File: binary.c

package info (click to toggle)
pgapack 1.1-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 2,344 kB
  • ctags: 1,786
  • sloc: ansic: 10,331; fortran: 2,985; sh: 486; makefile: 462; perl: 105
file content (873 lines) | stat: -rw-r--r-- 27,857 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
/*
COPYRIGHT

The following is a notice of limited availability of the code, and disclaimer
which must be included in the prologue of the code and in all source listings
of the code.

(C) COPYRIGHT 2008 University of Chicago

Permission is hereby granted to use, reproduce, prepare derivative works, and
to redistribute to others. This software was authored by:

D. Levine
Mathematics and Computer Science Division 
Argonne National Laboratory Group

with programming assistance of participants in Argonne National 
Laboratory's SERS program.

GOVERNMENT LICENSE

Portions of this material resulted from work developed under a
U.S. Government Contract and are subject to the following license: the
Government is granted for itself and others acting on its behalf a paid-up,
nonexclusive, irrevocable worldwide license in this computer software to
reproduce, prepare derivative works, and perform publicly and display
publicly.

DISCLAIMER

This computer code material was prepared, in part, as an account of work
sponsored by an agency of the United States Government. Neither the United
States, nor the University of Chicago, nor any of their employees, makes any
warranty express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights.
*/

/*****************************************************************************
*     File: binary.c: This file contains routines specific to the binary
*                     datatype.
*
*     Authors: David M. Levine, Philip L. Hallstrom, David M. Noelle,
*              Brian P. Walenz
*****************************************************************************/

#include "pgapack.h"

/*U****************************************************************************
   PGASetBinaryAllele - sets a binary allele to the specified value.

   Category: Fitness & Evaluation

   Inputs:
      ctx - context variable
      p   - string index
      pop - symbolic constant of the population the string is in
      i   - allele index
      val - binary value (either 1 or 0) to set the allele to

   Outputs:
      The allele is changed by side-effect.

   Example:
      Copies the alleles from member p in PGA_OLDPOP to member q PGA_NEWPOP.
      Assumes strings are of the same length.

      PGAContext *ctx;
      int p, q, i;
      :
      for (i=PGAGetStringLength(ctx)-1; i>=0; i--)
          PGASetBinaryAllele(ctx, q, PGA_NEWPOP, i,
                             PGAGetBinaryAllele(ctx, p, PGA_OLDPOP, i))

****************************************************************************U*/
void PGASetBinaryAllele ( PGAContext *ctx, int p, int pop, int i, int val )
{
    int windex;        /* index of the computer word allele i is in      */
    int bix;           /* bit position in word chrom[windex] of allele i */
    PGAIndividual *ind;
    PGABinary *chrom;

    PGADebugEntered("PGASetBinaryAllele");
    PGACheckDataType("PGAGetBinaryAllele", PGA_DATATYPE_BINARY);

    INDEX( windex,bix,i,WL );
    ind = PGAGetIndividual ( ctx, p, pop );
    chrom = (PGABinary *)ind->chrom;
    if ( val == 0 )
        UNSET( bix, chrom[windex] );
    else
        SET( bix, chrom[windex] );

    PGADebugExited("PGASetBinaryAllele");
}

/*U****************************************************************************
   PGAGetBinaryAllele - returns the value of a (binary) allele in a
   PGA_DATATYPE_BINARY string

   Category: Fitness & Evaluation

   Inputs:
      ctx - context variable
      p   - string index
      pop - symbolic constant of the population the string is in
      i   - allele index

   Outputs:
      The value of the ith allele of string p in population pop.

   Example:
      Copies the alleles from member p in PGA_OLDPOP to member q PGA_NEWPOP.
      Assumes the strings are of the same length.

