1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
|
PROGRAM PGDEM1
C-----------------------------------------------------------------------
C Demonstration program for PGPLOT. The main program opens the output
C device and calls a series of subroutines, one for each sample plot.
C-----------------------------------------------------------------------
INTEGER PGOPEN
C
C Call PGOPEN to initiate PGPLOT and open the output device; PGOPEN
C will prompt the user to supply the device name and type. Always
C check the return code from PGOPEN.
C
IF (PGOPEN('?') .LE. 0) STOP
C
C Print information about device.
C
CALL PGEX0
C
C Call the demonstration subroutines (4,5 are put on one page)
C
CALL PGEX1
CALL PGEX2
CALL PGEX3
CALL PGSUBP(2,1)
CALL PGEX4
CALL PGEX5
CALL PGSUBP(1,1)
CALL PGEX6
CALL PGEX7
CALL PGEX8
CALL PGEX9
CALL PGEX10
CALL PGEX11
CALL PGEX12
CALL PGEX13
CALL PGEX14
CALL PGEX15
C
C Finally, call PGCLOS to terminate things properly.
C
CALL PGCLOS
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX0
C-----------------------------------------------------------------------
C This subroutine tests PGQINF and displays the information returned on
C the standard output.
C-----------------------------------------------------------------------
CHARACTER*64 VALUE
INTEGER LENGTH
REAL X, Y, X1, X2, Y1, Y2
C
C Information available from PGQINF:
C
CALL PGQINF('version', VALUE, LENGTH)
WRITE (*,*) 'version=', VALUE(:LENGTH)
CALL PGQINF('state', VALUE, LENGTH)
WRITE (*,*) 'state=', VALUE(:LENGTH)
CALL PGQINF('user', VALUE, LENGTH)
WRITE (*,*) 'user=', VALUE(:LENGTH)
CALL PGQINF('now', VALUE, LENGTH)
WRITE (*,*) 'now=', VALUE(:LENGTH)
CALL PGQINF('device', VALUE, LENGTH)
WRITE (*,*) 'device=', VALUE(:LENGTH)
CALL PGQINF('file', VALUE, LENGTH)
WRITE (*,*) 'file=', VALUE(:LENGTH)
CALL PGQINF('type', VALUE, LENGTH)
WRITE (*,*) 'type=', VALUE(:LENGTH)
CALL PGQINF('dev/type', VALUE, LENGTH)
WRITE (*,*) 'dev/type=',VALUE(:LENGTH)
CALL PGQINF('hardcopy', VALUE, LENGTH)
WRITE (*,*) 'hardcopy=',VALUE(:LENGTH)
CALL PGQINF('terminal', VALUE, LENGTH)
WRITE (*,*) 'terminal=',VALUE(:LENGTH)
CALL PGQINF('cursor', VALUE, LENGTH)
WRITE (*,*) 'cursor=', VALUE(:LENGTH)
C
C Get view surface dimensions:
C
CALL PGQVSZ(1, X1, X2, Y1, Y2)
X = X2-X1
Y = Y2-Y1
WRITE (*,100) X, Y, X*25.4, Y*25.4
100 FORMAT (' Plot dimensions (x,y; inches): ',F9.2,', ',F9.2/
1 ' (mm): ',F9.2,', ',F9.2)
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX1
C-----------------------------------------------------------------------
C This example illustrates the use of PGENV, PGLAB, PGPT, PGLINE.
C-----------------------------------------------------------------------
INTEGER I
REAL XS(5),YS(5), XR(100), YR(100)
DATA XS/1.,2.,3.,4.,5./
DATA YS/1.,4.,9.,16.,25./
C
C Call PGENV to specify the range of the axes and to draw a box, and
C PGLAB to label it. The x-axis runs from 0 to 10, and y from 0 to 20.
C
CALL PGENV(0.,10.,0.,20.,0,1)
CALL PGLAB('(x)', '(y)', 'PGPLOT Example 1: y = x\u2')
C
C Mark five points (coordinates in arrays XS and YS), using symbol
C number 9.
C
CALL PGPT(5,XS,YS,9)
C
C Compute the function at 60 points, and use PGLINE to draw it.
C
DO 10 I=1,60
XR(I) = 0.1*I
YR(I) = XR(I)**2
10 CONTINUE
CALL PGLINE(60,XR,YR)
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX2
C-----------------------------------------------------------------------
C Repeat the process for another graph. This one is a graph of the
C sinc (sin x over x) function.
