1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
/*
* M_APM - mapmhasn.c
*
* Copyright (C) 2000 - 2007 Michael C. Ring
*
* Permission to use, copy, and distribute this software and its
* documentation for any purpose with or without fee is hereby granted,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation.
*
* Permission to modify the software is granted. Permission to distribute
* the modified code is granted. Modifications are to be distributed by
* using the file 'license.txt' as a template to modify the file header.
* 'license.txt' is available in the official MAPM distribution.
*
* This software is provided "as is" without express or implied warranty.
*/
/*
*
* This file contains the Inverse Hyperbolic SIN, COS, & TAN functions.
*/
#include "pgAdmin3.h"
#include "pgscript/utilities/mapm-lib/m_apm_lc.h"
/****************************************************************************/
/*
* arcsinh(x) == log [ x + sqrt(x^2 + 1) ]
*
* also, use arcsinh(-x) == -arcsinh(x)
*/
void m_apm_arcsinh(M_APM rr, int places, M_APM aa)
{
M_APM tmp0, tmp1, tmp2;
/* result is 0 if input is 0 */
if (aa->m_apm_sign == 0)
{
M_set_to_zero(rr);
return;
}
tmp0 = M_get_stack_var();
tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();
m_apm_absolute_value(tmp0, aa);
m_apm_multiply(tmp1, tmp0, tmp0);
m_apm_add(tmp2, tmp1, MM_One);
m_apm_sqrt(tmp1, (places + 6), tmp2);
m_apm_add(tmp2, tmp0, tmp1);
m_apm_log(rr, places, tmp2);
rr->m_apm_sign = aa->m_apm_sign; /* fix final sign */
M_restore_stack(3);
}
/****************************************************************************/
/*
* arccosh(x) == log [ x + sqrt(x^2 - 1) ]
*
* x >= 1.0
*/
void m_apm_arccosh(M_APM rr, int places, M_APM aa)
{
M_APM tmp1, tmp2;
int ii;
ii = m_apm_compare(aa, MM_One);
if (ii == -1) /* x < 1 */
{
M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arccosh\', Argument < 1");
M_set_to_zero(rr);
return;
}
tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();
m_apm_multiply(tmp1, aa, aa);
m_apm_subtract(tmp2, tmp1, MM_One);
m_apm_sqrt(tmp1, (places + 6), tmp2);
m_apm_add(tmp2, aa, tmp1);
m_apm_log(rr, places, tmp2);
M_restore_stack(2);
}
/****************************************************************************/
/*
* arctanh(x) == 0.5 * log [ (1 + x) / (1 - x) ]
*
* |x| < 1.0
*/
void m_apm_arctanh(M_APM rr, int places, M_APM aa)
{
M_APM tmp1, tmp2, tmp3;
int ii, local_precision;
tmp1 = M_get_stack_var();
m_apm_absolute_value(tmp1, aa);
ii = m_apm_compare(tmp1, MM_One);
if (ii >= 0) /* |x| >= 1.0 */
{
M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_arctanh\', |Argument| >= 1");
M_set_to_zero(rr);
M_restore_stack(1);
return;
}
tmp2 = M_get_stack_var();
tmp3 = M_get_stack_var();
local_precision = places + 8;
m_apm_add(tmp1, MM_One, aa);
m_apm_subtract(tmp2, MM_One, aa);
m_apm_divide(tmp3, local_precision, tmp1, tmp2);
m_apm_log(tmp2, local_precision, tmp3);
m_apm_multiply(tmp1, tmp2, MM_0_5);
m_apm_round(rr, places, tmp1);
M_restore_stack(3);
}
/****************************************************************************/
|