File: fitness.c

package info (click to toggle)
pgapack 1.1-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 2,344 kB
  • ctags: 1,786
  • sloc: ansic: 10,331; fortran: 2,985; sh: 486; makefile: 462; perl: 105
file content (740 lines) | stat: -rw-r--r-- 22,696 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
/*
COPYRIGHT

The following is a notice of limited availability of the code, and disclaimer
which must be included in the prologue of the code and in all source listings
of the code.

(C) COPYRIGHT 2008 University of Chicago

Permission is hereby granted to use, reproduce, prepare derivative works, and
to redistribute to others. This software was authored by:

D. Levine
Mathematics and Computer Science Division 
Argonne National Laboratory Group

with programming assistance of participants in Argonne National 
Laboratory's SERS program.

GOVERNMENT LICENSE

Portions of this material resulted from work developed under a
U.S. Government Contract and are subject to the following license: the
Government is granted for itself and others acting on its behalf a paid-up,
nonexclusive, irrevocable worldwide license in this computer software to
reproduce, prepare derivative works, and perform publicly and display
publicly.

DISCLAIMER

This computer code material was prepared, in part, as an account of work
sponsored by an agency of the United States Government. Neither the United
States, nor the University of Chicago, nor any of their employees, makes any
warranty express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights.
*/

/*****************************************************************************
*     FILE: fitness.c: This file contains the routines that have to do with
*                      fitness calculations.
*
*     Authors: David M. Levine, Philip L. Hallstrom, David M. Noelle,
*              Brian P. Walenz
*****************************************************************************/

#include "pgapack.h"

/*U****************************************************************************
  PGAFitness - Maps the user's evaluation function value to a fitness value.
  First, the user's evaluation function value is translated to all positive
  values if any are negative.  Next, this positive sequence is translated to
  a maximization problem if the user's optimization direction was minimization.
  This positive sequence is then mapped to a fitness value using linear
  ranking, linear normalization fitness, or the identity (i.e., the evaluation
  function value).  This routine is usually used after PGAEvaluate is called.

  Category: Fitness & Evaluation

  Inputs:
    ctx  - context variable
    pop  - symbolic constant of the population to calculate fitness for

  Outputs:
     Calculates the fitness for each string in the population via side effect

  Example:
     Calculate the fitness of all strings in population PGA_NEWPOP after
     calling PGAEvaluate to calculate the strings evaluation value.

     double energy(PGAContext *ctx, int p, int pop);
     PGAContext *ctx;
     :
     PGAEvaluate(ctx, PGA_NEWPOP, energy);
     PGAFitness (ctx, PGA_NEWPOP);

****************************************************************************U*/
void PGAFitness ( PGAContext *ctx, int popindex )
{
    int i;
    double mineval;
    PGAIndividual *pop;

    PGADebugEntered("PGAFitness");

    /* set pointer to appropriate population */

    switch (popindex) {
    case PGA_OLDPOP:
        pop = ctx->ga.oldpop;
        break;
    case PGA_NEWPOP:
        pop = ctx->ga.newpop;
        break;
    default:
        PGAError( ctx, "PGAFitness: Invalid value of popindex:",
                  PGA_FATAL, PGA_INT, (void *) &popindex );
        break;
    }

    /* make sure all evaluation function values are up-to-date */

    for( i=0; i<ctx->ga.PopSize; i++ ) {
        /*printf("i = %d, evaluptodate = %d\n",i,(pop+i)->evaluptodate);*/
        if ( (pop+i)->evaluptodate != PGA_TRUE )
            PGAError( ctx, "PGAFitness: evaluptodate not PGA_TRUE for:",
                      PGA_FATAL, PGA_INT, (void *) &i );
    }

    /* put raw fitness into fitness field */

    for( i=0; i<ctx->ga.PopSize; i++ )
        (pop+i)->fitness = (pop+i)->evalfunc;

