1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
|
/*-------------------------------------------------------------------------
*
* pg_dump_sort.c
* Sort the items of a dump into a safe order for dumping
*
*
* Portions Copyright (c) 1996-2014, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/bin/pg_dump/pg_dump_sort.c
*
*-------------------------------------------------------------------------
*/
#include "pg_backup_archiver.h"
#include "pg_backup_utils.h"
#include "parallel.h"
/* translator: this is a module name */
static const char *modulename = gettext_noop("sorter");
/*
* Sort priority for object types when dumping a pre-7.3 database.
* Objects are sorted by priority levels, and within an equal priority level
* by OID. (This is a relatively crude hack to provide semi-reasonable
* behavior for old databases without full dependency info.) Note: collations,
* extensions, text search, foreign-data, materialized view, event trigger,
* and default ACL objects can't really happen here, so the rather bogus
* priorities for them don't matter.
*
* NOTE: object-type priorities must match the section assignments made in
* pg_dump.c; that is, PRE_DATA objects must sort before DO_PRE_DATA_BOUNDARY,
* POST_DATA objects must sort after DO_POST_DATA_BOUNDARY, and DATA objects
* must sort between them.
*/
static const int oldObjectTypePriority[] =
{
1, /* DO_NAMESPACE */
1, /* DO_EXTENSION */
2, /* DO_TYPE */
2, /* DO_SHELL_TYPE */
2, /* DO_FUNC */
3, /* DO_AGG */
3, /* DO_OPERATOR */
4, /* DO_OPCLASS */
4, /* DO_OPFAMILY */
4, /* DO_COLLATION */
5, /* DO_CONVERSION */
6, /* DO_TABLE */
8, /* DO_ATTRDEF */
15, /* DO_INDEX */
16, /* DO_RULE */
17, /* DO_TRIGGER */
14, /* DO_CONSTRAINT */
18, /* DO_FK_CONSTRAINT */
2, /* DO_PROCLANG */
2, /* DO_CAST */
11, /* DO_TABLE_DATA */
7, /* DO_DUMMY_TYPE */
4, /* DO_TSPARSER */
4, /* DO_TSDICT */
4, /* DO_TSTEMPLATE */
4, /* DO_TSCONFIG */
4, /* DO_FDW */
4, /* DO_FOREIGN_SERVER */
19, /* DO_DEFAULT_ACL */
9, /* DO_BLOB */
12, /* DO_BLOB_DATA */
10, /* DO_PRE_DATA_BOUNDARY */
13, /* DO_POST_DATA_BOUNDARY */
20, /* DO_EVENT_TRIGGER */
15 /* DO_REFRESH_MATVIEW */
};
/*
* Sort priority for object types when dumping newer databases.
* Objects are sorted by type, and within a type by name.
*
* NOTE: object-type priorities must match the section assignments made in
* pg_dump.c; that is, PRE_DATA objects must sort before DO_PRE_DATA_BOUNDARY,
* POST_DATA objects must sort after DO_POST_DATA_BOUNDARY, and DATA objects
* must sort between them.
*/
static const int newObjectTypePriority[] =
{
1, /* DO_NAMESPACE */
4, /* DO_EXTENSION */
5, /* DO_TYPE */
5, /* DO_SHELL_TYPE */
6, /* DO_FUNC */
7, /* DO_AGG */
8, /* DO_OPERATOR */
9, /* DO_OPCLASS */
9, /* DO_OPFAMILY */
3, /* DO_COLLATION */
11, /* DO_CONVERSION */
18, /* DO_TABLE */
20, /* DO_ATTRDEF */
27, /* DO_INDEX */
28, /* DO_RULE */
29, /* DO_TRIGGER */
26, /* DO_CONSTRAINT */
30, /* DO_FK_CONSTRAINT */
2, /* DO_PROCLANG */
10, /* DO_CAST */
23, /* DO_TABLE_DATA */
19, /* DO_DUMMY_TYPE */
12, /* DO_TSPARSER */
14, /* DO_TSDICT */
13, /* DO_TSTEMPLATE */
15, /* DO_TSCONFIG */
16, /* DO_FDW */
17, /* DO_FOREIGN_SERVER */
31, /* DO_DEFAULT_ACL */
21, /* DO_BLOB */
24, /* DO_BLOB_DATA */
22, /* DO_PRE_DATA_BOUNDARY */
25, /* DO_POST_DATA_BOUNDARY */
32, /* DO_EVENT_TRIGGER */
33 /* DO_REFRESH_MATVIEW */
};
static DumpId preDataBoundId;
static DumpId postDataBoundId;
static int DOTypeNameCompare(const void *p1, const void *p2);
static int DOTypeOidCompare(const void *p1, const void *p2);
static bool TopoSort(DumpableObject **objs,
int numObjs,
DumpableObject **ordering,
int *nOrdering);
static void addHeapElement(int val, int *heap, int heapLength);
static int removeHeapElement(int *heap, int heapLength);
static void findDependencyLoops(DumpableObject **objs, int nObjs, int totObjs);
static int findLoop(DumpableObject *obj,
DumpId startPoint,
bool *processed,
DumpId *searchFailed,
DumpableObject **workspace,
int depth);
static void repairDependencyLoop(DumpableObject **loop,
int nLoop);
static void describeDumpableObject(DumpableObject *obj,
char *buf, int bufsize);
static int DOSizeCompare(const void *p1, const void *p2);
static int
findFirstEqualType(DumpableObjectType type, DumpableObject **objs, int numObjs)
{
int i;
for (i = 0; i < numObjs; i++)
if (objs[i]->objType == type)
return i;
return -1;
}
static int
findFirstDifferentType(DumpableObjectType type, DumpableObject **objs, int numObjs, int start)
{
int i;
for (i = start; i < numObjs; i++)
if (objs[i]->objType != type)
return i;
return numObjs - 1;
}
/*
* When we do a parallel dump, we want to start with the largest items first.
