1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
|
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>7.2.Table Expressions</title>
<link rel="stylesheet" href="stylesheet.css" type="text/css">
<link rev="made" href="pgsql-docs@postgresql.org">
<meta name="generator" content="DocBook XSL Stylesheets V1.70.0">
<link rel="start" href="index.html" title="PostgreSQL 8.1.4 Documentation">
<link rel="up" href="queries.html" title="Chapter7.Queries">
<link rel="prev" href="queries.html" title="Chapter7.Queries">
<link rel="next" href="queries-select-lists.html" title="7.3.Select Lists">
<link rel="copyright" href="ln-legalnotice.html" title="Legal Notice">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="queries-table-expressions"></a>7.2.Table Expressions</h2></div></div></div>
<a name="id580207"></a><p> A <em class="firstterm">table expression</em> computes a table. The
table expression contains a <code class="literal">FROM</code> clause that is
optionally followed by <code class="literal">WHERE</code>, <code class="literal">GROUP BY</code>, and
<code class="literal">HAVING</code> clauses. Trivial table expressions simply refer
to a table on disk, a so-called base table, but more complex
expressions can be used to modify or combine base tables in various
ways.
</p>
<p> The optional <code class="literal">WHERE</code>, <code class="literal">GROUP BY</code>, and
<code class="literal">HAVING</code> clauses in the table expression specify a
pipeline of successive transformations performed on the table
derived in the <code class="literal">FROM</code> clause. All these transformations
produce a virtual table that provides the rows that are passed to
the select list to compute the output rows of the query.
</p>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="queries-from"></a>7.2.1.The <code class="literal">FROM</code> Clause</h3></div></div></div>
<p> The <a href="sql-select.html#sql-from"><code class="literal">FROM</code> Clause</a> derives a
table from one or more other tables given in a comma-separated
table reference list.
</p>
<pre class="synopsis">FROM <em class="replaceable"><code>table_reference</code></em> [<span class="optional">, <em class="replaceable"><code>table_reference</code></em> [<span class="optional">, ...</span>]</span>]</pre>
<p>
A table reference may be a table name (possibly schema-qualified),
or a derived table such as a subquery, a table join, or complex
combinations of these. If more than one table reference is listed
in the <code class="literal">FROM</code> clause they are cross-joined (see below)
to form the intermediate virtual table that may then be subject to
transformations by the <code class="literal">WHERE</code>, <code class="literal">GROUP BY</code>,
and <code class="literal">HAVING</code> clauses and is finally the result of the
overall table expression.
</p>
<a name="id580375"></a><p> When a table reference names a table that is the supertable of a
table inheritance hierarchy, the table reference produces rows of
not only that table but all of its subtable successors, unless the
key word <code class="literal">ONLY</code> precedes the table name. However, the
reference produces only the columns that appear in the named table
[mdash ] any columns added in subtables are ignored.
</p>
<div class="sect3" lang="en">
<div class="titlepage"><div><div><h4 class="title">
<a name="queries-join"></a>7.2.1.1.Joined Tables</h4></div></div></div>
<a name="id580404"></a><p> A joined table is a table derived from two other (real or
derived) tables according to the rules of the particular join
type. Inner, outer, and cross-joins are available.
</p>
<div class="variablelist">
<p class="title"><b>Join Types</b></p>
<dl>
<dt><span class="term">Cross join</span></dt>
<dd>
<pre class="synopsis"><em class="replaceable"><code>T1</code></em> CROSS JOIN <em class="replaceable"><code>T2</code></em></pre>
<p> For each combination of rows from
<em class="replaceable"><code>T1</code></em> and
<em class="replaceable"><code>T2</code></em>, the derived table will contain a
row consisting of all columns in <em class="replaceable"><code>T1</code></em>
followed by all columns in <em class="replaceable"><code>T2</code></em>. If
the tables have N and M rows respectively, the joined
table will have N * M rows.
