File: parser-stage.html

package info (click to toggle)
pgadmin3 1.4.3-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 29,796 kB
  • ctags: 10,758
  • sloc: cpp: 55,356; sh: 6,164; ansic: 1,520; makefile: 576; sql: 482; xml: 100; perl: 18
file content (122 lines) | stat: -rw-r--r-- 6,790 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>41.3.The Parser Stage</title>
<link rel="stylesheet" href="stylesheet.css" type="text/css">
<link rev="made" href="pgsql-docs@postgresql.org">
<meta name="generator" content="DocBook XSL Stylesheets V1.70.0">
<link rel="start" href="index.html" title="PostgreSQL 8.1.4 Documentation">
<link rel="up" href="overview.html" title="Chapter41.Overview of PostgreSQL Internals">
<link rel="prev" href="connect-estab.html" title="41.2.How Connections are Established">
<link rel="next" href="rule-system.html" title="41.4.The PostgreSQL Rule System">
<link rel="copyright" href="ln-legalnotice.html" title="Legal Notice">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="parser-stage"></a>41.3.The Parser Stage</h2></div></div></div>
<p>    The <em class="firstterm">parser stage</em> consists of two parts:

    </p>
<div class="itemizedlist"><ul type="disc">
<li><p>       The <em class="firstterm">parser</em> defined in
       <code class="filename">gram.y</code> and <code class="filename">scan.l</code> is
       built using the Unix tools <span class="application">yacc</span>
       and <span class="application">lex</span>.
      </p></li>
<li><p>       The <em class="firstterm">transformation process</em> does
       modifications and augmentations to the data structures returned by the parser.
      </p></li>
</ul></div>
<p>
   </p>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id815181"></a>41.3.1.Parser</h3></div></div></div>
<p>     The parser has to check the query string (which arrives as plain
     ASCII text) for valid syntax. If the syntax is correct a
     <em class="firstterm">parse tree</em> is built up and handed back;
     otherwise an error is returned. The parser and lexer are
     implemented using the well-known Unix tools <span class="application">yacc</span>
     and <span class="application">lex</span>.
    </p>
<p>     The <em class="firstterm">lexer</em> is defined in the file
     <code class="filename">scan.l</code> and is responsible
     for recognizing <em class="firstterm">identifiers</em>,
     the <em class="firstterm">SQL key words</em> etc. For
     every key word or identifier that is found, a <em class="firstterm">token</em>
     is generated and handed to the parser.
    </p>
<p>     The parser is defined in the file <code class="filename">gram.y</code> and
     consists of a set of <em class="firstterm">grammar rules</em> and
     <em class="firstterm">actions</em> that are executed whenever a rule
     is fired. The code of the actions (which is actually C code) is
     used to build up the parse tree.
    </p>
<p>     The file <code class="filename">scan.l</code> is transformed to the C
     source file <code class="filename">scan.c</code> using the program
     <span class="application">lex</span> and <code class="filename">gram.y</code> is
     transformed to <code class="filename">gram.c</code> using
     <span class="application">yacc</span>.  After these transformations
     have taken place a normal C compiler can be used to create the
     parser. Never make any changes to the generated C files as they
     will be overwritten the next time <span class="application">lex</span>
     or <span class="application">yacc</span> is called.

     </p>
<div class="note" style="margin-left: 0.5in; margin-right: 0.5in;">
<h3 class="title">Note</h3>
<p>       The mentioned transformations and compilations are normally done
       automatically using the <em class="firstterm">makefiles</em>
       shipped with the <span class="productname">PostgreSQL</span>
       source distribution.
      </p>
</div>
<p>
    </p>
<p>     A detailed description of <span class="application">yacc</span> or
     the grammar rules given in <code class="filename">gram.y</code> would be
     beyond the scope of this paper. There are many books and
     documents dealing with <span class="application">lex</span> and
     <span class="application">yacc</span>. You should be familiar with
     <span class="application">yacc</span> before you start to study the
     grammar given in <code class="filename">gram.y</code> otherwise you won't
     understand what happens there.
    </p>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id815385"></a>41.3.2.Transformation Process</h3></div></div></div>
<p>     The parser stage creates a parse tree using only fixed rules about
     the syntactic structure of SQL.  It does not make any lookups in the
     system catalogs, so there is no possibility to understand the detailed
     semantics of the requested operations.  After the parser completes,
     the <em class="firstterm">transformation process</em> takes the tree handed
     back by the parser as input and does the semantic interpretation needed
     to understand which tables, functions, and operators are referenced by
     the query.  The data structure that is built to represent this
     information is called the <em class="firstterm">query tree</em>.
    </p>
<p>     The reason for separating raw parsing from semantic analysis is that
     system catalog lookups can only be done within a transaction, and we
     do not wish to start a transaction immediately upon receiving a query
     string.  The raw parsing stage is sufficient to identify the transaction
     control commands (<code class="command">BEGIN</code>, <code class="command">ROLLBACK</code>, etc), and
     these can then be correctly executed without any further analysis.
     Once we know that we are dealing with an actual query (such as
     <code class="command">SELECT</code> or <code class="command">UPDATE</code>), it is okay to
     start a transaction if we're not already in one.  Only then can the
     transformation process be invoked.
    </p>
<p>     The query tree created by the transformation process is structurally
     similar to the raw parse tree in most places, but it has many differences
     in detail.  For example, a <code class="structname">FuncCall</code> node in the
     parse tree represents something that looks syntactically like a function
     call.  This may be transformed to either a <code class="structname">FuncExpr</code>
     or <code class="structname">Aggref</code> node depending on whether the referenced
     name turns out to be an ordinary function or an aggregate function.
     Also, information about the actual data types of columns and expression
     results is added to the query tree.
    </p>
</div>
</div></body>
</html>