*
* Say we have the objects in this order:
* ....DDDDD....III....
*
* with D = Table data, I = Index, . = other object
*
* This sorting function now takes each of the D or I blocks and sorts them
* according to their size.
*/
void
sortDataAndIndexObjectsBySize(DumpableObject **objs, int numObjs)
{
int startIdx,
endIdx;
void *startPtr;
if (numObjs <= 1)
return;
startIdx = findFirstEqualType(DO_TABLE_DATA, objs, numObjs);
if (startIdx >= 0)
{
endIdx = findFirstDifferentType(DO_TABLE_DATA, objs, numObjs, startIdx);
startPtr = objs + startIdx;
qsort(startPtr, endIdx - startIdx, sizeof(DumpableObject *),
DOSizeCompare);
}
startIdx = findFirstEqualType(DO_INDEX, objs, numObjs);
if (startIdx >= 0)
{
endIdx = findFirstDifferentType(DO_INDEX, objs, numObjs, startIdx);
startPtr = objs + startIdx;
qsort(startPtr, endIdx - startIdx, sizeof(DumpableObject *),
DOSizeCompare);
}
}
static int
DOSizeCompare(const void *p1, const void *p2)
{
DumpableObject *obj1 = *(DumpableObject **) p1;
DumpableObject *obj2 = *(DumpableObject **) p2;
int obj1_size = 0;
int obj2_size = 0;
if (obj1->objType == DO_TABLE_DATA)
obj1_size = ((TableDataInfo *) obj1)->tdtable->relpages;
if (obj1->objType == DO_INDEX)
obj1_size = ((IndxInfo *) obj1)->relpages;
if (obj2->objType == DO_TABLE_DATA)
obj2_size = ((TableDataInfo *) obj2)->tdtable->relpages;
if (obj2->objType == DO_INDEX)
obj2_size = ((IndxInfo *) obj2)->relpages;
/* we want to see the biggest item go first */
if (obj1_size > obj2_size)
return -1;
if (obj2_size > obj1_size)
return 1;
return 0;
}
/*
* Sort the given objects into a type/name-based ordering
*
* Normally this is just the starting point for the dependency-based
* ordering.
*/
void
sortDumpableObjectsByTypeName(DumpableObject **objs, int numObjs)
{
if (numObjs > 1)
qsort((void *) objs, numObjs, sizeof(DumpableObject *),
DOTypeNameCompare);
}
static int
DOTypeNameCompare(const void *p1, const void *p2)
{
DumpableObject *obj1 = *(DumpableObject *const *) p1;
DumpableObject *obj2 = *(DumpableObject *const *) p2;
int cmpval;
/* Sort by type */
cmpval = newObjectTypePriority[obj1->objType] -
newObjectTypePriority[obj2->objType];
if (cmpval != 0)
return cmpval;
/*
* Sort by namespace. Note that all objects of the same type should
* either have or not have a namespace link, so we needn't be fancy about
* cases where one link is null and the other not.
*/
if (obj1->namespace && obj2->namespace)
{
cmpval = strcmp(obj1->namespace->dobj.name,
obj2->namespace->dobj.name);
if (cmpval != 0)
return cmpval;
}
/* Sort by name */
cmpval = strcmp(obj1->name, obj2->name);
if (cmpval != 0)
return cmpval;
/* To have a stable sort order, break ties for some object types */
if (obj1->objType == DO_FUNC || obj1->objType == DO_AGG)
{
FuncInfo *fobj1 = *(FuncInfo *const *) p1;
FuncInfo *fobj2 = *(FuncInfo *const *) p2;
int i;
cmpval = fobj1->nargs - fobj2->nargs;
if (cmpval != 0)
return cmpval;
for (i = 0; i < fobj1->nargs; i++)
{
TypeInfo *argtype1 = findTypeByOid(fobj1->argtypes[i]);
TypeInfo *argtype2 = findTypeByOid(fobj2->argtypes[i]);
if (argtype1 && argtype2)
{
if (argtype1->dobj.namespace && argtype2->dobj.namespace)
{
cmpval = strcmp(argtype1->dobj.namespace->dobj.name,
argtype2->dobj.namespace->dobj.name);
if (cmpval != 0)
return cmpval;
}
cmpval = strcmp(argtype1->dobj.name, argtype2->dobj.name);
if (cmpval != 0)
return cmpval;
}
}
}
else if (obj1->objType == DO_OPERATOR)
{
OprInfo *oobj1 = *(OprInfo *const *) p1;
OprInfo *oobj2 = *(OprInfo *const *) p2;
/* oprkind is 'l', 'r', or 'b'; this sorts prefix, postfix, infix */
cmpval = (oobj2->oprkind - oobj1->oprkind);
if (cmpval != 0)
return cmpval;
}
else if (obj1->objType == DO_ATTRDEF)
{
AttrDefInfo *adobj1 = *(AttrDefInfo *const *) p1;
AttrDefInfo *adobj2 = *(AttrDefInfo *const *) p2;
cmpval = (adobj1->adnum - adobj2->adnum);
if (cmpval != 0)
return cmpval;
}
/* Usually shouldn't get here, but if we do, sort by OID */
return oidcmp(obj1->catId.oid, obj2->catId.oid);
}
/*
* Sort the given objects into a type/OID-based ordering
*
* This is used with pre-7.3 source databases as a crude substitute for the
* lack of dependency information.
