File: geqo-intro2.html

package info (click to toggle)
pgadmin3 1.4.3-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 29,796 kB
  • ctags: 10,758
  • sloc: cpp: 55,356; sh: 6,164; ansic: 1,520; makefile: 576; sql: 482; xml: 100; perl: 18
file content (86 lines) | stat: -rw-r--r-- 4,086 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>47.2.Genetic Algorithms</title>
<link rel="stylesheet" href="stylesheet.css" type="text/css">
<link rev="made" href="pgsql-docs@postgresql.org">
<meta name="generator" content="DocBook XSL Stylesheets V1.70.0">
<link rel="start" href="index.html" title="PostgreSQL 8.1.4 Documentation">
<link rel="up" href="geqo.html" title="Chapter47.Genetic Query Optimizer">
<link rel="prev" href="geqo.html" title="Chapter47.Genetic Query Optimizer">
<link rel="next" href="geqo-pg-intro.html" title="47.3.Genetic Query Optimization (GEQO) in PostgreSQL">
<link rel="copyright" href="ln-legalnotice.html" title="Legal Notice">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="geqo-intro2"></a>47.2.Genetic Algorithms</h2></div></div></div>
<p>    The genetic algorithm (<acronym class="acronym">GA</acronym>) is a heuristic optimization method which
    operates through
    nondeterministic, randomized search. The set of possible solutions for the
    optimization problem is considered as a
    <em class="firstterm">population</em> of <em class="firstterm">individuals</em>.
    The degree of adaptation of an individual to its environment is specified
    by its <em class="firstterm">fitness</em>.
   </p>
<p>    The coordinates of an individual in the search space are represented
    by <em class="firstterm">chromosomes</em>, in essence a set of character
    strings. A <em class="firstterm">gene</em> is a
    subsection of a chromosome which encodes the value of a single parameter
    being optimized. Typical encodings for a gene could be <em class="firstterm">binary</em> or
    <em class="firstterm">integer</em>.
   </p>
<p>    Through simulation of the evolutionary operations <em class="firstterm">recombination</em>,
    <em class="firstterm">mutation</em>, and
    <em class="firstterm">selection</em> new generations of search points are found
    that show a higher average fitness than their ancestors.
   </p>
<p>    According to the <span class="systemitem">comp.ai.genetic</span> <acronym class="acronym">FAQ</acronym> it cannot be stressed too
    strongly that a <acronym class="acronym">GA</acronym> is not a pure random search for a solution to a
    problem. A <acronym class="acronym">GA</acronym> uses stochastic processes, but the result is distinctly
    non-random (better than random). 
   </p>
<div class="figure">
<a name="geqo-diagram"></a><p class="title"><b>Figure47.1.Structured Diagram of a Genetic Algorithm</b></p>
<div class="figure-contents">
<div class="informaltable"><table border="0">
<colgroup>
<col>
<col>
</colgroup>
<tbody>
<tr>
<td>P(t)</td>
<td>generation of ancestors at a time t</td>
</tr>
<tr>
<td>P''(t)</td>
<td>generation of descendants at a time t</td>
</tr>
</tbody>
</table></div>
<pre class="literallayout">+=========================================+
|&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;  Algorithm GA  &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;|
+=========================================+
| INITIALIZE t := 0                       |
+=========================================+
| INITIALIZE P(t)                         |
+=========================================+
| evaluate FITNESS of P(t)                |
+=========================================+
| while not STOPPING CRITERION do         |
|   +-------------------------------------+
|   | P'(t)  := RECOMBINATION{P(t)}       |
|   +-------------------------------------+
|   | P''(t) := MUTATION{P'(t)}           |
|   +-------------------------------------+
|   | P(t+1) := SELECTION{P''(t) + P(t)}  |
|   +-------------------------------------+
|   | evaluate FITNESS of P''(t)          |
|   +-------------------------------------+
|   | t := t + 1                          |
+===+=====================================+</pre>
</div>
</div>
<br class="figure-break">
</div></body>
</html>