</p>
<p> <code class="literal">FROM <em class="replaceable"><code>T1</code></em> CROSS JOIN
<em class="replaceable"><code>T2</code></em></code> is equivalent to
<code class="literal">FROM <em class="replaceable"><code>T1</code></em>,
<em class="replaceable"><code>T2</code></em></code>. It is also equivalent to
<code class="literal">FROM <em class="replaceable"><code>T1</code></em> INNER JOIN
<em class="replaceable"><code>T2</code></em> ON TRUE</code> (see below).
</p>
</dd>
<dt><span class="term">Qualified joins</span></dt>
<dd>
<pre class="synopsis"><em class="replaceable"><code>T1</code></em> { [<span class="optional">INNER</span>] | { LEFT | RIGHT | FULL } [<span class="optional">OUTER</span>] } JOIN <em class="replaceable"><code>T2</code></em> ON <em class="replaceable"><code>boolean_expression</code></em>
<em class="replaceable"><code>T1</code></em> { [<span class="optional">INNER</span>] | { LEFT | RIGHT | FULL } [<span class="optional">OUTER</span>] } JOIN <em class="replaceable"><code>T2</code></em> USING ( <em class="replaceable"><code>join column list</code></em> )
<em class="replaceable"><code>T1</code></em> NATURAL { [<span class="optional">INNER</span>] | { LEFT | RIGHT | FULL } [<span class="optional">OUTER</span>] } JOIN <em class="replaceable"><code>T2</code></em></pre>
<p> The words <code class="literal">INNER</code> and
<code class="literal">OUTER</code> are optional in all forms.
<code class="literal">INNER</code> is the default;
<code class="literal">LEFT</code>, <code class="literal">RIGHT</code>, and
<code class="literal">FULL</code> imply an outer join.
</p>
<p> The <em class="firstterm">join condition</em> is specified in the
<code class="literal">ON</code> or <code class="literal">USING</code> clause, or implicitly by
the word <code class="literal">NATURAL</code>. The join condition determines
which rows from the two source tables are considered to
“<span class="quote">match</span>”, as explained in detail below.
</p>
<p> The <code class="literal">ON</code> clause is the most general kind of join
condition: it takes a Boolean value expression of the same
kind as is used in a <code class="literal">WHERE</code> clause. A pair of rows
from <em class="replaceable"><code>T1</code></em> and <em class="replaceable"><code>T2</code></em> match if the
<code class="literal">ON</code> expression evaluates to true for them.
</p>
<p> <code class="literal">USING</code> is a shorthand notation: it takes a
comma-separated list of column names, which the joined tables
must have in common, and forms a join condition specifying
equality of each of these pairs of columns. Furthermore, the
output of a <code class="literal">JOIN USING</code> has one column for each of
the equated pairs of input columns, followed by all of the
other columns from each table. Thus, <code class="literal">USING (a, b,
c)</code> is equivalent to <code class="literal">ON (t1.a = t2.a AND
t1.b = t2.b AND t1.c = t2.c)</code> with the exception that
if <code class="literal">ON</code> is used there will be two columns
<code class="literal">a</code>, <code class="literal">b</code>, and <code class="literal">c</code> in the result,
whereas with <code class="literal">USING</code> there will be only one of each.
</p>
<p> <a name="id580787"></a>
<a name="id580797"></a>
Finally, <code class="literal">NATURAL</code> is a shorthand form of
<code class="literal">USING</code>: it forms a <code class="literal">USING</code> list
consisting of exactly those column names that appear in both
input tables. As with <code class="literal">USING</code>, these columns appear
only once in the output table.
</p>
<p> The possible types of qualified join are:
</p>
<div class="variablelist"><dl>
<dt><span class="term"><code class="literal">INNER JOIN</code></span></dt>
<dd><p> For each row R1 of T1, the joined table has a row for each
row in T2 that satisfies the join condition with R1.
</p></dd>
<dt><span class="term"><code class="literal">LEFT OUTER JOIN</code></span></dt>
<dd><p> First, an inner join is performed. Then, for each row in
T1 that does not satisfy the join condition with any row in
T2, a joined row is added with null values in columns of
T2. Thus, the joined table unconditionally has at least
one row for each row in T1.
