1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
|
/*
COPYRIGHT
The following is a notice of limited availability of the code, and disclaimer
which must be included in the prologue of the code and in all source listings
of the code.
(C) COPYRIGHT 2008 University of Chicago
Permission is hereby granted to use, reproduce, prepare derivative works, and
to redistribute to others. This software was authored by:
D. Levine
Mathematics and Computer Science Division
Argonne National Laboratory Group
with programming assistance of participants in Argonne National
Laboratory's SERS program.
GOVERNMENT LICENSE
Portions of this material resulted from work developed under a
U.S. Government Contract and are subject to the following license: the
Government is granted for itself and others acting on its behalf a paid-up,
nonexclusive, irrevocable worldwide license in this computer software to
reproduce, prepare derivative works, and perform publicly and display
publicly.
DISCLAIMER
This computer code material was prepared, in part, as an account of work
sponsored by an agency of the United States Government. Neither the United
States, nor the University of Chicago, nor any of their employees, makes any
warranty express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights.
*/
/*****************************************************************************
* File: binary.c: This file contains routines specific to the binary
* datatype.
*
* Authors: David M. Levine, Philip L. Hallstrom, David M. Noelle,
* Brian P. Walenz
*****************************************************************************/
#include "pgapack.h"
/*U****************************************************************************
PGASetBinaryAllele - sets a binary allele to the specified value.
Category: Fitness & Evaluation
Inputs:
ctx - context variable
p - string index
pop - symbolic constant of the population the string is in
i - allele index
val - binary value (either 1 or 0) to set the allele to
Outputs:
The allele is changed by side-effect.
Example:
Copies the alleles from member p in PGA_OLDPOP to member q PGA_NEWPOP.
Assumes strings are of the same length.
PGAContext *ctx;
int p, q, i;
:
for (i=PGAGetStringLength(ctx)-1; i>=0; i--)
PGASetBinaryAllele(ctx, q, PGA_NEWPOP, i,
PGAGetBinaryAllele(ctx, p, PGA_OLDPOP, i))
****************************************************************************U*/
void PGASetBinaryAllele ( PGAContext *ctx, int p, int pop, int i, int val )
{
int windex; /* index of the computer word allele i is in */
int bix; /* bit position in word chrom[windex] of allele i */
PGAIndividual *ind;
PGABinary *chrom;
PGADebugEntered("PGASetBinaryAllele");
PGACheckDataType("PGAGetBinaryAllele", PGA_DATATYPE_BINARY);
INDEX( windex,bix,i,WL );
ind = PGAGetIndividual ( ctx, p, pop );
chrom = (PGABinary *)ind->chrom;
if ( val == 0 )
UNSET( bix, chrom[windex] );
else
SET( bix, chrom[windex] );
PGADebugExited("PGASetBinaryAllele");
}
/*U****************************************************************************
PGAGetBinaryAllele - returns the value of a (binary) allele in a
PGA_DATATYPE_BINARY string
Category: Fitness & Evaluation
Inputs:
ctx - context variable
p - string index
pop - symbolic constant of the population the string is in
i - allele index
Outputs:
The value of the ith allele of string p in population pop.
Example:
Copies the alleles from member p in PGA_OLDPOP to member q PGA_NEWPOP.
Assumes the strings are of the same length.
PGAContext *ctx;
int p, q, i;
:
for (i=PGAGetStringLength(ctx)-1; i>=0; i--)
PGASetBinaryAllele(ctx, q, PGA_NEWPOP, i,
PGAGetBinaryAllele(ctx, p, PGA_OLDPOP, i))
****************************************************************************U*/
int PGAGetBinaryAllele ( PGAContext *ctx, int p, int pop, int i )
{
int windex; /* index of the computer word allele i is in */
int bix; /* bit position in word chrom[windex] of allele i */
PGAIndividual *ind;
PGABinary *chrom;
PGADebugEntered("PGAGetBinaryAllele");
PGACheckDataType("PGAGetBinaryAllele", PGA_DATATYPE_BINARY);
INDEX( windex,bix,i,WL );
ind = PGAGetIndividual ( ctx, p, pop );
chrom = (PGABinary *)ind->chrom;
PGADebugExited("PGAGetBinaryAllele");
return( BIT(bix, chrom[windex]) != 0 );
}
/*U****************************************************************************
PGASetBinaryInitProb - specify the probability of initializing an allele to
"1" when creating a PGA_DATATYPE_BINARY string. The default value is 0.5.
