1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
|
*Date: Fri, 4 May 90 09:15 EST
*From: <GILL@QUCDNAST.BITNET>
*Subject: Latest version of CurveFit for PGPlot packages - May 4, 1990
c-------------------------------------------------------------------------------
c
c CurveFit
c
c A general curve fitting routine using PGPLOT graphics for use on
c VAX/uVAX systems, possibly any system capable of running PGPLOT
c interactively.
c
c CurveFit will plot up to 30 data sets (a maximum of 2000 points for
c each data set, a maximum of 20000 points total for one graph), saved
c as (xp,yp) in ascending {xp} order. Different data sets in one file
c must be separated by one non-numeric line. CurveFit can also modify the
c data set, by flipping the x and y axes and/or taking logarithms of
c either or both of them. Labels and title can be added to the plots.
c In addition, CurveFit allows one to fit various types of curves to the
c data sets. These are:
c
c (a) straight line (connect the dots)
c (b) cubic spline
c (c) smoothing (Bezier) polynomial
c (d) low-pass Fourier transform filter
c (e) a best-fit polynomial of up to 10 terms
c
c CurveFit is menu driven and allows one to display all intermediary
c results. The x,y plotting ranges are user determined, as is the
c fitting range (over the x coordinate). Each type of fit can only be
c used once with each data set, though different fits may be used with
c the same data set (however, one could load the data set in again and do
c the same fit over a different range). Different data sets can have
c different symbols and line styles/widths associated with them, so they
c can be differentiated. The manner in which the line styles/widths is
c determined can be changed if the user so desires, as can the symbols
c used to plot the data points. Plots can be made on any device that is
c supported by PGPLOT.
c
c The programme is fairly well documented. A subsantial amount of
c virtual memory is required (of the order of 7 Mb), but this can be
c decreased by lowering the number of data points that may be plotted.
c The following are pseudo-global variables that must be changed in each
c subroutine in order for the programme to work.
c
c MAXPOINTS the maximum number of points allowed per graph
c MAXPOINTSET the maximum number of data points per data set
c MAXDATASET the maximum number of data sets per graph
c NCOEFF the maximum number of coefficients for polynomial
c fitting
c S2 gives the extra number of points calculated by the
c curve fitting routines to make the curves look
c smooth, given as 4*MAXPOINTS or 8*MAXPOINTS
c
c The Bezier polynomial fitting is taken from Borland's TURBO Graphix
c Toolbox (translated into FORTRAN), while the cubic spline routines
c are partially taken from there, and partially my own algorithm. The
c polynomial fitting and the fast Fourier transforms are taken from
c the book Numerical Recipes by W.H. Press et al. Except as noted below,
c the routines all seem to do what they are supposed to. Note that the
c polynomial curve fitting gives the coefficients and their standard
c deviation as well. Take these values with a grain of salt!
c
c Currently, everything seems to work fairly well, except for some
c numerical difficulties with the fast Fourier transform that I am
c unable to fathom. The problem only becomes noticeable when the FFT
c smoothing takes place over more than about 100 data points, when
c anomalous step functions appear at intervals of powers of 2. The
c step functions get larger as more data points are being smoothed over.
c I would appreciate a solution if anyone comes up with one.
c
c One other minor difficulty discovered occurs when one is taking
c logs of more than one data set. It is possible that the endpoints
c used for the plotting will not cover the full range of all of the
c data sets plotted. A fix would require several more variables, plus
c thinking, of which I do not have time at the present.
c
c Distribute and use this programme as you see fit. If anyone comes
c up with major changes or improvements, please send me a copy of the
c source code. If anyone wishes a current copy, send me a note, and
c the current source code will be sent out to them. I can be reached
c at
c
c BITNET: gill@qucdnast
c INTERNET: gill@bill.phy.queensu.ca
c
c
c October 27, 1987 - Fix of subroutine Spline1. It was able to crash
c with a particular spacing of {xp}. It was also found
c to be incorrect.
c Fix to all calculation subroutines, so that the
c fit will be made over only the points INSIDE the
c given fit range, inclusively, i.e. no extrapolation.
c October 28, 1987 - Fix of Subroutine Spline2. It gave discontinuous
c spikes at the endpoints.
c Add double precision calculations to Spline1 and
c Spline2 to allow accurate subtractions/additions.
c November 6, 1987 - Fix of calculation procedures that give the range
c of the plot. These are now given to 2 digits accuracy.
c Add the option to plot or not plot the individual
c data points.