C-----------------------------------------------------------------------
INTEGER I
REAL XR(100), YR(100)
C
CALL PGENV(-2.,10.,-0.4,1.2,0,1)
CALL PGLAB('(x)', 'sin(x)/x',
$ 'PGPLOT Example 2: Sinc Function')
DO 20 I=1,100
XR(I) = (I-20)/6.
YR(I) = 1.0
IF (XR(I).NE.0.0) YR(I) = SIN(XR(I))/XR(I)
20 CONTINUE
CALL PGLINE(100,XR,YR)
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX3
C----------------------------------------------------------------------
C This example illustrates the use of PGBOX and attribute routines to
C mix colors and line-styles.
C----------------------------------------------------------------------
REAL PI
PARAMETER (PI=3.14159265359)
INTEGER I
REAL XR(360), YR(360)
REAL ARG
C
C Call PGENV to initialize the viewport and window; the
C AXIS argument is -2, so no frame or labels will be drawn.
C
CALL PGENV(0.,720.,-2.0,2.0,0,-2)
CALL PGSAVE
C
C Set the color index for the axes and grid (index 5 = cyan).
C Call PGBOX to draw first a grid at low brightness, and then a
C frame and axes at full brightness. Note that as the x-axis is
C to represent an angle in degrees, we request an explicit tick
C interval of 90 deg with subdivisions at 30 deg, as multiples of
C 3 are a more natural division than the default.
C
CALL PGSCI(14)
CALL PGBOX('G',30.0,0,'G',0.2,0)
CALL PGSCI(5)
CALL PGBOX('ABCTSN',90.0,3,'ABCTSNV',0.0,0)
C
C Call PGLAB to label the graph in a different color (3=green).
C
CALL PGSCI(3)
CALL PGLAB('x (degrees)','f(x)','PGPLOT Example 3')
C
C Compute the function to be plotted: a trig function of an
C angle in degrees, computed every 2 degrees.
C
DO 20 I=1,360
XR(I) = 2.0*I
ARG = XR(I)/180.0*PI
YR(I) = SIN(ARG) + 0.5*COS(2.0*ARG) +
1 0.5*SIN(1.5*ARG+PI/3.0)
20 CONTINUE
C
C Change the color (6=magenta), line-style (2=dashed), and line
C width and draw the function.
C
CALL PGSCI(6)
CALL PGSLS(2)
CALL PGSLW(3)
CALL PGLINE(360,XR,YR)
C
C Restore attributes to defaults.
C
CALL PGUNSA
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX4
C-----------------------------------------------------------------------
C Demonstration program for PGPLOT: draw histograms.
C-----------------------------------------------------------------------
REAL PI
PARAMETER (PI=3.14159265359)
INTEGER I, ISEED
REAL DATA(1000), X(620), Y(620)
REAL PGRNRM
C
C Call PGRNRM to obtain 1000 samples from a normal distribution.
C
ISEED = -5678921
DO 10 I=1,1000
DATA(I) = PGRNRM(ISEED)
10 CONTINUE
C
C Draw a histogram of these values.
C
CALL PGSAVE
CALL PGHIST(1000,DATA,-3.1,3.1,31,0)
C
C Samples from another normal distribution.
C
DO 15 I=1,200
DATA(I) = 1.0+0.5*PGRNRM(ISEED)
15 CONTINUE
C
C Draw another histogram (filled) on same axes.
C
CALL PGSCI(15)
CALL PGHIST(200,DATA,-3.1,3.1,31,3)
CALL PGSCI(0)
CALL PGHIST(200,DATA,-3.1,3.1,31,1)
CALL PGSCI(1)
C
C Redraw the box which may have been clobbered by the histogram.
C
CALL PGBOX('BST', 0.0, 0, ' ', 0.0, 0)
C
C Label the plot.
C
CALL PGLAB('Variate', ' ',
$ 'PGPLOT Example 4: Histograms (Gaussian)')
C
C Superimpose the theoretical distribution.
C
DO 20 I=1,620
X(I) = -3.1 + 0.01*(I-1)
Y(I) = 0.2*1000./SQRT(2.0*PI)*EXP(-0.5*X(I)*X(I))
20 CONTINUE
CALL PGLINE(620,X,Y)
CALL PGUNSA
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX5
C----------------------------------------------------------------------
C Demonstration program for the PGPLOT plotting package. This example
C illustrates how to draw a log-log plot.
C PGPLOT subroutines demonstrated:
C PGENV, PGERRY, PGLAB, PGLINE, PGPT, PGSCI.