*/
void
sortDumpableObjectsByTypeOid(DumpableObject **objs, int numObjs)
{
if (numObjs > 1)
qsort((void *) objs, numObjs, sizeof(DumpableObject *),
DOTypeOidCompare);
}
static int
DOTypeOidCompare(const void *p1, const void *p2)
{
DumpableObject *obj1 = *(DumpableObject *const *) p1;
DumpableObject *obj2 = *(DumpableObject *const *) p2;
int cmpval;
cmpval = oldObjectTypePriority[obj1->objType] -
oldObjectTypePriority[obj2->objType];
if (cmpval != 0)
return cmpval;
return oidcmp(obj1->catId.oid, obj2->catId.oid);
}
/*
* Sort the given objects into a safe dump order using dependency
* information (to the extent we have it available).
*
* The DumpIds of the PRE_DATA_BOUNDARY and POST_DATA_BOUNDARY objects are
* passed in separately, in case we need them during dependency loop repair.
*/
void
sortDumpableObjects(DumpableObject **objs, int numObjs,
DumpId preBoundaryId, DumpId postBoundaryId)
{
DumpableObject **ordering;
int nOrdering;
if (numObjs <= 0) /* can't happen anymore ... */
return;
/*
* Saving the boundary IDs in static variables is a bit grotty, but seems
* better than adding them to parameter lists of subsidiary functions.
*/
preDataBoundId = preBoundaryId;
postDataBoundId = postBoundaryId;
ordering = (DumpableObject **) pg_malloc(numObjs * sizeof(DumpableObject *));
while (!TopoSort(objs, numObjs, ordering, &nOrdering))
findDependencyLoops(ordering, nOrdering, numObjs);
memcpy(objs, ordering, numObjs * sizeof(DumpableObject *));
free(ordering);
}
/*
* TopoSort -- topological sort of a dump list
*
* Generate a re-ordering of the dump list that satisfies all the dependency
* constraints shown in the dump list. (Each such constraint is a fact of a
* partial ordering.) Minimize rearrangement of the list not needed to
* achieve the partial ordering.
*
* The input is the list of numObjs objects in objs[]. This list is not
* modified.
*
* Returns TRUE if able to build an ordering that satisfies all the
* constraints, FALSE if not (there are contradictory constraints).
*
* On success (TRUE result), ordering[] is filled with a sorted array of
* DumpableObject pointers, of length equal to the input list length.
*
* On failure (FALSE result), ordering[] is filled with an unsorted array of
* DumpableObject pointers of length *nOrdering, listing the objects that
* prevented the sort from being completed. In general, these objects either
* participate directly in a dependency cycle, or are depended on by objects
* that are in a cycle. (The latter objects are not actually problematic,
* but it takes further analysis to identify which are which.)
*
* The caller is responsible for allocating sufficient space at *ordering.
*/
static bool
TopoSort(DumpableObject **objs,
int numObjs,
DumpableObject **ordering, /* output argument */
int *nOrdering) /* output argument */
{
DumpId maxDumpId = getMaxDumpId();
int *pendingHeap;
int *beforeConstraints;
int *idMap;
DumpableObject *obj;
int heapLength;
int i,
j,
k;
/*
* This is basically the same algorithm shown for topological sorting in
* Knuth's Volume 1. However, we would like to minimize unnecessary
* rearrangement of the input ordering; that is, when we have a choice of
* which item to output next, we always want to take the one highest in
* the original list. Therefore, instead of maintaining an unordered
* linked list of items-ready-to-output as Knuth does, we maintain a heap
* of their item numbers, which we can use as a priority queue. This
* turns the algorithm from O(N) to O(N log N) because each insertion or
* removal of a heap item takes O(log N) time. However, that's still
* plenty fast enough for this application.
*/
*nOrdering = numObjs; /* for success return */
/* Eliminate the null case */
if (numObjs <= 0)
return true;
/* Create workspace for the above-described heap */
pendingHeap = (int *) pg_malloc(numObjs * sizeof(int));
/*
* Scan the constraints, and for each item in the input, generate a count
* of the number of constraints that say it must be before something else.
* The count for the item with dumpId j is stored in beforeConstraints[j].
* We also make a map showing the input-order index of the item with
* dumpId j.
*/
beforeConstraints = (int *) pg_malloc((maxDumpId + 1) * sizeof(int));
memset(beforeConstraints, 0, (maxDumpId + 1) * sizeof(int));
idMap = (int *) pg_malloc((maxDumpId + 1) * sizeof(int));
for (i = 0; i < numObjs; i++)
{
obj = objs[i];
j = obj->dumpId;
if (j <= 0 || j > maxDumpId)
exit_horribly(modulename, "invalid dumpId %d\n", j);
idMap[j] = i;
for (j = 0; j < obj->nDeps; j++)
{
k = obj->dependencies[j];
if (k <= 0 || k > maxDumpId)
exit_horribly(modulename, "invalid dependency %d\n", k);
beforeConstraints[k]++;
}
}
/*
* Now initialize the heap of items-ready-to-output by filling it with the
* indexes of items that already have beforeConstraints[id] == 0.
*
* The essential property of a heap is heap[(j-1)/2] >= heap[j] for each j
* in the range 1..heapLength-1 (note we are using 0-based subscripts
* here, while the discussion in Knuth assumes 1-based subscripts). So, if
* we simply enter the indexes into pendingHeap[] in decreasing order, we
* a-fortiori have the heap invariant satisfied at completion of this
* loop, and don't need to do any sift-up comparisons.