      PGAContext *ctx;
      int p, q, i;
      :
      for (i=PGAGetStringLength(ctx)-1; i>=0; i--)
          PGASetBinaryAllele(ctx, q, PGA_NEWPOP, i,
                             PGAGetBinaryAllele(ctx, p, PGA_OLDPOP, i))

****************************************************************************U*/
int PGAGetBinaryAllele ( PGAContext *ctx, int p, int pop, int i )
{

    int windex;        /* index of the computer word allele i is in      */
    int bix;           /* bit position in word chrom[windex] of allele i */
    PGAIndividual *ind;
    PGABinary *chrom;

    PGADebugEntered("PGAGetBinaryAllele");
    PGACheckDataType("PGAGetBinaryAllele", PGA_DATATYPE_BINARY);

    INDEX( windex,bix,i,WL );
    ind = PGAGetIndividual ( ctx, p, pop );
    chrom = (PGABinary *)ind->chrom;

    PGADebugExited("PGAGetBinaryAllele");
    return( BIT(bix, chrom[windex]) != 0 );
}

/*U****************************************************************************
   PGASetBinaryInitProb - specify the probability of initializing an allele to
   "1" when creating a PGA_DATATYPE_BINARY string.  The default value is 0.5.

   Category: Initialization

   Inputs:
      ctx - context variable
      p   - the binary initialization probability

   Outputs:
      None

   Example:
      Set approximately 1 percent of all binary alleles to "1" when randomly
      initializing the population.

      PGAContext *ctx;
      :
      PGASetBinaryInitProb(ctx, 0.01);

****************************************************************************U*/
void PGASetBinaryInitProb ( PGAContext *ctx, double probability )
{
    PGADebugEntered("PGASetBinaryInitProb");
    PGAFailIfSetUp("PGASetBinaryInitProb");
    PGACheckDataType("PGASetBinaryInitProb", PGA_DATATYPE_BINARY);

     if ( (probability <= 1.0) && (probability >= 0.0) )
          ctx->init.BinaryProbability = probability;
     else
          PGAError( ctx, "PGASetBinaryInitProb: Invalid value of probability:",
                   PGA_FATAL, PGA_DOUBLE, (void *) &probability );

    PGADebugExited("PGASetBinaryInitProb");
}

/*U***************************************************************************
   PGAGetBinaryInitProb - Returns the probability that an allele will be
   randomly initialized to "1" in a PGA_DATATYPE_BINARY string.

   Category: Initialization

   Inputs:
      ctx - context variable

   Outputs:
      The probability that a bit will be randomly initialized to one

   Example:
      PGAContext *ctx;
      double prob;
      :
      prob = PGAGetBinaryInitProb(ctx);

***************************************************************************U*/
double PGAGetBinaryInitProb (PGAContext *ctx)
{
    PGADebugEntered("PGAGetBinaryInitProb");
    PGAFailIfNotSetUp("PGAGetBinaryInitProb");
    PGACheckDataType("PGAGetBinaryInitProb", PGA_DATATYPE_BINARY);

    PGADebugExited("PGAGetBinaryInitProb");
    return(ctx->init.BinaryProbability);
}


/*I****************************************************************************
   PGABinaryCreateString - Allocate a PGA_DATATYPE_BINARY string for member
   p of population pop.  If initflag is PGA_TRUE, randomly initialize all
   alleles, otherwise clear all alleles.

   Inputs:
      ctx      - context variable
      p        - string index
      pop      - symbolic constant of the population string p is in
      initflag - a flag, if set, randomly initialize, else clear alleles

   Outputs:
      Member p in population pop is allocated and initialized.

   Example:
      Allocates and clears alleles for all strings in PGA_NEWPOP

      PGAContext *ctx;
      int p;
      :
      for (p=PGAGetPopSize(ctx)-1; p>=0; p--)
          PGABinaryCreateString( ctx, p, PGA_NEWPOP, PGA_FALSE );

****************************************************************************I*/
void PGABinaryCreateString(PGAContext *ctx, int p, int pop, int initflag)
{
    int i, fp;
    PGABinary *s;
    PGAIndividual *new = PGAGetIndividual(ctx, p, pop);
    