</p></dd>
<dt><span class="term"><code class="literal">RIGHT OUTER JOIN</code></span></dt>
<dd><p> First, an inner join is performed. Then, for each row in
T2 that does not satisfy the join condition with any row in
T1, a joined row is added with null values in columns of
T1. This is the converse of a left join: the result table
will unconditionally have a row for each row in T2.
</p></dd>
<dt><span class="term"><code class="literal">FULL OUTER JOIN</code></span></dt>
<dd><p> First, an inner join is performed. Then, for each row in
T1 that does not satisfy the join condition with any row in
T2, a joined row is added with null values in columns of
T2. Also, for each row of T2 that does not satisfy the
join condition with any row in T1, a joined row with null
values in the columns of T1 is added.
</p></dd>
</dl></div>
<p>
</p>
</dd>
</dl>
</div>
<p> Joins of all types can be chained together or nested: either or
both of <em class="replaceable"><code>T1</code></em> and
<em class="replaceable"><code>T2</code></em> may be joined tables. Parentheses
may be used around <code class="literal">JOIN</code> clauses to control the join
order. In the absence of parentheses, <code class="literal">JOIN</code> clauses
nest left-to-right.
</p>
<p> To put this together, assume we have tables <code class="literal">t1</code>
</p>
<pre class="programlisting"> num | name
-----+------
1 | a
2 | b
3 | c</pre>
<p>
and <code class="literal">t2</code>
</p>
<pre class="programlisting"> num | value
-----+-------
1 | xxx
3 | yyy
5 | zzz</pre>
<p>
then we get the following results for the various joins:
</p>
<pre class="screen"><code class="prompt">=></code> <strong class="userinput"><code>SELECT * FROM t1 CROSS JOIN t2;</code></strong>
num | name | num | value
-----+------+-----+-------
1 | a | 1 | xxx
1 | a | 3 | yyy
1 | a | 5 | zzz
2 | b | 1 | xxx
2 | b | 3 | yyy
2 | b | 5 | zzz
3 | c | 1 | xxx
3 | c | 3 | yyy
3 | c | 5 | zzz
(9 rows)
<code class="prompt">=></code> <strong class="userinput"><code>SELECT * FROM t1 INNER JOIN t2 ON t1.num = t2.num;</code></strong>
num | name | num | value
-----+------+-----+-------
1 | a | 1 | xxx
3 | c | 3 | yyy
(2 rows)
<code class="prompt">=></code> <strong class="userinput"><code>SELECT * FROM t1 INNER JOIN t2 USING (num);</code></strong>
num | name | value
-----+------+-------
1 | a | xxx
3 | c | yyy
(2 rows)
<code class="prompt">=></code> <strong class="userinput"><code>SELECT * FROM t1 NATURAL INNER JOIN t2;</code></strong>
num | name | value
-----+------+-------
1 | a | xxx
3 | c | yyy
(2 rows)
<code class="prompt">=></code> <strong class="userinput"><code>SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num;</code></strong>
num | name | num | value
-----+------+-----+-------
1 | a | 1 | xxx
2 | b | |
3 | c | 3 | yyy
(3 rows)
<code class="prompt">=></code> <strong class="userinput"><code>SELECT * FROM t1 LEFT JOIN t2 USING (num);</code></strong>
num | name | value
-----+------+-------
1 | a | xxx
2 | b |
3 | c | yyy
(3 rows)
<code class="prompt">=></code> <strong class="userinput"><code>SELECT * FROM t1 RIGHT JOIN t2 ON t1.num = t2.num;</code></strong>
num | name | num | value
-----+------+-----+-------
1 | a | 1 | xxx
3 | c | 3 | yyy
| | 5 | zzz
(3 rows)
<code class="prompt">=></code> <strong class="userinput"><code>SELECT * FROM t1 FULL JOIN t2 ON t1.num = t2.num;</code></strong>
num | name | num | value
-----+------+-----+-------
1 | a | 1 | xxx
2 | b | |
3 | c | 3 | yyy
| | 5 | zzz
(4 rows)</pre>
<p>
</p>
<p> The join condition specified with <code class="literal">ON</code> can also contain
conditions that do not relate directly to the join. This can
prove useful for some queries but needs to be thought out
carefully. For example:
</p>
<pre class="screen"><code class="prompt">=></code> <strong class="userinput"><code>SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num AND t2.value = 'xxx';</code></strong>
num | name | num | value
-----+------+-----+-------
1 | a | 1 | xxx
2 | b | |
3 | c | |
(3 rows)</pre>
<p>
</p>
</div>
<div class="sect3" lang="en">
<div class="titlepage"><div><div><h4 class="title">
<a name="queries-table-aliases"></a>7.2.1.2.Table and Column Aliases</h4></div></div></div>
<a name="id581170"></a><a name="id581184"></a><p> A temporary name can be given to tables and complex table
references to be used for references to the derived table in
the rest of the query. This is called a <em class="firstterm">table
alias</em>.