C----------------------------------------------------------------------
INTEGER RED, GREEN, CYAN
PARAMETER (RED=2)
PARAMETER (GREEN=3)
PARAMETER (CYAN=5)
INTEGER NP
PARAMETER (NP=15)
INTEGER I
REAL X, YLO(NP), YHI(NP)
REAL FREQ(NP), FLUX(NP), XP(100), YP(100), ERR(NP)
DATA FREQ / 26., 38., 80., 160., 178., 318.,
1 365., 408., 750., 1400., 2695., 2700.,
2 5000., 10695., 14900. /
DATA FLUX / 38.0, 66.4, 89.0, 69.8, 55.9, 37.4,
1 46.8, 42.4, 27.0, 15.8, 9.09, 9.17,
2 5.35, 2.56, 1.73 /
DATA ERR / 6.0, 6.0, 13.0, 9.1, 2.9, 1.4,
1 2.7, 3.0, 0.34, 0.8, 0.2, 0.46,
2 0.15, 0.08, 0.01 /
C
C Call PGENV to initialize the viewport and window; the AXIS argument
C is 30 so both axes will be logarithmic. The X-axis (frequency) runs
C from 0.01 to 100 GHz, the Y-axis (flux density) runs from 0.3 to 300
C Jy. Note that it is necessary to specify the logarithms of these
C quantities in the call to PGENV. We request equal scales in x and y
C so that slopes will be correct. Use PGLAB to label the graph.
C
CALL PGSAVE
CALL PGSCI(CYAN)
CALL PGENV(-2.0,2.0,-0.5,2.5,1,30)
CALL PGLAB('Frequency, \gn (GHz)',
1 'Flux Density, S\d\gn\u (Jy)',
2 'PGPLOT Example 5: Log-Log plot')
C
C Draw a fit to the spectrum (don't ask how this was chosen). This
C curve is drawn before the data points, so that the data will write
C over the curve, rather than vice versa.
C
DO 10 I=1,100
X = 1.3 + I*0.03
XP(I) = X-3.0
YP(I) = 5.18 - 1.15*X -7.72*EXP(-X)
10 CONTINUE
CALL PGSCI(RED)
CALL PGLINE(100,XP,YP)
C
C Plot the measured flux densities: here the data are installed with a
C DATA statement; in a more general program, they might be read from a
C file. We first have to take logarithms (the -3.0 converts MHz to GHz).
C
DO 20 I=1,NP
XP(I) = ALOG10(FREQ(I))-3.0
YP(I) = ALOG10(FLUX(I))
20 CONTINUE
CALL PGSCI(GREEN)
CALL PGPT(NP, XP, YP, 17)
C
C Draw +/- 2 sigma error bars: take logs of both limits.
C
DO 30 I=1,NP
YHI(I) = ALOG10(FLUX(I)+2.*ERR(I))
YLO(I) = ALOG10(FLUX(I)-2.*ERR(I))
30 CONTINUE
CALL PGERRY(NP,XP,YLO,YHI,1.0)
CALL PGUNSA
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX6
C----------------------------------------------------------------------
C Demonstration program for the PGPLOT plotting package. This example
C illustrates the use of PGPOLY, PGCIRC, and PGRECT using SOLID,
C OUTLINE, HATCHED, and CROSS-HATCHED fill-area attributes.
C----------------------------------------------------------------------
REAL PI, TWOPI
PARAMETER (PI=3.14159265359)
PARAMETER (TWOPI=2.0*PI)
INTEGER NPOL
PARAMETER (NPOL=6)
INTEGER I, J, N1(NPOL), N2(NPOL), K
REAL X(10), Y(10), Y0, ANGLE
CHARACTER*32 LAB(4)
DATA N1 / 3, 4, 5, 5, 6, 8 /
DATA N2 / 1, 1, 1, 2, 1, 3 /
DATA LAB(1) /'Fill style 1 (solid)'/
DATA LAB(2) /'Fill style 2 (outline)'/
DATA LAB(3) /'Fill style 3 (hatched)'/
DATA LAB(4) /'Fill style 4 (cross-hatched)'/
C
C Initialize the viewport and window.
C
CALL PGBBUF
CALL PGSAVE
CALL PGPAGE
CALL PGSVP(0.0, 1.0, 0.0, 1.0)
CALL PGWNAD(0.0, 10.0, 0.0, 10.0)
C
C Label the graph.
C
CALL PGSCI(1)
CALL PGMTXT('T', -2.0, 0.5, 0.5,
: 'PGPLOT fill area: routines PGPOLY, PGCIRC, PGRECT')
C
C Draw assorted polygons.