Category: Initialization
Inputs:
ctx - context variable
p - the binary initialization probability
Outputs:
None
Example:
Set approximately 1 percent of all binary alleles to "1" when randomly
initializing the population.
PGAContext *ctx;
:
PGASetBinaryInitProb(ctx, 0.01);
****************************************************************************U*/
void PGASetBinaryInitProb ( PGAContext *ctx, double probability )
{
PGADebugEntered("PGASetBinaryInitProb");
PGAFailIfSetUp("PGASetBinaryInitProb");
PGACheckDataType("PGASetBinaryInitProb", PGA_DATATYPE_BINARY);
if ( (probability <= 1.0) && (probability >= 0.0) )
ctx->init.BinaryProbability = probability;
else
PGAError( ctx, "PGASetBinaryInitProb: Invalid value of probability:",
PGA_FATAL, PGA_DOUBLE, (void *) &probability );
PGADebugExited("PGASetBinaryInitProb");
}
/*U***************************************************************************
PGAGetBinaryInitProb - Returns the probability that an allele will be
randomly initialized to "1" in a PGA_DATATYPE_BINARY string.
Category: Initialization
Inputs:
ctx - context variable
Outputs:
The probability that a bit will be randomly initialized to one
Example:
PGAContext *ctx;
double prob;
:
prob = PGAGetBinaryInitProb(ctx);
***************************************************************************U*/
double PGAGetBinaryInitProb (PGAContext *ctx)
{
PGADebugEntered("PGAGetBinaryInitProb");
PGAFailIfNotSetUp("PGAGetBinaryInitProb");
PGACheckDataType("PGAGetBinaryInitProb", PGA_DATATYPE_BINARY);
PGADebugExited("PGAGetBinaryInitProb");
return(ctx->init.BinaryProbability);
}
/*I****************************************************************************
PGABinaryCreateString - Allocate a PGA_DATATYPE_BINARY string for member
p of population pop. If initflag is PGA_TRUE, randomly initialize all
alleles, otherwise clear all alleles.
Inputs:
ctx - context variable
p - string index
pop - symbolic constant of the population string p is in
initflag - a flag, if set, randomly initialize, else clear alleles
Outputs:
Member p in population pop is allocated and initialized.
Example:
Allocates and clears alleles for all strings in PGA_NEWPOP
PGAContext *ctx;
int p;
:
for (p=PGAGetPopSize(ctx)-1; p>=0; p--)
PGABinaryCreateString( ctx, p, PGA_NEWPOP, PGA_FALSE );
****************************************************************************I*/
void PGABinaryCreateString(PGAContext *ctx, int p, int pop, int initflag)
{
int i, fp;
PGABinary *s;
PGAIndividual *new = PGAGetIndividual(ctx, p, pop);
PGADebugEntered("PGABinaryCreateString");
PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR, "PGABinaryCreateString",
"initflag = ", PGA_INT, (void *) &initflag );
new->chrom = (void *)malloc(ctx->ga.tw * sizeof(PGABinary));
if (new->chrom == NULL)
PGAError(ctx, "PGABinaryCreateString: No room to allocate "
"new->chrom", PGA_FATAL, PGA_VOID, NULL);
s = (PGABinary *)new->chrom;
if (initflag)
if (ctx->fops.InitString) {
fp = ((p == PGA_TEMP1) || (p == PGA_TEMP2)) ? p : p+1;
(*ctx->fops.InitString)(&ctx, &fp, &pop);
} else {
(*ctx->cops.InitString)(ctx, p, pop);
}
else
for ( i=0; i<ctx->ga.tw; i++ )
s[i] = 0;
PGADebugExited("PGABinaryCreateString");
}
/*I****************************************************************************
PGABinaryMutation - randomly mutates a bit with a specified probability.
This routine is called from PGAMutation.
Inputs:
ctx - context variable
p - string index
pop - symbolic constant for the population string p is in
mr - probability of mutating (toggling) a bit
Outputs:
Returns the number of mutations
Example:
Mutates string p in population PGA_NEWPOP with a probability of 0.001
for each bit.