*/
heapLength = 0;
for (i = numObjs; --i >= 0;)
{
if (beforeConstraints[objs[i]->dumpId] == 0)
pendingHeap[heapLength++] = i;
}
/*--------------------
* Now emit objects, working backwards in the output list. At each step,
* we use the priority heap to select the last item that has no remaining
* before-constraints. We remove that item from the heap, output it to
* ordering[], and decrease the beforeConstraints count of each of the
* items it was constrained against. Whenever an item's beforeConstraints
* count is thereby decreased to zero, we insert it into the priority heap
* to show that it is a candidate to output. We are done when the heap
* becomes empty; if we have output every element then we succeeded,
* otherwise we failed.
* i = number of ordering[] entries left to output
* j = objs[] index of item we are outputting
* k = temp for scanning constraint list for item j
*--------------------
*/
i = numObjs;
while (heapLength > 0)
{
/* Select object to output by removing largest heap member */
j = removeHeapElement(pendingHeap, heapLength--);
obj = objs[j];
/* Output candidate to ordering[] */
ordering[--i] = obj;
/* Update beforeConstraints counts of its predecessors */
for (k = 0; k < obj->nDeps; k++)
{
int id = obj->dependencies[k];
if ((--beforeConstraints[id]) == 0)
addHeapElement(idMap[id], pendingHeap, heapLength++);
}
}
/*
* If we failed, report the objects that couldn't be output; these are the
* ones with beforeConstraints[] still nonzero.
*/
if (i != 0)
{
k = 0;
for (j = 1; j <= maxDumpId; j++)
{
if (beforeConstraints[j] != 0)
ordering[k++] = objs[idMap[j]];
}
*nOrdering = k;
}
/* Done */
free(pendingHeap);
free(beforeConstraints);
free(idMap);
return (i == 0);
}
/*
* Add an item to a heap (priority queue)
*
* heapLength is the current heap size; caller is responsible for increasing
* its value after the call. There must be sufficient storage at *heap.
*/
static void
addHeapElement(int val, int *heap, int heapLength)
{
int j;
/*
* Sift-up the new entry, per Knuth 5.2.3 exercise 16. Note that Knuth is
* using 1-based array indexes, not 0-based.
*/
j = heapLength;
while (j > 0)
{
int i = (j - 1) >> 1;
if (val <= heap[i])
break;
heap[j] = heap[i];
j = i;
}
heap[j] = val;
}
/*
* Remove the largest item present in a heap (priority queue)
*
* heapLength is the current heap size; caller is responsible for decreasing
* its value after the call.
*
* We remove and return heap[0], which is always the largest element of
* the heap, and then "sift up" to maintain the heap invariant.
*/
static int
removeHeapElement(int *heap, int heapLength)
{
int result = heap[0];
int val;
int i;
if (--heapLength <= 0)
return result;
val = heap[heapLength]; /* value that must be reinserted */
i = 0; /* i is where the "hole" is */
for (;;)
{
int j = 2 * i + 1;
if (j >= heapLength)
break;
if (j + 1 < heapLength &&
heap[j] < heap[j + 1])
j++;
if (val >= heap[j])
break;
heap[i] = heap[j];
i = j;
}
heap[i] = val;
return result;
}
/*
* findDependencyLoops - identify loops in TopoSort's failure output,
* and pass each such loop to repairDependencyLoop() for action
*
* In general there may be many loops in the set of objects returned by
* TopoSort; for speed we should try to repair as many loops as we can
* before trying TopoSort again. We can safely repair loops that are
* disjoint (have no members in common); if we find overlapping loops
* then we repair only the first one found, because the action taken to
* repair the first might have repaired the other as well. (If not,
* we'll fix it on the next go-round.)
*
* objs[] lists the objects TopoSort couldn't sort
* nObjs is the number of such objects
* totObjs is the total number of objects in the universe
*/
static void
findDependencyLoops(DumpableObject **objs, int nObjs, int totObjs)
{
/*
* We use three data structures here:
*
* processed[] is a bool array indexed by dump ID, marking the objects
* already processed during this invocation of findDependencyLoops().
*
* searchFailed[] is another array indexed by dump ID. searchFailed[j] is
* set to dump ID k if we have proven that there is no dependency path
* leading from object j back to start point k. This allows us to skip
* useless searching when there are multiple dependency paths from k to j,
* which is a common situation. We could use a simple bool array for
* this, but then we'd need to re-zero it for each start point, resulting
* in O(N^2) zeroing work. Using the start point's dump ID as the "true"
* value lets us skip clearing the array before we consider the next start
* point.
*
* workspace[] is an array of DumpableObject pointers, in which we try to
* build lists of objects constituting loops. We make workspace[] large
* enough to hold all the objects in TopoSort's output, which is huge
* overkill in most cases but could theoretically be necessary if there is
* a single dependency chain linking all the objects.
*/
bool *processed;
DumpId *searchFailed;
DumpableObject **workspace;
bool fixedloop;
int i;
processed = (bool *) pg_malloc0((getMaxDumpId() + 1) * sizeof(bool));
searchFailed = (DumpId *) pg_malloc0((getMaxDumpId() + 1) * sizeof(DumpId));
workspace = (DumpableObject **) pg_malloc(totObjs * sizeof(DumpableObject *));
fixedloop = false;
for (i = 0; i < nObjs; i++)
{
DumpableObject *obj = objs[i];
int looplen;
int j;
looplen = findLoop(obj,
obj->dumpId,
processed,
searchFailed,
workspace,
0);
if (looplen > 0)
{
/* Found a loop, repair it */
repairDependencyLoop(workspace, looplen);
fixedloop = true;
/* Mark loop members as processed */
for (j = 0; j < looplen; j++)
processed[workspace[j]->dumpId] = true;
}
else
{
/*
* There's no loop starting at this object, but mark it processed
* anyway. This is not necessary for correctness, but saves later
* invocations of findLoop() from uselessly chasing references to
* such an object.
