

	/*
	 *   find if a > b (so we perform a-b)
	 *   or      a < b (so we perform b-a)
	 */

	for (k = 0; k < nb; k++)
	{
		if (a[k] < b[k])
		{
			sflag = -1;
			break;
		}

		if (a[k] > b[k])
		{
			sflag = 1;
			break;
		}
	}

	if (sflag == 0)
	{
		memset(r, 0, nb);            /* zero out the result */
	}
	else
	{
		k = nb;
		borrow = 0;

		while (TRUE)
		{
			k--;

			if (sflag == 1)
				jtmp = (int)a[k] - ((int)b[k] + borrow);
			else
				jtmp = (int)b[k] - ((int)a[k] + borrow);

			if (jtmp >= 0)
			{
				r[k] = (UCHAR)jtmp;
				borrow = 0;
			}
			else
			{
				r[k] = (UCHAR)(100 + jtmp);
				borrow = 1;
			}

			if (k == 0)
				break;
		}
	}

	return(sflag);
}
/****************************************************************************/
int     M_next_power_of_2(int n)
{
	int     ct, k;

	if (n <= 2)
		return(n);

	k  = 2;
	ct = 0;

	while (TRUE)
	{
		if (k >= n)
			break;

		k = k << 1;

		if (++ct == bit_limit)
		{
			/* fatal, this does not return */

			M_apm_log_error_msg(M_APM_FATAL,
			                    "\'M_next_power_of_2\', ERROR :sizeof(int) too small ??");
		}
	}

	return(k);
}
/****************************************************************************/
int	M_get_stack_ptr(int sz)
{
	int	i, k;
	UCHAR   *cp;

	k = ++M_mul_stack_ptr;

	/* if size is 0, just need to malloc and return */
	if (mul_stack_data_size[k] == 0)
	{
		if ((i = sz) < 16)
			i = 16;

		if ((cp = (UCHAR *)MAPM_MALLOC(i + 4)) == NULL)
		{
			/* fatal, this does not return */

			M_apm_log_error_msg(M_APM_FATAL, M_stack_ptr_error_msg);
		}

		mul_stack_data[k]      = cp;
		mul_stack_data_size[k] = i;
	}
	else        /* it has been malloc'ed, see if it's big enough */
	{
		if (sz > mul_stack_data_size[k])
		{
			cp = mul_stack_data[k];

			if ((cp = (UCHAR *)MAPM_REALLOC(cp, (sz + 4))) == NULL)
			{
				/* fatal, this does not return */

				M_apm_log_error_msg(M_APM_FATAL, M_stack_ptr_error_msg);
			}

			mul_stack_data[k]      = cp;
			mul_stack_data_size[k] = sz;
		}
	}

	return(k);
}
/****************************************************************************/

#ifdef NO_FFT_MULTIPLY

/*
 *      multiply a 4 byte number by a 4 byte number
 *      yielding an 8 byte result. each byte contains
 *      a base 100 'digit', i.e.: range from 0-99.
 *
 *             MSB         LSB
 *
 *      a,b    [0] [1] [2] [3]
 *   result    [0]  .....  [7]
 */

void	M_4_byte_multiply(UCHAR *r, UCHAR *a, UCHAR *b)
{
	int	      jj;
	unsigned int  *ip, t1, rr[8];

	memset(rr, 0, (8 * sizeof(int)));        /* zero out result */
	jj = 3;
	ip = rr + 5;

	/*
	 *   loop for one number [b], un-roll the inner 'loop' [a]
	 *
	 *   accumulate partial sums in UINT array, release carries
	 *   and convert back to base 100 at the end
	 */

	while (1)
	{
		t1  = (unsigned int)b[jj];
		ip += 2;

		*ip-- += t1 * a[3];
		*ip-- += t1 * a[2];
		*ip-- += t1 * a[1];
		*ip   += t1 * a[0];

		if (jj-- == 0)
			break;
	}

	jj = 7;

	while (1)
	{
		t1 = rr[jj] / 100;
		r[jj] = (UCHAR)(rr[jj] - 100 * t1);

		if (jj == 0)
			break;

		rr[--jj] += t1;
	}
}

#endif

/****************************************************************************/