    /* translate to all positive sequence (if necessary) */

    mineval = ctx->sys.PGAMaxDouble;
    for( i=0; i<ctx->ga.PopSize; i++ )
        if ( (pop+i)->fitness < mineval )
            mineval =(pop+i)->fitness;
    if ( mineval < 0.0 ) {
        mineval = (-1.01) * mineval;
        for( i=0; i<ctx->ga.PopSize; i++ )
           (pop+i)->fitness  = (pop+i)->fitness + mineval;
    }

    /* translate to maximization problem  (if necessary) */

    if ( ctx->ga.optdir == PGA_MINIMIZE ) {
        switch (ctx->ga.FitnessMinType) {
        case PGA_FITNESSMIN_RECIPROCAL:
            PGAFitnessMinReciprocal( ctx, pop );
            break;
        case PGA_FITNESSMIN_CMAX:
            PGAFitnessMinCmax      ( ctx, pop );
            break;
        default:
            PGAError( ctx,
                     "PGAFitness: Invalid FitnessMinType:",
                      PGA_FATAL,
                      PGA_INT,
                      (void *) &(ctx->ga.FitnessMinType) );
            break;
        }
    }

    /* last step in fitness calculation */

    switch (ctx->ga.FitnessType) {
    case PGA_FITNESS_RAW:
        break;
    case PGA_FITNESS_NORMAL:
        PGAFitnessLinearNormal    ( ctx, pop );
        break;
    case PGA_FITNESS_RANKING:
        PGAFitnessLinearRank   ( ctx, pop );
        break;
    default:
        PGAError( ctx,
                 "PGAFitness: Invalid FitnessType:",
                  PGA_FATAL,
                  PGA_INT,
                  (void *) &(ctx->ga.FitnessType) );
        break;
    }

    PGADebugExited("PGAFitness");
}


/*U****************************************************************************
  PGARank - returns the rank of a string in a population.  This is a value
  between 1,...,N (the population size).  The most fit string has rank 1,
  the least fit string has rank N.

  Category: Fitness & Evaluation

  Inputs:
    ctx   - context variable
    p     - the index of the string whose rank is desired
    order - an array containing a unique rank for each string
    n     - the size of the array order

  Outputs:
    The rank of string p

  Example:
    Determine the rank of string p.

    PGAContext *ctx;
    int i, popsize, rank, *order;
    double *fitness;

    popsize = PGAGetPopsize(ctx);
    order   = (int *)   malloc(sizeof(int)    * popsize);
    fitness = (double *)malloc(sizeof(double) * popsize);

    for(i=0;i<popsize; i++) {
        fitness[i] = PGAGetFitness(ctx, p, PGA_OLDPOP);
        order[i]   = i;
    }

    PGADblHeapSort(ctx, fitness, order, popsize);
    rank = PGARank(ctx, p, order, popsize)

****************************************************************************U*/
int PGARank( PGAContext *ctx, int p, int *order, int n )
{
    int i;

    PGADebugEntered("PGARank");

    /*  If the user gives us PGA_TEMP1 or PGA_TEMP2 (or, gasp, some random
     *  number that is not in the population), fail.
     */
    if ((p<0) || (p > PGAGetPopSize(ctx)))
        PGAError(ctx, "PGARank: Not a valid population member, p = ",
                 PGA_FATAL, PGA_INT, (void *)&p);

    /*  Search through all the orderings until we find the one that
     *  matches the given string.  Return the index number.  If we do not
     *  find one, something is _very_ bad; terminate with a fatal error.
     */
    for(i=0; i<n; i++)
        if (order[i] == p) {
	    PGADebugExited("PGARank");
	    return(i+1);
        }

    /*  Ideally, we should print out the order array, but, well, ideally,
     *  we should never get here anyway...Also, to make some compilers
     *  shut up, return(0) is here, even though PGAError doesn't return.
     */
    PGAError( ctx, "PGARank: Bottom of loop in rank, p = ", PGA_FATAL,
             PGA_INT, (void *) &p );
    return(0);
}