    PGADebugEntered("PGABinaryCreateString");
    PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR, "PGABinaryCreateString",
		  "initflag = ", PGA_INT, (void *) &initflag );
    
    new->chrom = (void *)malloc(ctx->ga.tw * sizeof(PGABinary));
    if (new->chrom == NULL)
	PGAError(ctx, "PGABinaryCreateString: No room to allocate "
		 "new->chrom", PGA_FATAL, PGA_VOID, NULL);
    
    s = (PGABinary *)new->chrom;
    if (initflag)
	if (ctx->fops.InitString) {
	    fp = ((p == PGA_TEMP1) || (p == PGA_TEMP2)) ? p : p+1;
            (*ctx->fops.InitString)(&ctx, &fp, &pop);
	} else {
	    (*ctx->cops.InitString)(ctx, p, pop);
	}
    else
	for ( i=0; i<ctx->ga.tw; i++ )
	    s[i] = 0;
    
    PGADebugExited("PGABinaryCreateString");
}

/*I****************************************************************************
   PGABinaryMutation - randomly mutates a bit with a specified probability.
   This routine is called from PGAMutation.

   Inputs:
      ctx - context variable
      p   - string index
      pop - symbolic constant for the population string p is in
      mr  - probability of mutating (toggling) a bit

   Outputs:
      Returns the number of mutations

   Example:
      Mutates string p in population PGA_NEWPOP with a probability of 0.001
      for each bit.

      PGAContext *ctx;
      int p;
      :
      PGABinaryMutation( ctx, p, PGA_NEWPOP, .001 );

****************************************************************************I*/
int PGABinaryMutation( PGAContext *ctx, int p, int pop, double mr )
{
     int i,wi;
     int count = 0;
     PGABinary *c;

     PGADebugEntered("PGABinaryMutation");

     c = (PGABinary *)PGAGetIndividual(ctx, p, pop)->chrom;
     for(wi=0; wi<ctx->ga.fw; wi++)
          for(i=0; i<WL; ++i)
               if ( PGARandomFlip(ctx, mr) )
               {
                    TOGGLE(i,c[wi]);
                    count++;
               }

     /* clean up the partial word if eb > 0 */
     if (ctx->ga.eb > 0 )
          for(i=0;i<ctx->ga.eb;++i)
               if ( PGARandomFlip(ctx, mr) )
               {
                    TOGGLE(i,c[ctx->ga.fw]);
                    count++;
               }

    PGADebugExited("PGABinaryMutation");
    return(count);

}

/*I****************************************************************************
   PGABinaryOneptCrossover - performs one-point crossover on two parent strings
   to create two children via side-effect

   Inputs:
      ctx  - context variable
      p1   - the first parent string
      p2   - the second parent string
      pop1 - symbolic constant of the population containing p1 and p2
      c1   - the first child string
      c2   - the second child string
      pop2 - symbolic constant of the population containing c1 and c2

   Outputs:
      None.

   Example:
      Performs crossover on the two parent strings m and d, producing
      children s and b.

      PGAContext *ctx;
      int m, d, s, b;
      :
      PGABinaryOneptCrossover( ctx, m, d, PGA_OLDPOP, s, b, PGA_NEWPOP );

****************************************************************************I*/
void PGABinaryOneptCrossover(PGAContext *ctx, int p1, int p2, int pop1, int c1,
                             int c2, int pop2)
{
    PGABinary *parent1 = (PGABinary *)PGAGetIndividual(ctx, p1, pop1)->chrom;
    PGABinary *parent2 = (PGABinary *)PGAGetIndividual(ctx, p2, pop1)->chrom;
    PGABinary *child1  = (PGABinary *)PGAGetIndividual(ctx, c1, pop2)->chrom;
    PGABinary *child2  = (PGABinary *)PGAGetIndividual(ctx, c2, pop2)->chrom;

    /*
      If the bits are numbered from 0 as follows:

      b   b   b   b   b   b   b   b          b  b
      0   1   2   3   4   5   6   7         30 31

      Then if the cross site is bit 5 (which is the sixth bit by our
      numbering scheme) we would get

      o   o   o   o   o   n   n   n          n  n
      0   1   2   3   4   5   6   7         30 31

      where o indicates the original bit and n is a new bit from the crossover
      operator.
    */

    PGABinary mask;
    int windex;   /* index of the word the crossover bit position is in */
    int bix;      /* bit position to perform crossover (mod WL)         */
    int i;
    int xsite;