</p>
<p> To create a table alias, write
</p>
<pre class="synopsis">FROM <em class="replaceable"><code>table_reference</code></em> AS <em class="replaceable"><code>alias</code></em></pre>
<p>
or
</p>
<pre class="synopsis">FROM <em class="replaceable"><code>table_reference</code></em> <em class="replaceable"><code>alias</code></em></pre>
<p>
The <code class="literal">AS</code> key word is noise.
<em class="replaceable"><code>alias</code></em> can be any identifier.
</p>
<p> A typical application of table aliases is to assign short
identifiers to long table names to keep the join clauses
readable. For example:
</p>
<pre class="programlisting">SELECT * FROM some_very_long_table_name s JOIN another_fairly_long_name a ON s.id = a.num;</pre>
<p>
</p>
<p> The alias becomes the new name of the table reference for the
current query [mdash ] it is no longer possible to refer to the table
by the original name. Thus
</p>
<pre class="programlisting">SELECT * FROM my_table AS m WHERE my_table.a > 5;</pre>
<p>
is not valid SQL syntax. What will actually happen (this is a
<span class="productname">PostgreSQL</span> extension to the standard)
is that an implicit table reference is added to the
<code class="literal">FROM</code> clause, so the query is processed as if
it were written as
</p>
<pre class="programlisting">SELECT * FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;</pre>
<p>
which will result in a cross join, which is usually not what you
want.
</p>
<p> Table aliases are mainly for notational convenience, but it is
necessary to use them when joining a table to itself, e.g.,
</p>
<pre class="programlisting">SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...</pre>
<p>
Additionally, an alias is required if the table reference is a
subquery (see <a href="queries-table-expressions.html#queries-subqueries" title="7.2.1.3.Subqueries">Section7.2.1.3, “Subqueries”</a>).
</p>
<p> Parentheses are used to resolve ambiguities. The following
statement will assign the alias <code class="literal">b</code> to the
result of the join, unlike the previous example:
</p>
<pre class="programlisting">SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...</pre>
<p>
</p>
<p> Another form of table aliasing gives temporary names to the columns of
the table, as well as the table itself:
</p>
<pre class="synopsis">FROM <em class="replaceable"><code>table_reference</code></em> [<span class="optional">AS</span>] <em class="replaceable"><code>alias</code></em> ( <em class="replaceable"><code>column1</code></em> [<span class="optional">, <em class="replaceable"><code>column2</code></em> [<span class="optional">, ...</span>]</span>] )</pre>
<p>
If fewer column aliases are specified than the actual table has
columns, the remaining columns are not renamed. This syntax is
especially useful for self-joins or subqueries.
</p>
<p> When an alias is applied to the output of a <code class="literal">JOIN</code>
clause, using any of these forms, the alias hides the original
names within the <code class="literal">JOIN</code>. For example,
</p>
<pre class="programlisting">SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...</pre>
<p>
is valid SQL, but
</p>
<pre class="programlisting">SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c</pre>
<p>
is not valid: the table alias <code class="literal">a</code> is not visible
outside the alias <code class="literal">c</code>.