PGAContext *ctx;
int p;
:
PGABinaryMutation( ctx, p, PGA_NEWPOP, .001 );
****************************************************************************I*/
int PGABinaryMutation( PGAContext *ctx, int p, int pop, double mr )
{
int i,wi;
int count = 0;
PGABinary *c;
PGADebugEntered("PGABinaryMutation");
c = (PGABinary *)PGAGetIndividual(ctx, p, pop)->chrom;
for(wi=0; wi<ctx->ga.fw; wi++)
for(i=0; i<WL; ++i)
if ( PGARandomFlip(ctx, mr) )
{
TOGGLE(i,c[wi]);
count++;
}
/* clean up the partial word if eb > 0 */
if (ctx->ga.eb > 0 )
for(i=0;i<ctx->ga.eb;++i)
if ( PGARandomFlip(ctx, mr) )
{
TOGGLE(i,c[ctx->ga.fw]);
count++;
}
PGADebugExited("PGABinaryMutation");
return(count);
}
/*I****************************************************************************
PGABinaryOneptCrossover - performs one-point crossover on two parent strings
to create two children via side-effect
Inputs:
ctx - context variable
p1 - the first parent string
p2 - the second parent string
pop1 - symbolic constant of the population containing p1 and p2
c1 - the first child string
c2 - the second child string
pop2 - symbolic constant of the population containing c1 and c2
Outputs:
None.
Example:
Performs crossover on the two parent strings m and d, producing
children s and b.
PGAContext *ctx;
int m, d, s, b;
:
PGABinaryOneptCrossover( ctx, m, d, PGA_OLDPOP, s, b, PGA_NEWPOP );
****************************************************************************I*/
void PGABinaryOneptCrossover(PGAContext *ctx, int p1, int p2, int pop1, int c1,
int c2, int pop2)
{
PGABinary *parent1 = (PGABinary *)PGAGetIndividual(ctx, p1, pop1)->chrom;
PGABinary *parent2 = (PGABinary *)PGAGetIndividual(ctx, p2, pop1)->chrom;
PGABinary *child1 = (PGABinary *)PGAGetIndividual(ctx, c1, pop2)->chrom;
PGABinary *child2 = (PGABinary *)PGAGetIndividual(ctx, c2, pop2)->chrom;
/*
If the bits are numbered from 0 as follows:
b b b b b b b b b b
0 1 2 3 4 5 6 7 30 31
Then if the cross site is bit 5 (which is the sixth bit by our
numbering scheme) we would get
o o o o o n n n n n
0 1 2 3 4 5 6 7 30 31
where o indicates the original bit and n is a new bit from the crossover
operator.
*/
PGABinary mask;
int windex; /* index of the word the crossover bit position is in */
int bix; /* bit position to perform crossover (mod WL) */
int i;
int xsite;
PGADebugEntered("PGABinaryOneptCrossover");
xsite = PGARandomInterval(ctx, 1,ctx->ga.StringLen-1);
INDEX(windex,bix,xsite,WL);
for(i=0;i<windex;i++) {
child1[i] = parent1[i];
child2[i] = parent2[i];
}
mask = ~0;
mask = mask >> bix;
child1[windex] = (~mask & parent1[windex])|(mask & parent2[windex]);
child2[windex] = (~mask & parent2[windex])|(mask & parent1[windex]);
for(i=windex+1;i<ctx->ga.tw;i++) {
child1[i] = parent2[i];
child2[i] = parent1[i];
}
PGADebugExited("PGABinaryOneptCrossover");
}
/*I****************************************************************************
PGABinaryTwoptCrossover - performs two-point crossover on two parent strings
producing two children via side-effect
Inputs:
ctx - context variable
p1 - the first parent string
p2 - the second parent string
pop1 - symbolic constant of the population containing string p1 and p2
c1 - the first child string
c2 - the second child string
pop2 - symbolic constant of the population to contain string c1 and c2
Outputs:
None.
Example:
Performs crossover on the two parent strings m and d, producing
children s and b.