    PGADebugEntered("PGABinaryOneptCrossover");

    xsite = PGARandomInterval(ctx, 1,ctx->ga.StringLen-1);

    INDEX(windex,bix,xsite,WL);

    for(i=0;i<windex;i++) {
        child1[i] = parent1[i];
        child2[i] = parent2[i];
    }

    mask = ~0;
    mask = mask >> bix;

    child1[windex] = (~mask & parent1[windex])|(mask & parent2[windex]);
    child2[windex] = (~mask & parent2[windex])|(mask & parent1[windex]);

    for(i=windex+1;i<ctx->ga.tw;i++) {
        child1[i] = parent2[i];
        child2[i] = parent1[i];
    }

    PGADebugExited("PGABinaryOneptCrossover");
}


/*I****************************************************************************
   PGABinaryTwoptCrossover - performs two-point crossover on two parent strings
   producing two children via side-effect

   Inputs:
      ctx  - context variable
      p1   - the first parent string
      p2   - the second parent string
      pop1 - symbolic constant of the population containing string p1 and p2
      c1   - the first child string
      c2   - the second child string
      pop2 - symbolic constant of the population to contain string c1 and c2

   Outputs:
      None.

   Example:
      Performs crossover on the two parent strings m and d, producing
      children s and b.

      PGAContext *ctx;
      int m, d, s, b;
      :
      PGABinaryTwoptCrossover( ctx, m, d, PGA_OLDPOP, s, b, PGA_NEWPOP );

****************************************************************************I*/
void PGABinaryTwoptCrossover(PGAContext *ctx, int p1, int p2, int pop1, int c1,
                             int c2, int pop2)
{
    PGABinary *parent1 = (PGABinary *)PGAGetIndividual(ctx, p1, pop1)->chrom;
    PGABinary *parent2 = (PGABinary *)PGAGetIndividual(ctx, p2, pop1)->chrom;
    PGABinary *child1  = (PGABinary *)PGAGetIndividual(ctx, c1, pop2)->chrom;
    PGABinary *child2  = (PGABinary *)PGAGetIndividual(ctx, c2, pop2)->chrom;

    PGABinary mask, mask1, mask2;
    int windex1, windex2;
    int bix1, bix2;
    int i;
    int xsite1, xsite2;
    int temp;

    PGADebugEntered("PGABinaryTwoptCrossover");

    /* pick two cross sites such that xsite2 > xsite1 */
    xsite1 = PGARandomInterval(ctx, 1,ctx->ga.StringLen-1);
    xsite2 = xsite1;
    while ( xsite2 == xsite1 )
        xsite2 = PGARandomInterval(ctx, 1,ctx->ga.StringLen-1);
    if ( xsite1 > xsite2 ) {
        temp   = xsite1;
        xsite1 = xsite2;
        xsite2 = temp;
    }

    INDEX(windex1,bix1,xsite1,WL);
    INDEX(windex2,bix2,xsite2,WL);

    if ( windex1 == windex2 ) {     /* both cross sites in the same word */

        for(i=0;i<windex1;i++) {
            child1[i] = parent1[i];
            child2[i] = parent2[i];
        }

        mask1 = ~0;
        if (bix1 == 0)
             mask1 = 0;
        else
             mask1 = mask1 << (WL-bix1);
        mask2 = ~0;
        mask2 = mask2 >> bix2;
        mask  = mask1 | mask2;

        child1[windex1] = (mask & parent1[windex1])|(~mask & parent2[windex1]);
        child2[windex1] = (mask & parent2[windex1])|(~mask & parent1[windex1]);

        for(i=windex1+1;i<ctx->ga.tw;i++) {
            child1[i] = parent1[i];
            child2[i] = parent2[i];
        }
    }
    else {                          /* cross sites in different words */

        for(i=0;i<windex1;i++) {
            child1[i] = parent1[i];
            child2[i] = parent2[i];
        }

        mask = ~0;
        mask = mask >> bix1;

        child1[windex1] = (~mask & parent1[windex1])|(mask & parent2[windex1]);
        child2[windex1] = (~mask & parent2[windex1])|(mask & parent1[windex1]);

        for(i=windex1+1; i<windex2; i++) {
            child1[i] = parent2[i];
            child2[i] = parent1[i];
        }

        mask = ~0;
        mask = mask >> bix2;

        child1[windex2] = (mask & parent1[windex2])|(~mask & parent2[windex2]);
        child2[windex2] = (mask & parent2[windex2])|(~mask & parent1[windex2]);

        for(i=windex2+1; i<ctx->ga.tw; i++) {
            child1[i] = parent1[i];
            child2[i] = parent2[i];
        }
    }