</p>
</div>
<div class="sect3" lang="en">
<div class="titlepage"><div><div><h4 class="title">
<a name="queries-subqueries"></a>7.2.1.3.Subqueries</h4></div></div></div>
<a name="id581435"></a><p> Subqueries specifying a derived table must be enclosed in
parentheses and <span class="emphasis"><em>must</em></span> be assigned a table
alias name. (See <a href="queries-table-expressions.html#queries-table-aliases" title="7.2.1.2.Table and Column Aliases">Section7.2.1.2, “Table and Column Aliases”</a>.) For
example:
</p>
<pre class="programlisting">FROM (SELECT * FROM table1) AS alias_name</pre>
<p>
</p>
<p> This example is equivalent to <code class="literal">FROM table1 AS
alias_name</code>. More interesting cases, which can't be
reduced to a plain join, arise when the subquery involves
grouping or aggregation.
</p>
</div>
<div class="sect3" lang="en">
<div class="titlepage"><div><div><h4 class="title">
<a name="queries-tablefunctions"></a>7.2.1.4.Table Functions</h4></div></div></div>
<a name="id581489"></a><a name="id581501"></a><p> Table functions are functions that produce a set of rows, made up
of either base data types (scalar types) or composite data types
(table rows). They are used like a table, view, or subquery in
the <code class="literal">FROM</code> clause of a query. Columns returned by table
functions may be included in <code class="literal">SELECT</code>,
<code class="literal">JOIN</code>, or <code class="literal">WHERE</code> clauses in the same manner
as a table, view, or subquery column.
</p>
<p> If a table function returns a base data type, the single result
column is named like the function. If the function returns a
composite type, the result columns get the same names as the
individual attributes of the type.
</p>
<p> A table function may be aliased in the <code class="literal">FROM</code> clause,
but it also may be left unaliased. If a function is used in the
<code class="literal">FROM</code> clause with no alias, the function name is used
as the resulting table name.
</p>
<p> Some examples:
</p>
<pre class="programlisting">CREATE TABLE foo (fooid int, foosubid int, fooname text);
CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;
SELECT * FROM getfoo(1) AS t1;
SELECT * FROM foo
WHERE foosubid IN (select foosubid from getfoo(foo.fooid) z
where z.fooid = foo.fooid);
CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);
SELECT * FROM vw_getfoo;</pre>
<p>
</p>
<p> In some cases it is useful to define table functions that can
return different column sets depending on how they are invoked.
To support this, the table function can be declared as returning
the pseudotype <code class="type">record</code>. When such a function is used in
a query, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan
the query. Consider this example:
</p>
<pre class="programlisting">SELECT *
FROM dblink('dbname=mydb', 'select proname, prosrc from pg_proc')
AS t1(proname name, prosrc text)
WHERE proname LIKE 'bytea%';</pre>
<p>
The <code class="literal">dblink</code> function executes a remote query (see
<code class="filename">contrib/dblink</code>). It is declared to return
<code class="type">record</code> since it might be used for any kind of query.
The actual column set must be specified in the calling query so
that the parser knows, for example, what <code class="literal">*</code> should
expand to.
</p>
</div>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="queries-where"></a>7.2.2.The <code class="literal">WHERE</code> Clause</h3></div></div></div>
<a name="id581656"></a><p> The syntax of the <a href="sql-select.html#sql-where"><code class="literal">WHERE</code> Clause</a> is
</p>
<pre class="synopsis">WHERE <em class="replaceable"><code>search_condition</code></em></pre>
<p>
where <em class="replaceable"><code>search_condition</code></em> is any value
expression (see <a href="sql-expressions.html" title="4.2.Value Expressions">Section4.2, “Value Expressions”</a>) that
returns a value of type <code class="type">boolean</code>.
</p>
<p> After the processing of the <code class="literal">FROM</code> clause is done, each
row of the derived virtual table is checked against the search
condition. If the result of the condition is true, the row is
kept in the output table, otherwise (that is, if the result is
false or null) it is discarded. The search condition typically
references at least some column of the table generated in the
<code class="literal">FROM</code> clause; this is not required, but otherwise the
<code class="literal">WHERE</code> clause will be fairly useless.