PGAContext *ctx;
int m, d, s, b;
:
PGABinaryTwoptCrossover( ctx, m, d, PGA_OLDPOP, s, b, PGA_NEWPOP );
****************************************************************************I*/
void PGABinaryTwoptCrossover(PGAContext *ctx, int p1, int p2, int pop1, int c1,
int c2, int pop2)
{
PGABinary *parent1 = (PGABinary *)PGAGetIndividual(ctx, p1, pop1)->chrom;
PGABinary *parent2 = (PGABinary *)PGAGetIndividual(ctx, p2, pop1)->chrom;
PGABinary *child1 = (PGABinary *)PGAGetIndividual(ctx, c1, pop2)->chrom;
PGABinary *child2 = (PGABinary *)PGAGetIndividual(ctx, c2, pop2)->chrom;
PGABinary mask, mask1, mask2;
int windex1, windex2;
int bix1, bix2;
int i;
int xsite1, xsite2;
int temp;
PGADebugEntered("PGABinaryTwoptCrossover");
/* pick two cross sites such that xsite2 > xsite1 */
xsite1 = PGARandomInterval(ctx, 1,ctx->ga.StringLen-1);
xsite2 = xsite1;
while ( xsite2 == xsite1 )
xsite2 = PGARandomInterval(ctx, 1,ctx->ga.StringLen-1);
if ( xsite1 > xsite2 ) {
temp = xsite1;
xsite1 = xsite2;
xsite2 = temp;
}
INDEX(windex1,bix1,xsite1,WL);
INDEX(windex2,bix2,xsite2,WL);
if ( windex1 == windex2 ) { /* both cross sites in the same word */
for(i=0;i<windex1;i++) {
child1[i] = parent1[i];
child2[i] = parent2[i];
}
mask1 = ~0;
if (bix1 == 0)
mask1 = 0;
else
mask1 = mask1 << (WL-bix1);
mask2 = ~0;
mask2 = mask2 >> bix2;
mask = mask1 | mask2;
child1[windex1] = (mask & parent1[windex1])|(~mask & parent2[windex1]);
child2[windex1] = (mask & parent2[windex1])|(~mask & parent1[windex1]);
for(i=windex1+1;i<ctx->ga.tw;i++) {
child1[i] = parent1[i];
child2[i] = parent2[i];
}
}
else { /* cross sites in different words */
for(i=0;i<windex1;i++) {
child1[i] = parent1[i];
child2[i] = parent2[i];
}
mask = ~0;
mask = mask >> bix1;
child1[windex1] = (~mask & parent1[windex1])|(mask & parent2[windex1]);
child2[windex1] = (~mask & parent2[windex1])|(mask & parent1[windex1]);
for(i=windex1+1; i<windex2; i++) {
child1[i] = parent2[i];
child2[i] = parent1[i];
}
mask = ~0;
mask = mask >> bix2;
child1[windex2] = (mask & parent1[windex2])|(~mask & parent2[windex2]);
child2[windex2] = (mask & parent2[windex2])|(~mask & parent1[windex2]);
for(i=windex2+1; i<ctx->ga.tw; i++) {
child1[i] = parent1[i];
child2[i] = parent2[i];
}
}
PGADebugExited("PGABinaryTwoptCrossover");
}
/*I****************************************************************************
PGABinaryUniformCrossover - performs uniform crossover on two parent strings
producing two children via side-effect
Inputs:
ctx - context variable
p1 - the first parent string
p2 - the second parent string
pop1 - symbolic constant of the population containing string p1 and p2
c1 - the first child string
c2 - the second child string
pop2 - symbolic constant of the population to contain string c1 and c2
Outputs:
None.
Example:
Performs crossover on the two parent strings m and d, producing
children s and b.
PGAContext *ctx;
int m, d, s, b;
:
PGABinaryUniformCrossover( ctx, m, d, PGA_OLDPOP, s, b, PGA_NEWPOP );
****************************************************************************I*/
void PGABinaryUniformCrossover(PGAContext *ctx, int p1, int p2, int pop1,
int c1, int c2, int pop2)
{
PGABinary *parent1 = (PGABinary *)PGAGetIndividual(ctx, p1, pop1)->chrom;
PGABinary *parent2 = (PGABinary *)PGAGetIndividual(ctx, p2, pop1)->chrom;
PGABinary *child1 = (PGABinary *)PGAGetIndividual(ctx, c1, pop2)->chrom;
PGABinary *child2 = (PGABinary *)PGAGetIndividual(ctx, c2, pop2)->chrom;
PGABinary mask;
int j,wi;
PGADebugEntered("PGABinaryUniformCrossover");
for(wi=0;wi<ctx->ga.tw;wi++) {
if ( parent1[wi] == parent2[wi] ) {
child1[wi] = parent1[wi];
child2[wi] = parent2[wi];
}
else {
mask = 0;
for (j=0;j<WL;j++)
if(PGARandomFlip(ctx, ctx->ga.UniformCrossProb))
SET(j,mask);
child1[wi] = (mask & parent1[wi])|(~mask & parent2[wi]);
child2[wi] = (mask & parent2[wi])|(~mask & parent1[wi]);
}
}
PGADebugExited("PGABinaryUniformCrossover");
}
/*I****************************************************************************
PGABinaryPrintString - writes a bit string to a file.