C
DO 30 K=1,4
CALL PGSCI(1)
Y0 = 10.0 - 2.0*K
CALL PGTEXT(0.2, Y0+0.6, LAB(K))
CALL PGSFS(K)
DO 20 I=1,NPOL
CALL PGSCI(I)
DO 10 J=1,N1(I)
ANGLE = REAL(N2(I))*TWOPI*REAL(J-1)/REAL(N1(I))
X(J) = I + 0.5*COS(ANGLE)
Y(J) = Y0 + 0.5*SIN(ANGLE)
10 CONTINUE
CALL PGPOLY (N1(I),X,Y)
20 CONTINUE
CALL PGSCI(7)
CALL PGCIRC(7.0, Y0, 0.5)
CALL PGSCI(8)
CALL PGRECT(7.8, 9.5, Y0-0.5, Y0+0.5)
30 CONTINUE
C
CALL PGUNSA
CALL PGEBUF
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX7
C-----------------------------------------------------------------------
C A plot with a large number of symbols; plus test of PGERR1.
C-----------------------------------------------------------------------
INTEGER I, ISEED
REAL XS(300),YS(300), XR(101), YR(101), XP, YP, XSIG, YSIG
REAL PGRAND, PGRNRM
C
C Window and axes.
C
CALL PGBBUF
CALL PGSAVE
CALL PGSCI(1)
CALL PGENV(0.,5.,-0.3,0.6,0,1)
CALL PGLAB('\fix', '\fiy', 'PGPLOT Example 7: scatter plot')
C
C Random data points.
C
ISEED = -45678921
DO 10 I=1,300
XS(I) = 5.0*PGRAND(ISEED)
YS(I) = XS(I)*EXP(-XS(I)) + 0.05*PGRNRM(ISEED)
10 CONTINUE
CALL PGSCI(3)
CALL PGPT(100,XS,YS,3)
CALL PGPT(100,XS(101),YS(101),17)
CALL PGPT(100,XS(201),YS(201),21)
C
C Curve defining parent distribution.
C
DO 20 I=1,101
XR(I) = 0.05*(I-1)
YR(I) = XR(I)*EXP(-XR(I))
20 CONTINUE
CALL PGSCI(2)
CALL PGLINE(101,XR,YR)
C
C Test of PGERR1/PGPT1.
C
XP = XS(101)
YP = YS(101)
XSIG = 0.2
YSIG = 0.1
CALL PGSCI(5)
CALL PGSCH(3.0)
CALL PGERR1(5, XP, YP, XSIG, 1.0)
CALL PGERR1(6, XP, YP, YSIG, 1.0)
CALL PGPT1(XP,YP,21)
C
CALL PGUNSA
CALL PGEBUF
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX8
C-----------------------------------------------------------------------
C Demonstration program for PGPLOT. This program shows some of the
C possibilities for overlapping windows and viewports.
C T. J. Pearson 1986 Nov 28
C-----------------------------------------------------------------------
INTEGER I
REAL XR(720), YR(720)
C-----------------------------------------------------------------------
C Color index:
INTEGER BLACK, WHITE, RED, GREEN, BLUE, CYAN, MAGENT, YELLOW
PARAMETER (BLACK=0)
PARAMETER (WHITE=1)
PARAMETER (RED=2)
PARAMETER (GREEN=3)
PARAMETER (BLUE=4)
PARAMETER (CYAN=5)
PARAMETER (MAGENT=6)
PARAMETER (YELLOW=7)
C Line style:
INTEGER FULL, DASHED, DOTDSH, DOTTED, FANCY
PARAMETER (FULL=1)
PARAMETER (DASHED=2)
PARAMETER (DOTDSH=3)
PARAMETER (DOTTED=4)
PARAMETER (FANCY=5)
C Character font:
INTEGER NORMAL, ROMAN, ITALIC, SCRIPT
PARAMETER (NORMAL=1)
PARAMETER (ROMAN=2)
PARAMETER (ITALIC=3)
PARAMETER (SCRIPT=4)
C Fill-area style:
INTEGER SOLID, HOLLOW
PARAMETER (SOLID=1)
PARAMETER (HOLLOW=2)
C-----------------------------------------------------------------------
C
CALL PGPAGE
CALL PGBBUF
CALL PGSAVE
C
C Define the Viewport
C
CALL PGSVP(0.1,0.6,0.1,0.6)
C
C Define the Window
C
CALL PGSWIN(0.0, 630.0, -2.0, 2.0)
C
C Draw a box
C
CALL PGSCI(CYAN)
CALL PGBOX ('ABCTS', 90.0, 3, 'ABCTSV', 0.0, 0)
C
C Draw labels
C
CALL PGSCI (RED)
CALL PGBOX ('N',90.0, 3, 'VN', 0.0, 0)
C
C Draw SIN line
C
DO 10 I=1,360
XR(I) = 2.0*I
YR(I) = SIN(XR(I)/57.29577951)
10 CONTINUE
CALL PGSCI (MAGENT)
CALL PGSLS (DASHED)
CALL PGLINE (360,XR,YR)
C
C Draw COS line by redefining the window
C
CALL PGSWIN (90.0, 720.0, -2.0, 2.0)
CALL PGSCI (YELLOW)
CALL PGSLS (DOTTED)
CALL PGLINE (360,XR,YR)
CALL PGSLS (FULL)
C
C Re-Define the Viewport
C
CALL PGSVP(0.45,0.85,0.45,0.85)
C
C Define the Window, and erase it
C
CALL PGSWIN(0.0, 180.0, -2.0, 2.0)
CALL PGSCI(0)
CALL PGRECT(0.0, 180., -2.0, 2.0)
C
C Draw a box
C
CALL PGSCI(BLUE)
CALL PGBOX ('ABCTSM', 60.0, 3, 'VABCTSM', 1.0, 2)
C
C Draw SIN line
C
CALL PGSCI (WHITE)
CALL PGSLS (DASHED)
CALL PGLINE (360,XR,YR)
C
CALL PGUNSA
CALL PGEBUF
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX9
C----------------------------------------------------------------------
C Demonstration program for the PGPLOT plotting package. This example
C illustrates curve drawing with PGFUNT; the parametric curve drawn is
C a simple Lissajous figure.