*/
processed[obj->dumpId] = true;
}
}
/* We'd better have fixed at least one loop */
if (!fixedloop)
exit_horribly(modulename, "could not identify dependency loop\n");
free(workspace);
free(searchFailed);
free(processed);
}
/*
* Recursively search for a circular dependency loop that doesn't include
* any already-processed objects.
*
* obj: object we are examining now
* startPoint: dumpId of starting object for the hoped-for circular loop
* processed[]: flag array marking already-processed objects
* searchFailed[]: flag array marking already-unsuccessfully-visited objects
* workspace[]: work array in which we are building list of loop members
* depth: number of valid entries in workspace[] at call
*
* On success, the length of the loop is returned, and workspace[] is filled
* with pointers to the members of the loop. On failure, we return 0.
*
* Note: it is possible that the given starting object is a member of more
* than one cycle; if so, we will find an arbitrary one of the cycles.
*/
static int
findLoop(DumpableObject *obj,
DumpId startPoint,
bool *processed,
DumpId *searchFailed,
DumpableObject **workspace,
int depth)
{
int i;
/*
* Reject if obj is already processed. This test prevents us from finding
* loops that overlap previously-processed loops.
*/
if (processed[obj->dumpId])
return 0;
/*
* If we've already proven there is no path from this object back to the
* startPoint, forget it.
*/
if (searchFailed[obj->dumpId] == startPoint)
return 0;
/*
* Reject if obj is already present in workspace. This test prevents us
* from going into infinite recursion if we are given a startPoint object
* that links to a cycle it's not a member of, and it guarantees that we
* can't overflow the allocated size of workspace[].
*/
for (i = 0; i < depth; i++)
{
if (workspace[i] == obj)
return 0;
}
/*
* Okay, tentatively add obj to workspace
*/
workspace[depth++] = obj;
/*
* See if we've found a loop back to the desired startPoint; if so, done
*/
for (i = 0; i < obj->nDeps; i++)
{
if (obj->dependencies[i] == startPoint)
return depth;
}
/*
* Recurse down each outgoing branch
*/
for (i = 0; i < obj->nDeps; i++)
{
DumpableObject *nextobj = findObjectByDumpId(obj->dependencies[i]);
int newDepth;
if (!nextobj)
continue; /* ignore dependencies on undumped objects */
newDepth = findLoop(nextobj,
startPoint,
processed,
searchFailed,
workspace,
depth);
if (newDepth > 0)
return newDepth;
}
/*
* Remember there is no path from here back to startPoint
*/
searchFailed[obj->dumpId] = startPoint;
return 0;
}
/*
* A user-defined datatype will have a dependency loop with each of its
* I/O functions (since those have the datatype as input or output).
* Similarly, a range type will have a loop with its canonicalize function,
* if any. Break the loop by making the function depend on the associated
* shell type, instead.
*/
static void
repairTypeFuncLoop(DumpableObject *typeobj, DumpableObject *funcobj)
{
TypeInfo *typeInfo = (TypeInfo *) typeobj;
/* remove function's dependency on type */
removeObjectDependency(funcobj, typeobj->dumpId);
/* add function's dependency on shell type, instead */
if (typeInfo->shellType)
{
addObjectDependency(funcobj, typeInfo->shellType->dobj.dumpId);
/* Mark shell type as to be dumped if any such function is */
if (funcobj->dump)
typeInfo->shellType->dobj.dump = true;
}
}
/*
* Because we force a view to depend on its ON SELECT rule, while there
* will be an implicit dependency in the other direction, we need to break
* the loop. If there are no other objects in the loop then we can remove
* the implicit dependency and leave the ON SELECT rule non-separate.
* This applies to matviews, as well.
*/
static void
repairViewRuleLoop(DumpableObject *viewobj,
DumpableObject *ruleobj)
{
/* remove rule's dependency on view */
removeObjectDependency(ruleobj, viewobj->dumpId);
}
/*
* However, if there are other objects in the loop, we must break the loop
* by making the ON SELECT rule a separately-dumped object.
*
* Because findLoop() finds shorter cycles before longer ones, it's likely
* that we will have previously fired repairViewRuleLoop() and removed the
* rule's dependency on the view. Put it back to ensure the rule won't be
* emitted before the view.
*
* Note: this approach does *not* work for matviews, at the moment.
*/
static void
repairViewRuleMultiLoop(DumpableObject *viewobj,
DumpableObject *ruleobj)
{
TableInfo *viewinfo = (TableInfo *) viewobj;
RuleInfo *ruleinfo = (RuleInfo *) ruleobj;
/* remove view's dependency on rule */
removeObjectDependency(viewobj, ruleobj->dumpId);
/* pretend view is a plain table and dump it that way */
viewinfo->relkind = 'r'; /* RELKIND_RELATION */
/* mark rule as needing its own dump */
ruleinfo->separate = true;
/* move any reloptions from view to rule */
if (viewinfo->reloptions)
{
ruleinfo->reloptions = viewinfo->reloptions;
viewinfo->reloptions = NULL;
}
/* put back rule's dependency on view */
addObjectDependency(ruleobj, viewobj->dumpId);
/* now that rule is separate, it must be post-data */
addObjectDependency(ruleobj, postDataBoundId);
}
/*
* If a matview is involved in a multi-object loop, we can't currently fix
* that by splitting off the rule. As a stopgap, we try to fix it by
* dropping the constraint that the matview be dumped in the pre-data section.