Inputs:
ctx - context variable
fp - file pointer to file to write bit string to
p - index of the string to write out
pop - symbolic constant of the population string p is in
Outputs:
None.
Example:
Write string s to stdout.
PGAContext *ctx;
int s;
:
PGABinaryPrintString( ctx, stdout, s, PGA_NEWPOP );
****************************************************************************I*/
void PGABinaryPrintString( PGAContext *ctx, FILE *fp, int p, int pop )
{
PGABinary *c = (PGABinary *)PGAGetIndividual(ctx, p, pop)->chrom;
int i;
PGADebugEntered("PGABinaryPrintString");
for( i=0; i<ctx->ga.fw; i++ ) {
fprintf(fp,"[ ");
PGABinaryPrint( ctx, fp, (c+i), WL );
fprintf(fp," ]\n");
}
if ( ctx->ga.eb > 0 ) {
fprintf(fp,"[ ");
PGABinaryPrint( ctx, fp, (c+ctx->ga.fw), ctx->ga.eb );
fprintf(fp," ]");
}
PGADebugExited("PGABinaryPrintString");
}
/*I****************************************************************************
PGABinaryCopyString - Copy one bit string to another
Inputs:
ctx - context variable
p1 - string to copy
pop1 - symbolic constant of population containing string p1
p2 - string to copy p1 to
pop2 - symbolic constant of population containing string p2
Outputs:
None.
Example:
Copy bit string x to y (both are implicitly assumed to have the same
length).
PGAContext *ctx;
int x, y
:
PGABinaryCopyString ( ctx, x, PGA_OLDPOP, y, PGA_NEWPOP );
****************************************************************************I*/
void PGABinaryCopyString (PGAContext *ctx, int p1, int pop1, int p2, int pop2)
{
PGABinary *source = (PGABinary *)PGAGetIndividual(ctx, p1, pop1)->chrom;
PGABinary *dest = (PGABinary *)PGAGetIndividual(ctx, p2, pop2)->chrom;
int i;
PGADebugEntered("PGABinaryCopyString");
for (i = ctx->ga.tw-1; i>=0; i--)
dest[i] = source[i];
PGADebugExited("PGABinaryCopyString");
}
/*I****************************************************************************
PGABinaryDuplicate - Returns true if bit string a is a duplicate of bit
string b, else returns false.
Inputs:
ctx - context variable
p1 - string index of the first string to compare
pop1 - symbolic constant of the population string p1 is in
p2 - string index of the second string to compare
pop2 - symbolic constant of the population string p2 is in
Outputs:
Returns true/false if strings are duplicates
Example:
Compare bit string x with y and print a message if they are the same.
PGAContext *ctx;
int x, y;
:
if ( PGABinaryDuplicate( ctx, x, PGA_NEWPOP, y, PGA_NEWPOP ) )
printf("strings are duplicates\n");
****************************************************************************I*/
int PGABinaryDuplicate( PGAContext *ctx, int p1, int pop1, int p2, int pop2)
{
PGABinary *a = (PGABinary *)PGAGetIndividual(ctx, p1, pop1)->chrom;
PGABinary *b = (PGABinary *)PGAGetIndividual(ctx, p2, pop2)->chrom;
int wi;
PGADebugEntered("PGABinaryDuplicate");
wi = ctx->ga.tw-1;
if (a[0] == b[0])
for (; (wi>0) && (a[wi] == b[wi]); wi--);
PGADebugExited("PGABinaryDuplicate");
return((wi==0) ? PGA_TRUE : PGA_FALSE);
}
/*I****************************************************************************
PGABinaryInitString - randomly initialize a string of type PGABinary
Inputs:
ctx - context variable
p - index of string to randomly initialize
pop - symbolic constant of the population string p is in
Outputs:
Example:
PGAContext *ctx;
int p;
:
PGABinaryInitString ( ctx, p, PGA_NEWPOP );
****************************************************************************I*/
void PGABinaryInitString(PGAContext *ctx, int p, int pop)
{
PGABinary *c = (PGABinary *)PGAGetIndividual(ctx, p, pop)->chrom;
int i;
int windex; /* index of the computer word allele i is in */
int bix; /* binary position in word chrom[windex] of allele i */
PGADebugEntered("PGABinaryInitString");
for (i = 0; i < ctx->ga.tw; i++)
c[i] = 0;
for (i = 0; i < ctx->ga.StringLen; i++)
{
INDEX(windex,bix,i,WL);
if ( PGARandomFlip(ctx, ctx->init.BinaryProbability) )
SET ( bix, c[windex] );
}
PGADebugExited("PGABinaryInitString");
}
/*I****************************************************************************
PGABinaryBuildDatatype - Build an MPI_Datatype for a binary string
datatype.