</p>
<div class="note" style="margin-left: 0.5in; margin-right: 0.5in;">
<h3 class="title">Note</h3>
<p> The join condition of an inner join can be written either in
the <code class="literal">WHERE</code> clause or in the <code class="literal">JOIN</code> clause.
For example, these table expressions are equivalent:
</p>
<pre class="programlisting">FROM a, b WHERE a.id = b.id AND b.val > 5</pre>
<p>
and
</p>
<pre class="programlisting">FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5</pre>
<p>
or perhaps even
</p>
<pre class="programlisting">FROM a NATURAL JOIN b WHERE b.val > 5</pre>
<p>
Which one of these you use is mainly a matter of style. The
<code class="literal">JOIN</code> syntax in the <code class="literal">FROM</code> clause is
probably not as portable to other SQL database management systems. For
outer joins there is no choice in any case: they must be done in
the <code class="literal">FROM</code> clause. An <code class="literal">ON</code>/<code class="literal">USING</code>
clause of an outer join is <span class="emphasis"><em>not</em></span> equivalent to a
<code class="literal">WHERE</code> condition, because it determines the addition
of rows (for unmatched input rows) as well as the removal of rows
from the final result.
</p>
</div>
<p> Here are some examples of <code class="literal">WHERE</code> clauses:
</p>
<pre class="programlisting">SELECT ... FROM fdt WHERE c1 > 5
SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)
SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROM t2)
SELECT ... FROM fdt WHERE c1 IN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10)
SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10) AND 100
SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE c2 > fdt.c1)</pre>
<p>
<code class="literal">fdt</code> is the table derived in the
<code class="literal">FROM</code> clause. Rows that do not meet the search
condition of the <code class="literal">WHERE</code> clause are eliminated from
<code class="literal">fdt</code>. Notice the use of scalar subqueries as
value expressions. Just like any other query, the subqueries can
employ complex table expressions. Notice also how
<code class="literal">fdt</code> is referenced in the subqueries.
Qualifying <code class="literal">c1</code> as <code class="literal">fdt.c1</code> is only necessary
if <code class="literal">c1</code> is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds
clarity even when it is not needed. This example shows how the column
naming scope of an outer query extends into its inner queries.
</p>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="queries-group"></a>7.2.3.The <code class="literal">GROUP BY</code> and <code class="literal">HAVING</code> Clauses</h3></div></div></div>
<a name="id581944"></a><a name="id581955"></a><p> After passing the <code class="literal">WHERE</code> filter, the derived input
table may be subject to grouping, using the <code class="literal">GROUP BY</code>
clause, and elimination of group rows using the <code class="literal">HAVING</code>
clause.
</p>
<pre class="synopsis">SELECT <em class="replaceable"><code>select_list</code></em>
FROM ...
[<span class="optional">WHERE ...</span>]
GROUP BY <em class="replaceable"><code>grouping_column_reference</code></em> [<span class="optional">, <em class="replaceable"><code>grouping_column_reference</code></em></span>]...</pre>
<p> The <a href="sql-select.html#sql-groupby"><code class="literal">GROUP BY</code> Clause</a> is
used to group together those rows in a table that share the same
values in all the columns listed. The order in which the columns
are listed does not matter. The effect is to combine each set
of rows sharing common values into one group row that is
representative of all rows in the group. This is done to
eliminate redundancy in the output and/or compute aggregates that
apply to these groups. For instance:
</p>
<pre class="screen"><code class="prompt">=></code> <strong class="userinput"><code>SELECT * FROM test1;</code></strong>
x | y
---+---
a | 3
c | 2
b | 5
a | 1
(4 rows)
<code class="prompt">=></code> <strong class="userinput"><code>SELECT x FROM test1 GROUP BY x;</code></strong>
x
---
a
b
c
(3 rows)</pre>
<p>
</p>
<p> In the second query, we could not have written <code class="literal">SELECT *
FROM test1 GROUP BY x</code>, because there is no single value
for the column <code class="literal">y</code> that could be associated with each
group. The grouped-by columns can be referenced in the select list since
they have a single value in each group.