    PGADebugExited("PGABinaryTwoptCrossover");
}


/*I****************************************************************************
   PGABinaryUniformCrossover - performs uniform crossover on two parent strings
   producing two children via side-effect

   Inputs:
      ctx  - context variable
      p1   - the first parent string
      p2   - the second parent string
      pop1 - symbolic constant of the population containing string p1 and p2
      c1   - the first child string
      c2   - the second child string
      pop2 - symbolic constant of the population to contain string c1 and c2

   Outputs:
      None.

   Example:
      Performs crossover on the two parent strings m and d, producing
      children s and b.

      PGAContext *ctx;
      int m, d, s, b;
      :
      PGABinaryUniformCrossover( ctx, m, d, PGA_OLDPOP, s, b, PGA_NEWPOP );

****************************************************************************I*/
void PGABinaryUniformCrossover(PGAContext *ctx, int p1, int p2, int pop1,
                               int c1, int c2, int pop2)
{
     PGABinary *parent1 = (PGABinary *)PGAGetIndividual(ctx, p1, pop1)->chrom;
     PGABinary *parent2 = (PGABinary *)PGAGetIndividual(ctx, p2, pop1)->chrom;
     PGABinary *child1  = (PGABinary *)PGAGetIndividual(ctx, c1, pop2)->chrom;
     PGABinary *child2  = (PGABinary *)PGAGetIndividual(ctx, c2, pop2)->chrom;
     PGABinary mask;
     int j,wi;

    PGADebugEntered("PGABinaryUniformCrossover");

    for(wi=0;wi<ctx->ga.tw;wi++) {
        if ( parent1[wi] == parent2[wi] ) {
            child1[wi] = parent1[wi];
            child2[wi] = parent2[wi];
        }
        else {
            mask = 0;
            for (j=0;j<WL;j++)
                if(PGARandomFlip(ctx, ctx->ga.UniformCrossProb))
                    SET(j,mask);
            child1[wi] = (mask & parent1[wi])|(~mask & parent2[wi]);
            child2[wi] = (mask & parent2[wi])|(~mask & parent1[wi]);
        }
    }

    PGADebugExited("PGABinaryUniformCrossover");
}

/*I****************************************************************************
   PGABinaryPrintString - writes a bit string to a file.

   Inputs:
      ctx - context variable
      fp  - file pointer to file to write bit string to
      p   - index of the string to write out
      pop - symbolic constant of the population string p is in

   Outputs:
      None.

   Example:
      Write string s to stdout.

      PGAContext *ctx;
      int s;
      :
      PGABinaryPrintString( ctx, stdout, s, PGA_NEWPOP );

****************************************************************************I*/
void PGABinaryPrintString( PGAContext *ctx, FILE *fp, int p, int pop )
{
     PGABinary *c = (PGABinary *)PGAGetIndividual(ctx, p, pop)->chrom;
     int i;

     PGADebugEntered("PGABinaryPrintString");

     for( i=0; i<ctx->ga.fw; i++ ) {
          fprintf(fp,"[ ");
          PGABinaryPrint( ctx, fp, (c+i), WL );
          fprintf(fp," ]\n");
     }
     if ( ctx->ga.eb > 0 ) {
          fprintf(fp,"[ ");
          PGABinaryPrint( ctx, fp, (c+ctx->ga.fw), ctx->ga.eb );
          fprintf(fp," ]");
     }

     PGADebugExited("PGABinaryPrintString");
}

/*I****************************************************************************
   PGABinaryCopyString - Copy one bit string to another

   Inputs:
      ctx  - context variable
      p1   - string to copy
      pop1 - symbolic constant of population containing string p1
      p2   - string to copy p1 to
      pop2 - symbolic constant of population containing string p2

   Outputs:
      None.