C T. J. Pearson 1983 Oct 5
C----------------------------------------------------------------------
REAL PI, TWOPI
PARAMETER (PI=3.14159265359)
PARAMETER (TWOPI=2.0*PI)
REAL FX, FY
EXTERNAL FX, FY
C
C Call PGFUNT to draw the function (autoscaling).
C
CALL PGBBUF
CALL PGSAVE
CALL PGSCI(5)
CALL PGFUNT(FX,FY,360,0.0,TWOPI,0)
C
C Call PGLAB to label the graph in a different color.
C
CALL PGSCI(3)
CALL PGLAB('x','y','PGPLOT Example 9: routine PGFUNT')
CALL PGUNSA
CALL PGEBUF
C
END
REAL FUNCTION FX(T)
REAL T
FX = SIN(T*5.0)
RETURN
END
REAL FUNCTION FY(T)
REAL T
FY = SIN(T*4.0)
RETURN
END
SUBROUTINE PGEX10
C----------------------------------------------------------------------
C Demonstration program for the PGPLOT plotting package. This example
C illustrates curve drawing with PGFUNX.
C T. J. Pearson 1983 Oct 5
C----------------------------------------------------------------------
REAL PI
PARAMETER (PI=3.14159265359)
C The following define mnemonic names for the color indices and
C linestyle codes.
INTEGER BLACK, WHITE, RED, GREEN, BLUE, CYAN, MAGENT, YELLOW
PARAMETER (BLACK=0)
PARAMETER (WHITE=1)
PARAMETER (RED=2)
PARAMETER (GREEN=3)
PARAMETER (BLUE=4)
PARAMETER (CYAN=5)
PARAMETER (MAGENT=6)
PARAMETER (YELLOW=7)
INTEGER FULL, DASH, DOTD
PARAMETER (FULL=1)
PARAMETER (DASH=2)
PARAMETER (DOTD=3)
C
C The Fortran functions to be plotted must be declared EXTERNAL.
C
REAL PGBSJ0, PGBSJ1
EXTERNAL PGBSJ0, PGBSJ1
C
C Call PGFUNX twice to draw two functions (autoscaling the first time).
C
CALL PGBBUF
CALL PGSAVE
CALL PGSCI(YELLOW)
CALL PGFUNX(PGBSJ0,500,0.0,10.0*PI,0)
CALL PGSCI(RED)
CALL PGSLS(DASH)
CALL PGFUNX(PGBSJ1,500,0.0,10.0*PI,1)
C
C Call PGLAB to label the graph in a different color. Note the
C use of "\f" to change font. Use PGMTXT to write an additional
C legend inside the viewport.
C
CALL PGSCI(GREEN)
CALL PGSLS(FULL)
CALL PGLAB('\fix', '\fiy',
2 '\frPGPLOT Example 10: routine PGFUNX')
CALL PGMTXT('T', -4.0, 0.5, 0.5,
1 '\frBessel Functions')
C
C Call PGARRO to label the curves.