</p>
<p> In general, if a table is grouped, columns that are not
used in the grouping cannot be referenced except in aggregate
expressions. An example with aggregate expressions is:
</p>
<pre class="screen"><code class="prompt">=></code> <strong class="userinput"><code>SELECT x, sum(y) FROM test1 GROUP BY x;</code></strong>
x | sum
---+-----
a | 4
b | 5
c | 2
(3 rows)</pre>
<p>
Here <code class="literal">sum</code> is an aggregate function that
computes a single value over the entire group. More information
about the available aggregate functions can be found in <a href="functions-aggregate.html" title="9.15.Aggregate Functions">Section9.15, “Aggregate Functions”</a>.
</p>
<div class="tip" style="margin-left: 0.5in; margin-right: 0.5in;">
<h3 class="title">Tip</h3>
<p> Grouping without aggregate expressions effectively calculates the
set of distinct values in a column. This can also be achieved
using the <code class="literal">DISTINCT</code> clause (see <a href="queries-select-lists.html#queries-distinct" title="7.3.3.DISTINCT">Section7.3.3, “<code class="literal">DISTINCT</code>”</a>).
</p>
</div>
<p> Here is another example: it calculates the total sales for each
product (rather than the total sales on all products).
</p>
<pre class="programlisting">SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;</pre>
<p>
In this example, the columns <code class="literal">product_id</code>,
<code class="literal">p.name</code>, and <code class="literal">p.price</code> must be
in the <code class="literal">GROUP BY</code> clause since they are referenced in
the query select list. (Depending on how exactly the products
table is set up, name and price may be fully dependent on the
product ID, so the additional groupings could theoretically be
unnecessary, but this is not implemented yet.) The column
<code class="literal">s.units</code> does not have to be in the <code class="literal">GROUP
BY</code> list since it is only used in an aggregate expression
(<code class="literal">sum(...)</code>), which represents the sales
of a product. For each product, the query returns a summary row about
all sales of the product.
</p>
<p> In strict SQL, <code class="literal">GROUP BY</code> can only group by columns of
the source table but <span class="productname">PostgreSQL</span> extends
this to also allow <code class="literal">GROUP BY</code> to group by columns in the
select list. Grouping by value expressions instead of simple
column names is also allowed.
</p>
<a name="id582243"></a><p> If a table has been grouped using a <code class="literal">GROUP BY</code>
clause, but then only certain groups are of interest, the
<code class="literal">HAVING</code> clause can be used, much like a
<code class="literal">WHERE</code> clause, to eliminate groups from a grouped
table. The syntax is:
</p>
<pre class="synopsis">SELECT <em class="replaceable"><code>select_list</code></em> FROM ... [<span class="optional">WHERE ...</span>] GROUP BY ... HAVING <em class="replaceable"><code>boolean_expression</code></em></pre>
<p>
Expressions in the <code class="literal">HAVING</code> clause can refer both to
grouped expressions and to ungrouped expressions (which necessarily
involve an aggregate function).
</p>
<p> Example:
</p>
<pre class="screen"><code class="prompt">=></code> <strong class="userinput"><code>SELECT x, sum(y) FROM test1 GROUP BY x HAVING sum(y) > 3;</code></strong>
x | sum
---+-----
a | 4
b | 5
(2 rows)
<code class="prompt">=></code> <strong class="userinput"><code>SELECT x, sum(y) FROM test1 GROUP BY x HAVING x < 'c';</code></strong>
x | sum
---+-----
a | 4
b | 5
(2 rows)</pre>
<p>
</p>
<p> Again, a more realistic example:
</p>
<pre class="programlisting">SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL '4 weeks'
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) > 5000;</pre>
<p>
In the example above, the <code class="literal">WHERE</code> clause is selecting
rows by a column that is not grouped (the expression is only true for
sales during the last four weeks), while the <code class="literal">HAVING</code>
clause restricts the output to groups with total gross sales over
5000. Note that the aggregate expressions do not necessarily need
to be the same in all parts of the query.
</p>
</div>
</div></body>
</html>
|