* This is sufficient to handle cases where a matview depends on some unique
* index, as can happen if it has a GROUP BY for example.
*
* Note that the "next object" is not necessarily the matview itself;
* it could be the matview's rowtype, for example. We may come through here
* several times while removing all the pre-data linkages.
*/
static void
repairMatViewBoundaryMultiLoop(DumpableObject *matviewobj,
DumpableObject *boundaryobj,
DumpableObject *nextobj)
{
TableInfo *matviewinfo = (TableInfo *) matviewobj;
/* remove boundary's dependency on object after it in loop */
removeObjectDependency(boundaryobj, nextobj->dumpId);
/* mark matview as postponed into post-data section */
matviewinfo->postponed_def = true;
}
/*
* Because we make tables depend on their CHECK constraints, while there
* will be an automatic dependency in the other direction, we need to break
* the loop. If there are no other objects in the loop then we can remove
* the automatic dependency and leave the CHECK constraint non-separate.
*/
static void
repairTableConstraintLoop(DumpableObject *tableobj,
DumpableObject *constraintobj)
{
/* remove constraint's dependency on table */
removeObjectDependency(constraintobj, tableobj->dumpId);
}
/*
* However, if there are other objects in the loop, we must break the loop
* by making the CHECK constraint a separately-dumped object.
*
* Because findLoop() finds shorter cycles before longer ones, it's likely
* that we will have previously fired repairTableConstraintLoop() and
* removed the constraint's dependency on the table. Put it back to ensure
* the constraint won't be emitted before the table...
*/
static void
repairTableConstraintMultiLoop(DumpableObject *tableobj,
DumpableObject *constraintobj)
{
/* remove table's dependency on constraint */
removeObjectDependency(tableobj, constraintobj->dumpId);
/* mark constraint as needing its own dump */
((ConstraintInfo *) constraintobj)->separate = true;
/* put back constraint's dependency on table */
addObjectDependency(constraintobj, tableobj->dumpId);
/* now that constraint is separate, it must be post-data */
addObjectDependency(constraintobj, postDataBoundId);
}
/*
* Attribute defaults behave exactly the same as CHECK constraints...
*/
static void
repairTableAttrDefLoop(DumpableObject *tableobj,
DumpableObject *attrdefobj)
{
/* remove attrdef's dependency on table */
removeObjectDependency(attrdefobj, tableobj->dumpId);
}
static void
repairTableAttrDefMultiLoop(DumpableObject *tableobj,
DumpableObject *attrdefobj)
{
/* remove table's dependency on attrdef */
removeObjectDependency(tableobj, attrdefobj->dumpId);
/* mark attrdef as needing its own dump */
((AttrDefInfo *) attrdefobj)->separate = true;
/* put back attrdef's dependency on table */
addObjectDependency(attrdefobj, tableobj->dumpId);
}
/*
* CHECK constraints on domains work just like those on tables ...
*/
static void
repairDomainConstraintLoop(DumpableObject *domainobj,
DumpableObject *constraintobj)
{
/* remove constraint's dependency on domain */
removeObjectDependency(constraintobj, domainobj->dumpId);
}
static void
repairDomainConstraintMultiLoop(DumpableObject *domainobj,
DumpableObject *constraintobj)
{
/* remove domain's dependency on constraint */
removeObjectDependency(domainobj, constraintobj->dumpId);
/* mark constraint as needing its own dump */
((ConstraintInfo *) constraintobj)->separate = true;
/* put back constraint's dependency on domain */
addObjectDependency(constraintobj, domainobj->dumpId);
/* now that constraint is separate, it must be post-data */
addObjectDependency(constraintobj, postDataBoundId);
}
/*
* Fix a dependency loop, or die trying ...
*
* This routine is mainly concerned with reducing the multiple ways that
* a loop might appear to common cases, which it passes off to the
* "fixer" routines above.