/*U***************************************************************************
   PGAGetFitness - returns the fitness value for a string

   Category: Fitness & Evaluation

   Inputs:
      ctx - context variable
      p   - string index
      pop - symbolic constant of the population the string is in

   Outputs:
      The fitness value for string p in population pop

   Example:
      PGAContext *ctx;
      int p;
      double fit;
      :
      fit = PGAGetFitness(ctx, p, PGA_NEWPOP);

***************************************************************************U*/
double PGAGetFitness ( PGAContext *ctx, int p, int pop )
{
    PGAIndividual *ind;

    PGADebugEntered("PGAGetFitness");
    PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR,"PGAGetFitness", "p = ",
                   PGA_INT, (void *) &p );
    PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR,"PGAGetFitness", "pop = ",
                   PGA_INT, (void *) &pop );

    ind = PGAGetIndividual ( ctx, p, pop );

    PGADebugExited("PGAGetFitness");

    return(ind->evalfunc);
}

/*U***************************************************************************
   PGAGetFitnessType - Returns the type of fitness transformation used.

   Category: Fitness & Evaluation

   Inputs:
      ctx - context variable

   Outputs:
      Returns the integer corresponding to the symbolic constant
      used to specify the type of fitness transformation used

   Example:
      PGAContext *ctx;
      int fittype;
      :
      fittype = PGAGetFitnessType(ctx);
      switch (fittype) {
      case PGA_FITNESS_RAW:
          printf("Fitness Type = PGA_FITNESS_RAW\n");
          break;
      case PGA_FITNESS_NORMAL:
          printf("Fitness Type = PGA_FITNESS_NORMAL\n");
          break;
      case PGA_FITNESS_RANKING:
          printf("Fitness Type = PGA_FITNESS_RANKING\n");
          break;
      }

***************************************************************************U*/
int PGAGetFitnessType (PGAContext *ctx)
{
    PGADebugEntered("PGAGetFitnessType");
    PGAFailIfNotSetUp("PGAGetFitnessType");

    PGADebugExited("PGAGetFitnessType");

    return(ctx->ga.FitnessType);
}

/*U***************************************************************************
   PGAGetFitnessMinType - Returns the type of fitness transformation used
   for minimization problems.

   Category: Fitness & Evaluation

   Inputs:
      ctx - context variable

   Outputs:
      Returns the integer corresponding to the symbolic constant
      used to specify the type of fitness transformation used
      for minimization problems

   Example:
      PGAContext *ctx;
      int fitmintype;
      :
      fitmintype = PGAGetFitnessMinType(ctx);
      switch (fitmintype) {
      case PGA_FITNESSMIN_RECIPROCAL:
          printf("Fitness Minimization Type = PGA_FITNESSMIN_RECIPROCAL\n");
          break;
      case PGA_FITNESSMIN_CMAX:
          printf("Fitness Minimization Type = PGA_FITNESSMIN_CMAX\n");
          break;
      }

***************************************************************************U*/
int PGAGetFitnessMinType (PGAContext *ctx)
{
    PGADebugEntered("PGAGetFitnessMinType");
    PGAFailIfNotSetUp("PGAGetFitnessType");

    PGADebugExited("PGAGetFitnessMinType");

    return(ctx->ga.FitnessMinType);
}

/*U***************************************************************************
   PGAGetMaxFitnessRank - returns the maximum value used in rank-based
   fitness.

