1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
/*
COPYRIGHT
The following is a notice of limited availability of the code, and disclaimer
which must be included in the prologue of the code and in all source listings
of the code.
(C) COPYRIGHT 2008 University of Chicago
Permission is hereby granted to use, reproduce, prepare derivative works, and
to redistribute to others. This software was authored by:
D. Levine
Mathematics and Computer Science Division
Argonne National Laboratory Group
with programming assistance of participants in Argonne National
Laboratory's SERS program.
GOVERNMENT LICENSE
Portions of this material resulted from work developed under a
U.S. Government Contract and are subject to the following license: the
Government is granted for itself and others acting on its behalf a paid-up,
nonexclusive, irrevocable worldwide license in this computer software to
reproduce, prepare derivative works, and perform publicly and display
publicly.
DISCLAIMER
This computer code material was prepared, in part, as an account of work
sponsored by an agency of the United States Government. Neither the United
States, nor the University of Chicago, nor any of their employees, makes any
warranty express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights.
*/
/*****************************************************************************
* FILE: crossover.c: This file contains the data structure neutral
* crossover routines.
*
* Authors: David M. Levine, Philip L. Hallstrom, David M. Noelle,
* Brian P. Walenz
*****************************************************************************/
#include "pgapack.h"
/*U****************************************************************************
PGACrossover - performs crossover on two parent strings to create two
child strings (via side-effect). The type of crossover performed is
either the default or that specified by PGASetCrossoverType
Category: Operators
Inputs:
ctx - context variable
p1 - the first parent string
p2 - the second parent string
pop1 - symbolic constant of the population containing string p1 and p2
c1 - the first child string
c2 - the second child string
pop2 - symbolic constant of the population to contain string c1 and c2
Outputs:
c1 and c2 in pop2 are children of p1 and p2 in pop1. p1 and p2 are not
modified.
Example:
Perform crossover on the two parent strings mom and dad in population
PGA_OLDPOP, and insert the child strings, child1 and child1, in
population PGA_NEWPOP.
PGAContext *ctx;
int mom, dad, child1, child2;
:
PGACrossover(ctx, mom, dad, PGA_OLDPOP, child1, child2, PGA_NEWPOP);
****************************************************************************U*/
void PGACrossover ( PGAContext *ctx, int p1, int p2, int pop1,
int c1, int c2, int pop2 )
{
int fp1, fp2, fc1, fc2;
PGADebugEntered("PGACrossover");
PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR, "PGACrossover", " p1 = ",
PGA_INT, (void *) &p1 );
PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR, "PGACrossover", " p2 = ",
PGA_INT, (void *) &p2 );
PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR, "PGACrossover", " c1 = ",
PGA_INT, (void *) &c1 );
PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR, "PGACrossover", " c2 = ",
PGA_INT, (void *) &c2 );
if (ctx->fops.Crossover) {
fp1 = ((p1 == PGA_TEMP1) || (p1 == PGA_TEMP2)) ? p1 : p1+1;
fp2 = ((p2 == PGA_TEMP1) || (p2 == PGA_TEMP2)) ? p2 : p2+1;
fc1 = ((c1 == PGA_TEMP1) || (c1 == PGA_TEMP2)) ? c1 : c1+1;
fc2 = ((c2 == PGA_TEMP1) || (c2 == PGA_TEMP2)) ? c2 : c2+1;
(*ctx->fops.Crossover)(&ctx, &fp1, &fp2, &pop1, &fc1, &fc2, &pop2);
} else {
(*ctx->cops.Crossover)(ctx, p1, p2, pop1, c1, c2, pop2);
}
PGASetEvaluationUpToDateFlag(ctx, c1, pop2, PGA_FALSE);
PGASetEvaluationUpToDateFlag(ctx, c2, pop2, PGA_FALSE);
PGADebugExited("PGACrossover");
}
/*U***************************************************************************
PGAGetCrossoverType - Returns the type of crossover selected
Category: Operators
Inputs:
ctx - context variable
Outputs:
Returns the integer corresponding to the symbolic constant
used to specify the crossover type
Example:
PGAContext *ctx;
int crosstype;
:
crosstype = PGAGetCrossoverType(ctx);
switch (crosstype) {
case PGA_CROSSOVER_ONEPT:
printf("Crossover Type = PGA_CROSSOVER_ONEPT\n");
break;
case PGA_CROSSOVER_TWOPT:
printf("Crossover Type = PGA_CROSSOVER_TWOPT\n");
break;
case PGA_CROSSOVER_UNIFORM:
printf("Crossover Type = PGA_CROSSOVER_UNIFORM\n");
break;
}