C
CALL PGARRO(8.0, 0.7, 1.0, PGBSJ0(1.0))
CALL PGARRO(12.0, 0.5, 9.0, PGBSJ1(9.0))
CALL PGSTBG(GREEN)
CALL PGSCI(0)
CALL PGPTXT(8.0, 0.7, 0.0, 0.0, ' \fiy = J\d0\u(x)')
CALL PGPTXT(12.0, 0.5, 0.0, 0.0, ' \fiy = J\d1\u(x)')
CALL PGUNSA
CALL PGEBUF
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX11
C-----------------------------------------------------------------------
C Test routine for PGPLOT: draws a skeletal dodecahedron.
C-----------------------------------------------------------------------
INTEGER NVERT
REAL T, T1, T2, T3
PARAMETER (NVERT=20)
PARAMETER (T=1.618)
PARAMETER (T1=1.0+T)
PARAMETER (T2=-1.0*T)
PARAMETER (T3=-1.0*T1)
INTEGER I, J, K
REAL VERT(3,NVERT), R, ZZ
REAL X(2),Y(2)
C
C Cartesian coordinates of the 20 vertices.
C
DATA VERT/ T, T, T, T, T,T2,
3 T,T2, T, T,T2,T2,
5 T2, T, T, T2, T,T2,
7 T2,T2, T, T2,T2,T2,
9 T1,1.0,0.0, T1,-1.0,0.0,
B T3,1.0,0.0, T3,-1.0,0.0,
D 0.0,T1,1.0, 0.0,T1,-1.0,
F 0.0,T3,1.0, 0.0,T3,-1.0,
H 1.0,0.0,T1, -1.0,0.0,T1,
J 1.0,0.0,T3, -1.0,0.0,T3 /
C
C Initialize the plot (no labels).
C
CALL PGBBUF
CALL PGSAVE
CALL PGENV(-4.,4.,-4.,4.,1,-2)
CALL PGSCI(2)
CALL PGSLS(1)
CALL PGSLW(1)
C
C Write a heading.
C
CALL PGLAB(' ',' ','PGPLOT Example 11: Dodecahedron')
C
C Mark the vertices.
C
DO 2 I=1,NVERT
ZZ = VERT(3,I)
CALL PGPT1(VERT(1,I)+0.2*ZZ,VERT(2,I)+0.3*ZZ,9)
2 CONTINUE
C
C Draw the edges - test all vertex pairs to find the edges of the
C correct length.
C
CALL PGSLW(3)
DO 20 I=2,NVERT
DO 10 J=1,I-1
R = 0.
DO 5 K=1,3
R = R + (VERT(K,I)-VERT(K,J))**2
5 CONTINUE
R = SQRT(R)
IF(ABS(R-2.0).GT.0.1) GOTO 10
ZZ = VERT(3,I)
X(1) = VERT(1,I)+0.2*ZZ
Y(1) = VERT(2,I)+0.3*ZZ
ZZ = VERT(3,J)
X(2) = VERT(1,J)+0.2*ZZ
Y(2) = VERT(2,J)+0.3*ZZ
CALL PGLINE(2,X,Y)
10 CONTINUE
20 CONTINUE
CALL PGUNSA
CALL PGEBUF
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX12
C-----------------------------------------------------------------------
C Test routine for PGPLOT: draw arrows with PGARRO.
C-----------------------------------------------------------------------
INTEGER NV, I, K
REAL A, D, X, Y, XT, YT
C
C Number of arrows.
C
NV =16
C
C Select a square viewport.
C
CALL PGBBUF
CALL PGSAVE
CALL PGSCH(0.7)
CALL PGSCI(2)
CALL PGENV(-1.05,1.05,-1.05,1.05,1,-1)
CALL PGLAB(' ', ' ', 'PGPLOT Example 12: PGARRO')
CALL PGSCI(1)
C
C Draw the arrows
C
K = 1
D = 360.0/57.29577951/NV
A = -D
DO 20 I=1,NV
A = A+D
X = COS(A)
Y = SIN(A)
XT = 0.2*COS(A-D)
YT = 0.2*SIN(A-D)
CALL PGSAH(K, 80.0-3.0*I, 0.5*REAL(I)/REAL(NV))
CALL PGSCH(0.25*I)
CALL PGARRO(XT, YT, X, Y)
K = K+1
IF (K.GT.2) K=1
20 CONTINUE
C
CALL PGUNSA
CALL PGEBUF
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX13
C----------------------------------------------------------------------
C This example illustrates the use of PGTBOX.