Inputs:
ctx - context variable
p - index of the string to build a datatype from
pop - symbolic constant of the population string p is in
Outputs:
MPI_Datatype.
Example:
Called only by MPI routines. Not for user consumption.
****************************************************************************I*/
MPI_Datatype PGABinaryBuildDatatype(PGAContext *ctx, int p, int pop)
{
int counts[4]; /* Number of elements in each
block (array of integer) */
MPI_Aint displs[4]; /* byte displacement of each
block (array of integer) */
MPI_Datatype types[4]; /* type of elements in each block (array
of handles to datatype objects) */
MPI_Datatype individualtype; /* new datatype (handle) */
PGAIndividual *traveller; /* address of individual in question */
PGADebugEntered("PGABinaryBuildDatatype");
traveller = PGAGetIndividual(ctx, p, pop);
MPI_Address(&traveller->evalfunc, &displs[0]);
counts[0] = 1;
types[0] = MPI_DOUBLE;
MPI_Address(&traveller->fitness, &displs[1]);
counts[1] = 1;
types[1] = MPI_DOUBLE;
MPI_Address(&traveller->evaluptodate, &displs[2]);
counts[2] = 1;
types[2] = MPI_INT;
MPI_Address(traveller->chrom, &displs[3]);
counts[3] = ctx->ga.tw;
types[3] = MPI_UNSIGNED_LONG;
MPI_Type_struct(4, counts, displs, types, &individualtype);
MPI_Type_commit(&individualtype);
PGADebugExited("PGABinaryBuildDatatype");
return (individualtype);
}
/*I****************************************************************************
PGABinaryHammingDistance - Returns the Hamming distance between two strings
Inputs:
ctx - context variable
s1 - the first string to compare
s2 - the second string to compare
Outputs:
The Hamming distance between two strings
Example:
Returns the Hamming distance between bit strings x and y.
PGAContext *ctx;
PGABinary *x, *y;
int d;
:
d = PGABinaryHammingDistance( ctx, x, y );
****************************************************************************I*/
int PGABinaryHammingDistance ( PGAContext *ctx, PGABinary *s1, PGABinary *s2 )
{
int j, wi, distance;
PGABinary t1, t2, mask;
PGADebugEntered("PGABinaryHammingDistance");
distance = 0;
for(wi=0; wi<ctx->ga.tw; wi++) /* step through each word in the string */
if ( s1[wi] != s2[wi] ) { /* if equal, no bits are different */
/*fprintf(stdout,"s1[wi] = %x, s2[wi] = %x\n",s1[wi],s2[wi]);*/
mask = 1;
for(j=0;j<WL;++j) { /* not equal, compare all bits */
/* Build bit mask in position j. Mask bit from each */
/* string into t1 and t2 and test if bits are the same */
t1 = s1[wi] & mask;
t2 = s2[wi] & mask;
/*fprintf(stdout,"mask = %u, t1 = %u, t2 = %u, j = %d, wi = %d\n",mask,t1,t2,j,wi);*/
if ( t1 != t2 )
distance++;
mask <<= 1; /* shift mask 1 position */
}
}
PGADebugExited("PGABinaryHammingDistance");
return(distance);
}
/*I****************************************************************************
PGABinaryPrint - writes a bit string to a file. Puts the binary
representation of the bit string pointed to by chrom into a character
string and writes that out. Assumes the maximum length of string to
print is WL, and that all bits are in the same word.
Inputs:
ctx - context variable
fp - file to write the bit string to
chrom - pointer to the bit string to write
nb - number of bits to write out
Outputs:
Example:
Internal function. Use PGABinaryPrintString to print a binary string.
****************************************************************************I*/
void PGABinaryPrint( PGAContext *ctx, FILE *fp, PGABinary *chrom, int nb )
{
char *s, string[WL+1];
PGABinary mask;
int i;
PGADebugEntered("PGABinaryPrint");
mask = ((PGABinary)1)<<(WL-1);
s = string;
for(i=0; i<nb; mask>>=1,i++) /* mask each bit and set the */
*s++ = (mask&(*chrom)?'1':'0'); /* appropriate character */
*s=0; /* string terminator */
fprintf(fp, "%s", string); /* print out character string */
PGADebugExited("PGABinaryPrint");
}
|