*/
static void
repairDependencyLoop(DumpableObject **loop,
int nLoop)
{
int i,
j;
/* Datatype and one of its I/O or canonicalize functions */
if (nLoop == 2 &&
loop[0]->objType == DO_TYPE &&
loop[1]->objType == DO_FUNC)
{
repairTypeFuncLoop(loop[0], loop[1]);
return;
}
if (nLoop == 2 &&
loop[1]->objType == DO_TYPE &&
loop[0]->objType == DO_FUNC)
{
repairTypeFuncLoop(loop[1], loop[0]);
return;
}
/* View (including matview) and its ON SELECT rule */
if (nLoop == 2 &&
loop[0]->objType == DO_TABLE &&
loop[1]->objType == DO_RULE &&
(((TableInfo *) loop[0])->relkind == 'v' || /* RELKIND_VIEW */
((TableInfo *) loop[0])->relkind == 'm') && /* RELKIND_MATVIEW */
((RuleInfo *) loop[1])->ev_type == '1' &&
((RuleInfo *) loop[1])->is_instead &&
((RuleInfo *) loop[1])->ruletable == (TableInfo *) loop[0])
{
repairViewRuleLoop(loop[0], loop[1]);
return;
}
if (nLoop == 2 &&
loop[1]->objType == DO_TABLE &&
loop[0]->objType == DO_RULE &&
(((TableInfo *) loop[1])->relkind == 'v' || /* RELKIND_VIEW */
((TableInfo *) loop[1])->relkind == 'm') && /* RELKIND_MATVIEW */
((RuleInfo *) loop[0])->ev_type == '1' &&
((RuleInfo *) loop[0])->is_instead &&
((RuleInfo *) loop[0])->ruletable == (TableInfo *) loop[1])
{
repairViewRuleLoop(loop[1], loop[0]);
return;
}
/* Indirect loop involving view (but not matview) and ON SELECT rule */
if (nLoop > 2)
{
for (i = 0; i < nLoop; i++)
{
if (loop[i]->objType == DO_TABLE &&
((TableInfo *) loop[i])->relkind == 'v') /* RELKIND_VIEW */
{
for (j = 0; j < nLoop; j++)
{
if (loop[j]->objType == DO_RULE &&
((RuleInfo *) loop[j])->ev_type == '1' &&
((RuleInfo *) loop[j])->is_instead &&
((RuleInfo *) loop[j])->ruletable == (TableInfo *) loop[i])
{
repairViewRuleMultiLoop(loop[i], loop[j]);
return;
}
}
}
}
}
/* Indirect loop involving matview and data boundary */
if (nLoop > 2)
{
for (i = 0; i < nLoop; i++)
{
if (loop[i]->objType == DO_TABLE &&
((TableInfo *) loop[i])->relkind == 'm') /* RELKIND_MATVIEW */
{
for (j = 0; j < nLoop; j++)
{
if (loop[j]->objType == DO_PRE_DATA_BOUNDARY)
{
DumpableObject *nextobj;
nextobj = (j < nLoop - 1) ? loop[j + 1] : loop[0];
repairMatViewBoundaryMultiLoop(loop[i], loop[j],
nextobj);
return;
}
}
}
}
}
/* Table and CHECK constraint */
if (nLoop == 2 &&
loop[0]->objType == DO_TABLE &&
loop[1]->objType == DO_CONSTRAINT &&
((ConstraintInfo *) loop[1])->contype == 'c' &&
((ConstraintInfo *) loop[1])->contable == (TableInfo *) loop[0])
{
repairTableConstraintLoop(loop[0], loop[1]);
return;
}
if (nLoop == 2 &&
loop[1]->objType == DO_TABLE &&
loop[0]->objType == DO_CONSTRAINT &&
((ConstraintInfo *) loop[0])->contype == 'c' &&
((ConstraintInfo *) loop[0])->contable == (TableInfo *) loop[1])
{
repairTableConstraintLoop(loop[1], loop[0]);
return;
}
/* Indirect loop involving table and CHECK constraint */
if (nLoop > 2)
{
for (i = 0; i < nLoop; i++)
{
if (loop[i]->objType == DO_TABLE)
{
for (j = 0; j < nLoop; j++)
{
if (loop[j]->objType == DO_CONSTRAINT &&
((ConstraintInfo *) loop[j])->contype == 'c' &&
((ConstraintInfo *) loop[j])->contable == (TableInfo *) loop[i])
{
repairTableConstraintMultiLoop(loop[i], loop[j]);
return;
}
}
}
}
}
/* Table and attribute default */
if (nLoop == 2 &&
loop[0]->objType == DO_TABLE &&
loop[1]->objType == DO_ATTRDEF &&
((AttrDefInfo *) loop[1])->adtable == (TableInfo *) loop[0])
{
repairTableAttrDefLoop(loop[0], loop[1]);
return;
}
if (nLoop == 2 &&
loop[1]->objType == DO_TABLE &&
loop[0]->objType == DO_ATTRDEF &&
((AttrDefInfo *) loop[0])->adtable == (TableInfo *) loop[1])
{
repairTableAttrDefLoop(loop[1], loop[0]);
return;
}
/* Indirect loop involving table and attribute default */
if (nLoop > 2)
{
for (i = 0; i < nLoop; i++)
{
if (loop[i]->objType == DO_TABLE)
{
for (j = 0; j < nLoop; j++)
{
if (loop[j]->objType == DO_ATTRDEF &&
((AttrDefInfo *) loop[j])->adtable == (TableInfo *) loop[i])
{
repairTableAttrDefMultiLoop(loop[i], loop[j]);
return;
}
}
}
}
}
/* Domain and CHECK constraint */
if (nLoop == 2 &&
loop[0]->objType == DO_TYPE &&
loop[1]->objType == DO_CONSTRAINT &&
((ConstraintInfo *) loop[1])->contype == 'c' &&
((ConstraintInfo *) loop[1])->condomain == (TypeInfo *) loop[0])
{
repairDomainConstraintLoop(loop[0], loop[1]);
return;
}
if (nLoop == 2 &&
loop[1]->objType == DO_TYPE &&
loop[0]->objType == DO_CONSTRAINT &&
((ConstraintInfo *) loop[0])->contype == 'c' &&
((ConstraintInfo *) loop[0])->condomain == (TypeInfo *) loop[1])
{
repairDomainConstraintLoop(loop[1], loop[0]);
return;
}
/* Indirect loop involving domain and CHECK constraint */
if (nLoop > 2)
{
for (i = 0; i < nLoop; i++)
{
if (loop[i]->objType == DO_TYPE)
{
for (j = 0; j < nLoop; j++)
{
if (loop[j]->objType == DO_CONSTRAINT &&
((ConstraintInfo *) loop[j])->contype == 'c' &&
((ConstraintInfo *) loop[j])->condomain == (TypeInfo *) loop[i])
{
repairDomainConstraintMultiLoop(loop[i], loop[j]);
return;
}
}
}
}
}
/*
* If all the objects are TABLE_DATA items, what we must have is a
* circular set of foreign key constraints (or a single self-referential
* table). Print an appropriate complaint and break the loop arbitrarily.