C----------------------------------------------------------------------
INTEGER N
PARAMETER (N=10)
INTEGER I
REAL X1(N), X2(N)
CHARACTER*20 XOPT(N), BSL*1
DATA X1 / 4*0.0, -8000.0, 100.3, 205.3, -45000.0, 2*0.0/
DATA X2 /4*8000.0, 8000.0, 101.3, 201.1, 3*-100000.0/
DATA XOPT / 'BSTN', 'BSTNZ', 'BSTNZH', 'BSTNZD', 'BSNTZHFO',
: 'BSTNZD', 'BSTNZHI', 'BSTNZHP', 'BSTNZDY', 'BSNTZHFOY'/
C
BSL = CHAR(92)
CALL PGPAGE
CALL PGSAVE
CALL PGBBUF
CALL PGSCH(0.7)
DO 100 I=1,N
CALL PGSVP(0.15, 0.85, (0.7+REAL(N-I))/REAL(N),
: (0.7+REAL(N-I+1))/REAL(N))
CALL PGSWIN(X1(I), X2(I), 0.0, 1.0)
CALL PGTBOX(XOPT(I),0.0,0,' ',0.0,0)
CALL PGLAB('Option = '//XOPT(I), ' ', ' ')
IF (I.EQ.1) THEN
CALL PGMTXT('B', -1.0, 0.5, 0.5,
: BSL//'fiAxes drawn with PGTBOX')
END IF
100 CONTINUE
CALL PGEBUF
CALL PGUNSA
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX14
C-----------------------------------------------------------------------
C Test routine for PGPLOT: polygon fill and color representation.
C-----------------------------------------------------------------------
INTEGER I, J, N, M
REAL PI, THINC, R, G, B, THETA
REAL XI(100),YI(100),XO(100),YO(100),XT(3),YT(3)
PARAMETER (PI=3.14159265359)
C
N = 33
M = 8
THINC=2.0*PI/N
DO 10 I=1,N
XI(I) = 0.0
YI(I) = 0.0
10 CONTINUE
CALL PGBBUF
CALL PGSAVE
CALL PGENV(-1.,1.,-1.,1.,1,-2)
CALL PGLAB(' ', ' ', 'PGPLOT Example 14: PGPOLY and PGSCR')
DO 50 J=1,M
R = 1.0
G = 1.0 - REAL(J)/REAL(M)
B = G
CALL PGSCR(J, R, G, B)
THETA = -REAL(J)*PI/REAL(N)
R = REAL(J)/REAL(M)
DO 20 I=1,N
THETA = THETA+THINC
XO(I) = R*COS(THETA)
YO(I) = R*SIN(THETA)
20 CONTINUE
DO 30 I=1,N
XT(1) = XO(I)
YT(1) = YO(I)
XT(2) = XO(MOD(I,N)+1)
YT(2) = YO(MOD(I,N)+1)
XT(3) = XI(I)
YT(3) = YI(I)
CALL PGSCI(J)
CALL PGSFS(1)
CALL PGPOLY(3,XT,YT)
CALL PGSFS(2)
CALL PGSCI(1)
CALL PGPOLY(3,XT,YT)
30 CONTINUE
DO 40 I=1,N
XI(I) = XO(I)
YI(I) = YO(I)
40 CONTINUE
50 CONTINUE
CALL PGUNSA
CALL PGEBUF
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX15
C----------------------------------------------------------------------
C This is a line-drawing test; it draws a regular n-gon joining
C each vertex to every other vertex. It is not optimized for pen
C plotters.
C----------------------------------------------------------------------
INTEGER I, J, NV
REAL A, D, X(100), Y(100)
C
C Set the number of vertices, and compute the
C coordinates for unit circumradius.
C
NV = 17
D = 360.0/NV
A = -D
DO 20 I=1,NV
A = A+D
X(I) = COS(A/57.29577951)
Y(I) = SIN(A/57.29577951)
20 CONTINUE
C
C Select a square viewport.
C
CALL PGBBUF
CALL PGSAVE
CALL PGSCH(0.5)
CALL PGSCI(2)
CALL PGENV(-1.05,1.05,-1.05,1.05,1,-1)
CALL PGLAB(' ', ' ', 'PGPLOT Example 15: PGMOVE and PGDRAW')
CALL PGSCR(0,0.2,0.3,0.3)
CALL PGSCR(1,1.0,0.5,0.2)
CALL PGSCR(2,0.2,0.5,1.0)
CALL PGSCI(1)
C
C Draw the polygon.
C
DO 40 I=1,NV-1
DO 30 J=I+1,NV
CALL PGMOVE(X(I),Y(I))
CALL PGDRAW(X(J),Y(J))
30 CONTINUE
40 CONTINUE
C
C Flush the buffer.
C
CALL PGUNSA
CALL PGEBUF
C-----------------------------------------------------------------------
END
REAL FUNCTION PGBSJ0(XX)
REAL XX
C-----------------------------------------------------------------------
C Bessel function of order 0 (approximate).