   Category: Fitness & Evaluation

   Inputs:
      ctx - context variable

   Outputs:
      The value of MAX used in rank-based fitness

   Example:
      PGAContext *ctx;
      double max;
      :
      max = PGAGetMaxFitnessRank(ctx);

***************************************************************************U*/
double PGAGetMaxFitnessRank (PGAContext *ctx)
{
    PGADebugEntered("PGAGetMaxFitnessRank");
    PGAFailIfNotSetUp("PGAGetFitnessType");

    PGADebugExited("PGAGetMaxFitnessRank");

    return(ctx->ga.FitnessRankMax);
}

/*U****************************************************************************
   PGASetFitnessType - Set the type of fitness algorithm to use. Valid choices
   are PGA_FITNESS_RAW, PGA_FITNESS_NORMAL, or PGA_FITNESS_RANKING for
   raw fitness (the evaluation function value), linear normalization, or
   linear ranking, respectively.  The default is PGA_FITNESS_RAW.

   Category: Fitness & Evaluation

   Inputs:
      ctx          - context variable
      fitness_type - symbolic constant to specify fitness type

   Outputs:
      None

   Example:
      PGAContext *ctx;
      :
      PGASetFitnessType(ctx, PGA_FITNESS_RANKING);

****************************************************************************U*/
void PGASetFitnessType( PGAContext *ctx, int fitness_type)
{

    PGADebugEntered("PGASetFitnessType");

    switch (fitness_type) {
        case PGA_FITNESS_RAW:
        case PGA_FITNESS_NORMAL:
        case PGA_FITNESS_RANKING:
            ctx->ga.FitnessType = fitness_type;
            break;
        default:
            PGAError(ctx, "PGASetFitnessType: Invalid value of fitness_type:",
                     PGA_FATAL, PGA_INT, (void *) &fitness_type);
            break;
    }

    PGADebugExited("PGASetFitnessType");
}

/*U****************************************************************************
   PGASetFitnessMinType - sets the type of algorithm used if a minimization
   problem is specified to determine how values are remapped for maximization.
   Valid choices are PGA_FITNESSMIN_RECIPROCAL and PGA_FITNESSMIN_CMAX to do
   the mapping using the reciprocal of the evaluation function, or by
   subtracting the worst evaluation function value from each evaluation
   function value, respectively.  The default is PGA_FITNESSMIN_CMAX

   Category: Fitness & Evaluation

   Inputs:
      ctx          - context variable
      fitness_type - symbolic constant to specify fitness minimization type

   Outputs:
      None

   Example:
      PGAContext *ctx;
      :
      PGASetFitnessMinType(ctx, PGA_FITNESSMIN_CMAX);

****************************************************************************U*/
void PGASetFitnessMinType( PGAContext *ctx, int fitness_type)
{

    PGADebugEntered("PGASetFitnessMinType");

    switch (fitness_type) {
        case PGA_FITNESSMIN_RECIPROCAL:
        case PGA_FITNESSMIN_CMAX:
            ctx->ga.FitnessMinType = fitness_type;
            break;
        default:
            PGAError ( ctx,
                      "PGASetFitnessMinType: Invalid value of fitness_type:",
                       PGA_FATAL, PGA_INT, (void *) &fitness_type);
        break;
    }

    PGADebugExited("PGASetFitnessMinType");
}

/*U****************************************************************************
   PGASetMaxFitnessRank - The value of the parameter Max when using linear
   ranking for fitness determination. The default value is 1.2.  The value
   must be from the interval [1.0, 2.0].  The fitness type must have been set
   to PGA_FITNESS_RANKING with PGASetFitnessType for this function call
   to have any effect.

   Category: Fitness & Evaluation

   Inputs:
      ctx - context variable
      max - the value of the parameter Max when using linear ranking

   Outputs:
      None

   Example:
      PGAContext *ctx;
      :
      PGASetMaxFitnessRank(ctx, 1.1);

****************************************************************************U*/
void PGASetMaxFitnessRank( PGAContext *ctx, double fitness_rank_max)
{
    PGADebugEntered("PGASetMaxFitnessRank");

    if ((fitness_rank_max < 1.0) || (fitness_rank_max > 2.0))
        PGAError ( ctx,
                  "PGASetMaxFitnessRank: Invalid value of fitness_rank_max:",
                   PGA_FATAL, PGA_DOUBLE, (void *) &fitness_rank_max);
    else
        ctx->ga.FitnessRankMax = fitness_rank_max;