*/
for (i = 0; i < nLoop; i++)
{
if (loop[i]->objType != DO_TABLE_DATA)
break;
}
if (i >= nLoop)
{
write_msg(NULL, "NOTICE: there are circular foreign-key constraints among these table(s):\n");
for (i = 0; i < nLoop; i++)
write_msg(NULL, " %s\n", loop[i]->name);
write_msg(NULL, "You might not be able to restore the dump without using --disable-triggers or temporarily dropping the constraints.\n");
write_msg(NULL, "Consider using a full dump instead of a --data-only dump to avoid this problem.\n");
if (nLoop > 1)
removeObjectDependency(loop[0], loop[1]->dumpId);
else /* must be a self-dependency */
removeObjectDependency(loop[0], loop[0]->dumpId);
return;
}
/*
* If we can't find a principled way to break the loop, complain and break
* it in an arbitrary fashion.
*/
write_msg(modulename, "WARNING: could not resolve dependency loop among these items:\n");
for (i = 0; i < nLoop; i++)
{
char buf[1024];
describeDumpableObject(loop[i], buf, sizeof(buf));
write_msg(modulename, " %s\n", buf);
}
if (nLoop > 1)
removeObjectDependency(loop[0], loop[1]->dumpId);
else /* must be a self-dependency */
removeObjectDependency(loop[0], loop[0]->dumpId);
}
/*
* Describe a dumpable object usefully for errors
*
* This should probably go somewhere else...
*/
static void
describeDumpableObject(DumpableObject *obj, char *buf, int bufsize)
{
switch (obj->objType)
{
case DO_NAMESPACE:
snprintf(buf, bufsize,
"SCHEMA %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_EXTENSION:
snprintf(buf, bufsize,
"EXTENSION %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_TYPE:
snprintf(buf, bufsize,
"TYPE %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_SHELL_TYPE:
snprintf(buf, bufsize,
"SHELL TYPE %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_FUNC:
snprintf(buf, bufsize,
"FUNCTION %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_AGG:
snprintf(buf, bufsize,
"AGGREGATE %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_OPERATOR:
snprintf(buf, bufsize,
"OPERATOR %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_OPCLASS:
snprintf(buf, bufsize,
"OPERATOR CLASS %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_OPFAMILY:
snprintf(buf, bufsize,
"OPERATOR FAMILY %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_COLLATION:
snprintf(buf, bufsize,
"COLLATION %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_CONVERSION:
snprintf(buf, bufsize,
"CONVERSION %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_TABLE:
snprintf(buf, bufsize,
"TABLE %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_ATTRDEF:
snprintf(buf, bufsize,
"ATTRDEF %s.%s (ID %d OID %u)",
((AttrDefInfo *) obj)->adtable->dobj.name,
((AttrDefInfo *) obj)->adtable->attnames[((AttrDefInfo *) obj)->adnum - 1],
obj->dumpId, obj->catId.oid);
return;
case DO_INDEX:
snprintf(buf, bufsize,
"INDEX %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_REFRESH_MATVIEW:
snprintf(buf, bufsize,
"REFRESH MATERIALIZED VIEW %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_RULE:
snprintf(buf, bufsize,
"RULE %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_TRIGGER:
snprintf(buf, bufsize,
"TRIGGER %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_EVENT_TRIGGER:
snprintf(buf, bufsize,
"EVENT TRIGGER %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_CONSTRAINT:
snprintf(buf, bufsize,
"CONSTRAINT %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_FK_CONSTRAINT:
snprintf(buf, bufsize,
"FK CONSTRAINT %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_PROCLANG:
snprintf(buf, bufsize,
"PROCEDURAL LANGUAGE %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_CAST:
snprintf(buf, bufsize,
"CAST %u to %u (ID %d OID %u)",
((CastInfo *) obj)->castsource,
((CastInfo *) obj)->casttarget,
obj->dumpId, obj->catId.oid);
return;
case DO_TABLE_DATA:
snprintf(buf, bufsize,
"TABLE DATA %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_DUMMY_TYPE:
snprintf(buf, bufsize,
"DUMMY TYPE %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_TSPARSER:
snprintf(buf, bufsize,
"TEXT SEARCH PARSER %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_TSDICT:
snprintf(buf, bufsize,
"TEXT SEARCH DICTIONARY %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_TSTEMPLATE:
snprintf(buf, bufsize,
"TEXT SEARCH TEMPLATE %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_TSCONFIG:
snprintf(buf, bufsize,
"TEXT SEARCH CONFIGURATION %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_FDW:
snprintf(buf, bufsize,
"FOREIGN DATA WRAPPER %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_FOREIGN_SERVER:
snprintf(buf, bufsize,
"FOREIGN SERVER %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_DEFAULT_ACL:
snprintf(buf, bufsize,
"DEFAULT ACL %s (ID %d OID %u)",
obj->name, obj->dumpId, obj->catId.oid);
return;
case DO_BLOB:
snprintf(buf, bufsize,
"BLOB (ID %d OID %u)",
obj->dumpId, obj->catId.oid);
return;
case DO_BLOB_DATA:
snprintf(buf, bufsize,
"BLOB DATA (ID %d)",
obj->dumpId);
return;
case DO_PRE_DATA_BOUNDARY:
snprintf(buf, bufsize,
"PRE-DATA BOUNDARY (ID %d)",
obj->dumpId);
return;
case DO_POST_DATA_BOUNDARY:
snprintf(buf, bufsize,
"POST-DATA BOUNDARY (ID %d)",
obj->dumpId);
return;
}
/* shouldn't get here */
snprintf(buf, bufsize,
"object type %d (ID %d OID %u)",
(int) obj->objType,
obj->dumpId, obj->catId.oid);
}
|