C Reference: Abramowitz and Stegun: Handbook of Mathematical Functions.
C-----------------------------------------------------------------------
REAL X, XO3, T, F0, THETA0
C
X = ABS(XX)
IF (X .LE. 3.0) THEN
XO3 = X/3.0
T = XO3*XO3
PGBSJ0 = 1.0 + T*(-2.2499997 +
1 T*( 1.2656208 +
2 T*(-0.3163866 +
3 T*( 0.0444479 +
4 T*(-0.0039444 +
5 T*( 0.0002100))))))
ELSE
T = 3.0/X
F0 = 0.79788456 +
1 T*(-0.00000077 +
2 T*(-0.00552740 +
3 T*(-0.00009512 +
4 T*( 0.00137237 +
5 T*(-0.00072805 +
6 T*( 0.00014476))))))
THETA0 = X - 0.78539816 +
1 T*(-0.04166397 +
2 T*(-0.00003954 +
3 T*( 0.00262573 +
4 T*(-0.00054125 +
5 T*(-0.00029333 +
6 T*( 0.00013558))))))
PGBSJ0 = F0*COS(THETA0)/SQRT(X)
END IF
C-----------------------------------------------------------------------
END
REAL FUNCTION PGBSJ1(XX)
REAL XX
C-----------------------------------------------------------------------
C Bessel function of order 1 (approximate).
C Reference: Abramowitz and Stegun: Handbook of Mathematical Functions.
C-----------------------------------------------------------------------
REAL X, XO3, T, F1, THETA1
C
X = ABS(XX)
IF (X .LE. 3.0) THEN
XO3 = X/3.0
T = XO3*XO3
PGBSJ1 = 0.5 + T*(-0.56249985 +
1 T*( 0.21093573 +
2 T*(-0.03954289 +
3 T*( 0.00443319 +
4 T*(-0.00031761 +
5 T*( 0.00001109))))))
PGBSJ1 = PGBSJ1*XX
ELSE
T = 3.0/X
F1 = 0.79788456 +
1 T*( 0.00000156 +
2 T*( 0.01659667 +
3 T*( 0.00017105 +
4 T*(-0.00249511 +
5 T*( 0.00113653 +
6 T*(-0.00020033))))))
THETA1 = X -2.35619449 +
1 T*( 0.12499612 +
2 T*( 0.00005650 +
3 T*(-0.00637879 +
4 T*( 0.00074348 +
5 T*( 0.00079824 +
6 T*(-0.00029166))))))
PGBSJ1 = F1*COS(THETA1)/SQRT(X)
END IF
IF (XX .LT. 0.0) PGBSJ1 = -PGBSJ1
C-----------------------------------------------------------------------
END
REAL FUNCTION PGRNRM (ISEED)
INTEGER ISEED
C-----------------------------------------------------------------------
C Returns a normally distributed deviate with zero mean and unit
C variance. The routine uses the Box-Muller transformation of uniform
C deviates. For a more efficient implementation of this algorithm,
C see Press et al., Numerical Recipes, Sec. 7.2.
C
C Arguments:
C ISEED (in/out) : seed used for PGRAND random-number generator.
C
C Subroutines required:
C PGRAND -- return a uniform random deviate between 0 and 1.
C
C History:
C 1995 Dec 12 - TJP.
C-----------------------------------------------------------------------
REAL R, X, Y, PGRAND
C
10 X = 2.0*PGRAND(ISEED) - 1.0
Y = 2.0*PGRAND(ISEED) - 1.0
R = X**2 + Y**2
IF (R.GE.1.0) GOTO 10
PGRNRM = X*SQRT(-2.0*LOG(R)/R)
C-----------------------------------------------------------------------
END
REAL FUNCTION PGRAND(ISEED)
INTEGER ISEED
C-----------------------------------------------------------------------
C Returns a uniform random deviate between 0.0 and 1.0.
C
C NOTE: this is not a good random-number generator; it is only
C intended for exercising the PGPLOT routines.
C
C Based on: Park and Miller's "Minimal Standard" random number
C generator (Comm. ACM, 31, 1192, 1988)
C
C Arguments:
C ISEED (in/out) : seed.
C-----------------------------------------------------------------------
INTEGER IM, IA, IQ, IR
PARAMETER (IM=2147483647)
PARAMETER (IA=16807, IQ=127773, IR= 2836)
REAL AM
PARAMETER (AM=128.0/IM)
INTEGER K
C-
K = ISEED/IQ
ISEED = IA*(ISEED-K*IQ) - IR*K
IF (ISEED.LT.0) ISEED = ISEED+IM
PGRAND = AM*(ISEED/128)
RETURN
END
|