    PGADebugExited("PGASetMaxFitnessRank");
}



/*I****************************************************************************
  PGAFitnessLinearNormal - Calculates fitness using a ranking method and
  linear' ordering.  The fitness function is of the form
  u(x) = K - ( rank * sigma ) with the constant K equal to the mean of the
  evaluation functions, and the decrement sigma equal to the standard
  deviation of the same.
  Ref:    L. Davis, Handbook of Genetic Algorithms, pg. 33

  Inputs:
    ctx  - context variable
    pop  - population pointer to calculate fitness for

  Outputs:
     Calculates the fitness for each string in the population via side effect

  Example:

****************************************************************************I*/
void PGAFitnessLinearNormal ( PGAContext *ctx, PGAIndividual *pop )
{

    int i;
    double K, sigma, mean;

    PGADebugEntered("PGAFitnessLinearNormal");

    /* fill arrays for sorting */

    for(i=0;i<ctx->ga.PopSize;i++) {
        ctx->scratch.dblscratch[i] = (pop+i)->fitness;
        ctx->scratch.intscratch[i] =                i;
    }

    /* calculate parameters for linear normalization */

    mean  = PGAMean   ( ctx, ctx->scratch.dblscratch, ctx->ga.PopSize  );
    sigma = PGAStddev ( ctx, ctx->scratch.dblscratch, ctx->ga.PopSize, mean );
    if (sigma == 0)
         sigma = 1;
    K = sigma * (double) ctx->ga.PopSize;
    PGADblHeapSort ( ctx, ctx->scratch.dblscratch,
                  ctx->scratch.intscratch,
                  ctx->ga.PopSize);

    for( i=0; i<ctx->ga.PopSize; i++ )
        (pop+i)->fitness = K - ( sigma *
            (double) PGARank(ctx,i,ctx->scratch.intscratch,ctx->ga.PopSize) );

    PGADebugExited("PGAFitnessLinearNormal");
}

/*I****************************************************************************
  PGAFitnessLinearRank - Calculates fitness using linear ranking. The fitness
  function is of the form 1/N * ( max - (max-min) * ( (i-1)/(N-1) ) ) where
  min = 2-max and 1 <= max <= 2.
  Ref:    J. Baker: Adaptive selection methods for GAs
  Ref:    J. Baker: Extended selection mechanism in GAs
  Ref:    J. Grefenstte: A critical look at implicit parallelism
  Ref:    D. Whitley's linear() function on pp. 121 of ICGA

  Inputs:
    ctx  - context variable
    pop  - population pointer to calculate fitness for

  Outputs:
     Calculates the fitness for each string in the population via side effect

  Example:

****************************************************************************I*/
void PGAFitnessLinearRank ( PGAContext *ctx, PGAIndividual *pop )
{
    double max, min, popsize, rpopsize;
    int i;

    PGADebugEntered("PGAFitnessLinearRank");

    max      = ctx->ga.FitnessRankMax;
    min      = 2. - max;
    popsize  = (double) ctx->ga.PopSize;
    rpopsize = 1.0/popsize;

    for(i=0;i<ctx->ga.PopSize;i++) {
        ctx->scratch.dblscratch[i] = (pop+i)->fitness;
        ctx->scratch.intscratch[i] =                i;
    }

    PGADblHeapSort ( ctx, ctx->scratch.dblscratch,
                  ctx->scratch.intscratch,
                  ctx->ga.PopSize);

    for(i=0;i<ctx->ga.PopSize;i++) {
        (pop+i)->fitness = rpopsize * ( max -
        ( (max - min) *
        ( ( (double) PGARank(ctx,i,ctx->scratch.intscratch,ctx->ga.PopSize)
             - 1. ) / ( popsize - 1. ) ) ) );