***************************************************************************U*/
int PGAGetCrossoverType (PGAContext *ctx)
{
PGADebugEntered("PGAGetCrossoverType");
PGAFailIfNotSetUp("PGAGetCrossoverType");
PGADebugExited("PGAGetCrossoverType");
return(ctx->ga.CrossoverType);
}
/*U***************************************************************************
PGAGetCrossoverProb - Returns the crossover probability
Category: Operators
Inputs:
ctx - context variable
Outputs:
The crossover probability
Example:
PGAContext *ctx;
double pc;
:
pc = PGAGetCrossoverProb(ctx);
***************************************************************************U*/
double PGAGetCrossoverProb (PGAContext *ctx)
{
PGADebugEntered("PGAGetCrossoverProb");
PGAFailIfNotSetUp("PGAGetCrossoverProb");
PGADebugExited("PGAGetCrossoverProb");
return(ctx->ga.CrossoverProb);
}
/*U***************************************************************************
PGAGetUniformCrossoverProb - returns the probability of a bit being
selected from the first child string in uniform crossover
Category: Operators
Inputs:
ctx - context variable
Outputs:
The uniform crossover probability
Example:
PGAContext *ctx;
double pu;
:
pu = PGAGetUniformCrossoverProb(ctx);
***************************************************************************U*/
double PGAGetUniformCrossoverProb (PGAContext *ctx)
{
PGADebugEntered("PGAGetUniformCrossoverProb");
PGAFailIfNotSetUp("PGAGetUniformCrossoverProb");
PGADebugExited("PGAGetUniformCrossoverProb");
return(ctx->ga.UniformCrossProb);
}
/*U****************************************************************************
PGASetCrossoverType - specify the type of crossover to use. Valid choices
are PGA_CROSSOVER_ONEPT, PGA_CROSSOVER_TWOPT, or PGA_CROSSOVER_UNIFORM for
one-point, two-point, and uniform crossover, respectively. The default is
PGA_CROSSOVER_TWOPT.
Category: Operators
Inputs:
ctx - context variable
crossover_type - symbolic constant to specify crossover type
Outputs:
None
Example:
Use uniform crossover when crossingover strings.
PGAContext *ctx;
:
PGASetCrossoverType(ctx, PGA_CROSSOVER_UNIFORM);
****************************************************************************U*/
void PGASetCrossoverType (PGAContext *ctx, int crossover_type)
{
PGADebugEntered("PGASetCrossoverType");
switch (crossover_type) {
case PGA_CROSSOVER_ONEPT:
case PGA_CROSSOVER_TWOPT:
case PGA_CROSSOVER_UNIFORM:
ctx->ga.CrossoverType = crossover_type;
break;
default:
PGAError( ctx,
"PGASetCrossoverType: Invalid value of crossover_type:",
PGA_FATAL, PGA_INT, (void *) &crossover_type );
};
PGADebugExited("PGASetCrossoverType");
}
/*U****************************************************************************
PGASetCrossoverProb - Probability that a selected string will undergo
crossover. The default is 0.85.
Category: Operators
Inputs:
ctx - context variable
p - the crossover probability
Outputs:
None
Example:
Make crossover happen infrequently.
PGAContext *ctx;
:
PGASetCrossoverProb(ctx,0.001);
****************************************************************************U*/
void PGASetCrossoverProb( PGAContext *ctx, double crossover_prob)
{
PGADebugEntered("PGASetCrossoverProb");
if ((crossover_prob < 0.0) || (crossover_prob > 1.0))
PGAError ( ctx,
"PGASetCrossoverProb: Invalid value of crossover_prob:",
PGA_FATAL, PGA_DOUBLE, (void *) &crossover_prob);
else
ctx->ga.CrossoverProb = crossover_prob;
PGADebugExited("PGASetCrossoverProb");
}
/*U****************************************************************************
PGASetUniformCrossoverProb - Probability used in uniform crossover
to specify that an allele value value be selected from a particular
parent. The default is 0.6. The crossover type must have been set
to PGA_CROSSOVER_UNIFORM with PGASetCrossoverType for this function
call to have any effect.
Category: Operators
Inputs:
ctx - context variable
p - the crossover probability
Outputs:
None
Example:
PGAContext *ctx;
:
PGASetUniformCrossoverProb(ctx,0.9);
****************************************************************************U*/
void PGASetUniformCrossoverProb( PGAContext *ctx, double uniform_cross_prob)
{
PGADebugEntered("PGASetUniformCrossoverProb");
if ((uniform_cross_prob < 0.0) || (uniform_cross_prob > 1.0))
PGAError ( ctx,
"PGASetUniformCrossoverProb: Invalid value of "
"uniform_cross_prob:", PGA_FATAL, PGA_DOUBLE,
(void *) &uniform_cross_prob);
else
ctx->ga.UniformCrossProb = uniform_cross_prob;
PGADebugExited("PGASetUniformCrossoverProb");
}
|