c November 13, 1987 - Fix the x,y plotting limits when new data sets are
c loaded.
c Each {xp,yp} pair must be on the same line. Other
c information is now allowed on each line after {xp,yp}.
c March 8, 1988 - Add READDATA subroutine, that allows one to:
c a) skip lines at the beginning before data input,
c b) have up to 25 columns of data that can be accessed,
c c) read multiple data sets from the same file.
c April 21, 1988 - Fix of number of points associated with the data
c set number.
c The default video and hardcopy devices are now
c /VT and /IM, respectively.
c May 30, 1988 - Add the option of user inputed line styles/widths.
c June 2, 1988 - Correct the problem of bad standard deviations on the
c polynomial coefficients.
c Add REAL*8 and /G_FLOATING to all of the polynomial
c calculations.
c June 13, 1988 - Add some idiot-proofing (read `Error checking') of
c the curve-fitting routines.
c July 27, 1988 - Correct the assignments of the fitting range
c variables.
c August 29, 1988 - Add error-trapping of non-character data input.
c Add scaling (in x and/or y) of any data set.
c Add ability to toggle all line drawing and fits for
c any data set at any time.
c Add user chosen line style/line width combinations.
c Add user chosen data point plot symbols. The size of
c these is regulated by the total number of points (more
c points gives smaller symbols).
c Christmas, 1988 - Rearrange the storage method for the data. Now
c there is a maximum of 20000 points, or 30 data sets of
c 2000 points apiece. This should allow for more
c flexibility for the user.
c June 21, 1989 - Change the entrance into the routines to allow
c multiple changes to data sets without going to the
c main menu screen in between each change.
c Fix of the log routines. Check that your machine
c will assign 0 to 10^-100.
c June 22, 1989 - Fix of number of points plotted for various fits.
c Now each fit may have a different number of data points.
c July 4, 1989 - Fix of spline calculation routines. Splines of more
c than one dataset were not saved correctly or plotted.
c July 6, 1989 - The default line width, line style will now always
c be 1 and 1.
c July 11, 1989 - Updated the help file subroutine.
c July 14, 1989 - Correct the plot symbol choosing routine.
c More idiot-proofing.
c Add an UpCase function (works with ASCII only).
c August 29, 1989 - Change the order of commands so that the main menu
c will not automatically be drawn between commands. To
c redraw menu, type in `R' or `M'.
c August 31, 1989 - Fix READDATA, so that any data read in will be from
c one line only. Before, multiple lines were permitted.
c Also, an error message is given if the asked for column
c does not exist. The column can then be chosen again.
c November 23, 1989 - Update dataset number entry, so that multiple sets
c may be included on the same line, including the 0 dataset
c (to quit asking). User is informed of entry errors and
c reprompted.
c Programme will announce when a particular data file
c has been used up and closed.
c If one overshoots a data line, typing 'B' will go
c back one line. Typing 'Bn' will go back n lines.
c CurveFit is never case-sensitive. One can also go back
c n lines from the first lineskip prompt.
c More error checking added - it is much harder to get
c it to crash now.
c January 5, 1990 - The subroutine SCALEDATASET has been added. It
c includes the expansion/contraction of before, as well as
c the ability to slide data sets around the graph, and to
c subtract or add one data set from/to another.
c March 14, 1990 - Using BACKSPACE to go backwards through a file is
c very bad programming, as BACKSPACE = REWIND + (n-1) READ,
c so keep track of line number in file, and do the
c REWIND/READ combo in software.
c April 6, 1990 - Add confirmation when leaving CurveFit.
c May 4, 1990 - Correct backspacing through a data file.
c
c Last revision - May 4, 1990 - Arnold Gill
c Last revision to Tim Pearson (tjp@deimos.caltech.edu) - May 4, 1990
c
c-------------------------------------------------------------------------------
PROGRAM CurveFit
c
INTEGER maxpoints,s2,ncoeff,maxdataset,dataset,ierror,i,j,ma,
* totalpoints,cdataset,ChooseDataSet,ii,maxpointset,offset,m,n
PARAMETER (maxpoints=20000,s2=8*maxpoints,ncoeff=10,
* maxdataset=30,maxpointset=2000)
c
c ----- The PARAMETER statement exists in many SUBROUTINEs, as needed.
c Any changes to MAXPOINTS, MAXPOINTSET, NCOEFF, MAXDATASET must be
c done in all of them.