   Example:
      Copy bit string x to y (both are implicitly assumed to have the same
      length).

      PGAContext *ctx;
      int x, y
      :
      PGABinaryCopyString ( ctx, x, PGA_OLDPOP, y, PGA_NEWPOP );

****************************************************************************I*/
void PGABinaryCopyString (PGAContext *ctx, int p1, int pop1, int p2, int pop2)
{
    PGABinary *source = (PGABinary *)PGAGetIndividual(ctx, p1, pop1)->chrom;
    PGABinary *dest   = (PGABinary *)PGAGetIndividual(ctx, p2, pop2)->chrom;
    int i;

    PGADebugEntered("PGABinaryCopyString");

    for (i = ctx->ga.tw-1; i>=0; i--)
        dest[i] = source[i];

    PGADebugExited("PGABinaryCopyString");
}

/*I****************************************************************************
   PGABinaryDuplicate - Returns true if bit string a is a duplicate of bit
   string b, else returns false.

   Inputs:
      ctx  - context variable
      p1   - string index of the first string to compare
      pop1 - symbolic constant of the population string p1 is in
      p2   - string index of the second string to compare
      pop2 - symbolic constant of the population string p2 is in

   Outputs:
      Returns true/false if strings are duplicates

   Example:
      Compare bit string x with y and print a message if they are the same.

      PGAContext *ctx;
      int x, y;
      :
      if ( PGABinaryDuplicate( ctx, x, PGA_NEWPOP, y, PGA_NEWPOP ) )
          printf("strings are duplicates\n");

****************************************************************************I*/
int PGABinaryDuplicate( PGAContext *ctx, int p1, int pop1, int p2, int pop2)
{
     PGABinary *a = (PGABinary *)PGAGetIndividual(ctx, p1, pop1)->chrom;
     PGABinary *b = (PGABinary *)PGAGetIndividual(ctx, p2, pop2)->chrom;
     int wi;

     PGADebugEntered("PGABinaryDuplicate");

     wi = ctx->ga.tw-1;
     if (a[0] == b[0])
         for (; (wi>0) && (a[wi] == b[wi]); wi--);

     PGADebugExited("PGABinaryDuplicate");

     return((wi==0) ? PGA_TRUE : PGA_FALSE);
}

/*I****************************************************************************
   PGABinaryInitString - randomly initialize a string of type PGABinary

   Inputs:
      ctx - context variable
      p   - index of string to randomly initialize
      pop - symbolic constant of the population string p is in

   Outputs:

   Example:
      PGAContext *ctx;
      int p;
      :
      PGABinaryInitString ( ctx, p, PGA_NEWPOP );

****************************************************************************I*/
void PGABinaryInitString(PGAContext *ctx, int p, int pop)
{
     PGABinary *c = (PGABinary *)PGAGetIndividual(ctx, p, pop)->chrom;
     int i;
     int windex;        /* index of the computer word allele i is in      */
     int bix;           /* binary position in word chrom[windex] of allele i */

     PGADebugEntered("PGABinaryInitString");

     for (i = 0; i < ctx->ga.tw; i++)
          c[i] = 0;
     for (i = 0; i < ctx->ga.StringLen; i++)
     {
          INDEX(windex,bix,i,WL);
          if ( PGARandomFlip(ctx, ctx->init.BinaryProbability) )
               SET  ( bix, c[windex] );
     }

     PGADebugExited("PGABinaryInitString");
}


/*I****************************************************************************
  PGABinaryBuildDatatype - Build an MPI_Datatype for a binary string
  datatype.

  Inputs:
      ctx  - context variable
      p    - index of the string to build a datatype from
      pop  - symbolic constant of the population string p is in

  Outputs:
      MPI_Datatype.

  Example:
      Called only by MPI routines.  Not for user consumption.