    }

    PGADebugExited("PGAFitnessLinearRank");
}


/*I****************************************************************************
  PGAFitnessMinReciprocal - Calculates fitness in the case of a minimization
  problem using the reciprocal of the evaluation function. This is a power law
  u(x) = ( a f(x) + b )^k with a=1, b=0, k=-1

  Inputs:
    ctx  - context variable
    pop  - population pointer to calculate fitness for

  Outputs:
     Calculates the fitness for each string in the population via side effect

  Example:

****************************************************************************I*/
void PGAFitnessMinReciprocal ( PGAContext *ctx, PGAIndividual *pop )
{
    int i;

    PGADebugEntered("PGAFitnessMinReciprocal");

    for( i=0; i<ctx->ga.PopSize; i++ ) {
        if ( (pop+i)->fitness != 0. )
            (pop+i)->fitness = 1. / (pop+i)->fitness;
        else
            PGAError( ctx,
                     "PGAFitnessReciprocal: Value 0.0 for fitness member:",
                      PGA_FATAL,
                      PGA_INT,
                     (void *) &i );
    }

    PGADebugExited("PGAFitnessMinReciprocal");
}


/*I****************************************************************************
  PGAFitnessMinCmax - Calculates fitness in the case of a minimization
  problem by subtracting the worst evaluation function value from each
  evaluation function.  This is a dynamic linear fitness function
  u(x) = a f(x) + b(t) with a=-1, b(t) = 1.1 * max f(x)

  Inputs:
    ctx  - context variable
    pop  - population pointer to calculate fitness for

  Outputs:
     Calculates the fitness for each string in the population via side effect

  Example:

****************************************************************************I*/
void PGAFitnessMinCmax ( PGAContext *ctx, PGAIndividual *pop )
{
    int i;
    double cmax;

    PGADebugEntered("PGAFitnessMinCmax");

    cmax = 0.;

    for(i=0; i<ctx->ga.PopSize; i++)
        if ( (pop+i)->evalfunc > cmax )
            cmax = (pop+i)->evalfunc;

    cmax *= ctx->ga.FitnessCmaxValue; /* so worst string has nonzero fitness */

    for(i=0;i<ctx->ga.PopSize;i++)
        (pop+i)->fitness = cmax - (pop+i)->evalfunc;

    PGADebugExited("PGAFitnessMinCmax");
}


/*U****************************************************************************
   PGASetFitnessCmaxValue - The value of the multiplier used by
   PGAFitnessMinCmax so that the worst string has a nonzero fitness.
   The default value is 1.01.

   Category: Fitness & Evaluation

   Inputs:
      ctx - context variable
      val - the value of the multiplier

   Outputs:
      None

   Example:
      PGAContext *ctx;
      :
      PGASetFitnessCmaxValue(ctx, 1.2);

****************************************************************************U*/
void PGASetFitnessCmaxValue( PGAContext *ctx, double val)
{
    PGADebugEntered("PGASetFitnessCmaxValue");
    ctx->ga.FitnessCmaxValue = val;
    PGADebugExited("PGASetFitnessCmaxValue");
}



/*U***************************************************************************
   PGAGetFitnessCmaxValue - returns the value of the multiplier used by
   PGAFitnessMinCmax.

   Category: Fitness & Evaluation

   Inputs:
      ctx - context variable

   Outputs:
      The value of Cmax used in

   Example:
      PGAContext *ctx;
      double cmax;
      :
      cmax = PGAGetFitnessCmaxValue(ctx);

***************************************************************************U*/
double PGAGetFitnessCmaxValue (PGAContext *ctx)
{
    PGADebugEntered("PGAGetFitnessCmaxValue");
    PGAFailIfNotSetUp("PGAGetFitnessType");
    PGADebugExited("PGAGetFitnessCmaxValue");
    return(ctx->ga.FitnessCmaxValue);
}