1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
/*
* M_APM - mapmsqrt.c
*
* Copyright (C) 1999 - 2007 Michael C. Ring
*
* Permission to use, copy, and distribute this software and its
* documentation for any purpose with or without fee is hereby granted,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation.
*
* Permission to modify the software is granted. Permission to distribute
* the modified code is granted. Modifications are to be distributed by
* using the file 'license.txt' as a template to modify the file header.
* 'license.txt' is available in the official MAPM distribution.
*
* This software is provided "as is" without express or implied warranty.
*/
/*
*
* This file contains the SQRT function.
*/
#include "pgAdmin3.h"
#include "pgscript/utilities/mapm-lib/m_apm_lc.h"
/****************************************************************************/
void m_apm_sqrt(M_APM rr, int places, M_APM aa)
{
M_APM last_x, guess, tmpN, tmp7, tmp8, tmp9;
int ii, bflag, nexp, tolerance, dplaces;
if (aa->m_apm_sign <= 0)
{
if (aa->m_apm_sign == -1)
{
M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_sqrt\', Negative argument");
}
M_set_to_zero(rr);
return;
}
last_x = M_get_stack_var();
guess = M_get_stack_var();
tmpN = M_get_stack_var();
tmp7 = M_get_stack_var();
tmp8 = M_get_stack_var();
tmp9 = M_get_stack_var();
m_apm_copy(tmpN, aa);
/*
normalize the input number (make the exponent near 0) so
the 'guess' function will not over/under flow on large
magnitude exponents.
*/
nexp = aa->m_apm_exponent / 2;
tmpN->m_apm_exponent -= 2 * nexp;
M_get_sqrt_guess(guess, tmpN); /* actually gets 1/sqrt guess */
tolerance = places + 4;
dplaces = places + 16;
bflag = FALSE;
m_apm_negate(last_x, MM_Ten);
/* Use the following iteration to calculate 1 / sqrt(N) :
X = 0.5 * X * [ 3 - N * X^2 ]
n+1
*/
ii = 0;
while (TRUE)
{
m_apm_multiply(tmp9, tmpN, guess);
m_apm_multiply(tmp8, tmp9, guess);
m_apm_round(tmp7, dplaces, tmp8);
m_apm_subtract(tmp9, MM_Three, tmp7);
m_apm_multiply(tmp8, tmp9, guess);
m_apm_multiply(tmp9, tmp8, MM_0_5);
if (bflag)
break;
m_apm_round(guess, dplaces, tmp9);
/* force at least 2 iterations so 'last_x' has valid data */
if (ii != 0)
{
m_apm_subtract(tmp7, guess, last_x);
if (tmp7->m_apm_sign == 0)
break;
/*
* if we are within a factor of 4 on the error term,
* we will be accurate enough after the *next* iteration
* is complete. (note that the sign of the exponent on
* the error term will be a negative number).
*/
if ((-4 * tmp7->m_apm_exponent) > tolerance)
bflag = TRUE;
}
m_apm_copy(last_x, guess);
ii++;
}
/*
* multiply by the starting number to get the final
* sqrt and then adjust the exponent since we found
* the sqrt of the normalized number.
*/
m_apm_multiply(tmp8, tmp9, tmpN);
m_apm_round(rr, places, tmp8);
rr->m_apm_exponent += nexp;
M_restore_stack(6);
}
/****************************************************************************/
|