****************************************************************************I*/
MPI_Datatype PGABinaryBuildDatatype(PGAContext *ctx, int p, int pop)
{

     int            counts[4];      /* Number of elements in each
                                       block (array of integer) */
     MPI_Aint       displs[4];      /* byte displacement of each
                                       block (array of integer) */
     MPI_Datatype   types[4];       /* type of elements in each block (array
                                       of handles to datatype objects) */
     MPI_Datatype   individualtype; /* new datatype (handle) */
     PGAIndividual *traveller;      /* address of individual in question */

     PGADebugEntered("PGABinaryBuildDatatype");

     traveller = PGAGetIndividual(ctx, p, pop);
     MPI_Address(&traveller->evalfunc, &displs[0]);
     counts[0] = 1;
     types[0]  = MPI_DOUBLE;

     MPI_Address(&traveller->fitness, &displs[1]);
     counts[1] = 1;
     types[1]  = MPI_DOUBLE;

     MPI_Address(&traveller->evaluptodate, &displs[2]);
     counts[2] = 1;
     types[2]  = MPI_INT;

     MPI_Address(traveller->chrom, &displs[3]);
     counts[3] = ctx->ga.tw;
     types[3]  = MPI_UNSIGNED_LONG;

     MPI_Type_struct(4, counts, displs, types, &individualtype);
     MPI_Type_commit(&individualtype);

     PGADebugExited("PGABinaryBuildDatatype");

     return (individualtype);
}


/*I****************************************************************************
   PGABinaryHammingDistance - Returns the Hamming distance between two strings

   Inputs:
      ctx - context variable
      s1  - the first string to compare
      s2  - the second string to compare

   Outputs:
      The Hamming distance between two strings

   Example:
      Returns the Hamming distance between bit strings x and y.

      PGAContext *ctx;
      PGABinary *x, *y;
      int d;
      :
      d = PGABinaryHammingDistance( ctx, x, y );

****************************************************************************I*/
int PGABinaryHammingDistance ( PGAContext *ctx, PGABinary *s1, PGABinary *s2 )
{
    int        j, wi, distance;
    PGABinary  t1, t2, mask;

    PGADebugEntered("PGABinaryHammingDistance");

    distance = 0;
    for(wi=0; wi<ctx->ga.tw; wi++)  /* step through each word in the string */
        if ( s1[wi] != s2[wi] ) {   /* if equal, no bits are different      */
            /*fprintf(stdout,"s1[wi] = %x, s2[wi] = %x\n",s1[wi],s2[wi]);*/
            mask = 1;
            for(j=0;j<WL;++j) {     /* not equal, compare all bits          */
                /* Build bit mask in position j. Mask bit from each         */
                /* string into t1 and t2 and test if bits are the same      */
                t1 = s1[wi] & mask;
                t2 = s2[wi] & mask;
                /*fprintf(stdout,"mask = %u, t1 = %u, t2 = %u, j = %d, wi = %d\n",mask,t1,t2,j,wi);*/
                if ( t1 != t2 )
                    distance++;
                mask <<= 1;          /* shift mask 1 position */
            }
        }

    PGADebugExited("PGABinaryHammingDistance");

    return(distance);
}

/*I****************************************************************************
   PGABinaryPrint - writes a bit string to a file.  Puts the binary
   representation of the bit string pointed to by chrom into a character
   string and writes that out. Assumes the maximum length of string to
   print is WL, and that all bits are in the same word.

   Inputs:
      ctx   - context variable
      fp    - file to write the bit string to
      chrom - pointer to the bit string to write
      nb    - number of bits to write out

   Outputs:

   Example:
      Internal function.  Use PGABinaryPrintString to print a binary string.

****************************************************************************I*/
void PGABinaryPrint( PGAContext *ctx, FILE *fp, PGABinary *chrom, int nb )
{
     char *s, string[WL+1];
     PGABinary mask;
     int i;

     PGADebugEntered("PGABinaryPrint");

     mask = ((PGABinary)1)<<(WL-1);
     s = string;
     for(i=0; i<nb; mask>>=1,i++)              /* mask each bit and set the  */
          *s++ = (mask&(*chrom)?'1':'0');      /* appropriate character      */
     *s=0;                                     /* string terminator          */
     fprintf(fp, "%s", string);                /* print out character string */

     PGADebugExited("PGABinaryPrint");
}