c
REAL xdata(maxpointset),ydata(maxpointset),x(maxpoints),
* y(maxpoints),zero,xbez(s2),ybez(s2),xspl(s2),yspl(s2),
* coeff(ncoeff,2),xfr(maxpoints),yfr(maxpoints),r1,r2,r3,r4,
* xpoly(s2),ypoly(s2),x1,x2,y1,y2,f1,f2,one,
* scale,xminmax(2,maxdataset),yminmax(2,maxdataset)
INTEGER power(ncoeff),xstart(maxdataset,2),styles(maxdataset,3)
* ,maxply(maxdataset),maxfr(maxdataset),maxbez(maxdataset),
* maxspl(maxdataset)
CHARACTER xlabel*80,ylabel*80,title*80,blank*40,video*3,
* hardcopy*3,ans*1,datain*80,outstring*80,UpCase*1
LOGICAL labels,xlog(maxdataset),ylog(maxdataset),f,t,flip,
* fits(5,maxdataset),points,fileopen,linestyle,quit,ok
c
DATA blank/' '/
DATA f/.FALSE./,t/.TRUE./,one/1.0/,zero/0.0/
c
COMMON /PlyDat/xpoly,ypoly,coeff,power,maxply,ma
COMMON /SplDat/xspl,yspl,maxspl,/BezDat/xbez,ybez,maxbez
COMMON /FrDat/xfr,yfr,maxfr
COMMON /XYDat/x,y,xdata,ydata,xminmax,yminmax
c
c ----- Opening title
c
c WRITE (*,'('1')')
c WRITE (*,98) 'Display the general description [n] ? '
c READ (*,97) ans
c ans=UpCase(ans)
c IF (ans.EQ.'Y') CALL Description
c
c ----- Choose the display device to use. Unless you have the latest
c version of PGPLOT, comment out the next program line.
c
WRITE (*,100)
100 FORMAT ('1'///10X,'Choose your video display terminal'///10X,
* '(Default device is /VT)'//)
CALL PGLDEV
WRITE (*,*)
video=' '
READ (*,97) video
IF (video(1:1).NE.'/') video='/vt'
y1=1E35
y2=-y1
x1=y1
x2=-y1
dataset=0
xlabel=blank//blank
ylabel=blank//blank
title=blank//blank
labels=f
fileopen=f
linestyle=f
totalpoints=0
ierror=0
c
c ----- Data input
c
CALL ReadData (dataset,xstart,x1,y1,x2,y2,fileopen,totalpoints)
f1=x1
f2=x2
points=f
DO 112 i=1,maxdataset
styles(i,1)=1
styles(i,2)=1
styles(i,3)=-1
DO 111 j=1,5
fits(j,i)=f
111 CONTINUE
xlog(i)=f
ylog(i)=f
112 CONTINUE
fits(1,dataset)=t
1 CONTINUE
c
c ----- Main menu for data and plot manipulation
c
CALL Menu (ans,fits,dataset,xlog,ylog,flip,labels,points,
* linestyle,x1,x2,y1,y2,f1,f2)
GOTO 1112
1111 CONTINUE
WRITE (*,*)
WRITE (*,98) 'Input command [`M'' for Menu, <RETURN> to plot'//
* ' graph]: '
READ (*,97) ans
ans=UpCase(ans)
IF (ans.EQ.'M') GOTO 1
1112 CONTINUE
IF (((ans.LT.'1').OR.(ans.GT.'9')).AND.
* (ans.NE.'H').AND.(ans.NE.'X').AND.(ans.NE.'Q').AND.
* (ans.NE.'E').AND.(ans.NE.'L').AND.(ans.NE.'F').AND.
* (ans.NE.'N').AND.(ans.NE.'T').AND.(ans.NE.'A').AND.
* (ans.NE.'D').AND.(ans.NE.'S').AND.(ans.NE.'V')) THEN
c
c ----- Plot data with current values for parameters
c
CALL Plot (xstart,x1,x2,y1,y2,f1,f2,xlabel,ylabel,title,labels,
* points,video,fits,dataset,f,totalpoints,styles,linestyle)
CALL Menu (ans,fits,dataset,xlog,ylog,flip,labels,points,
* linestyle,x1,x2,y1,y2,f1,f2)
GOTO 1112
ELSE IF (ans.EQ.'1') THEN
c
c ----- Toggle the straight line data connecting from PGPLOT from
c chosen data set
c
2 CONTINUE
WRITE (*,'((A),(A),I2)') '0(Dis)Connect the points of which ',
* 'dataset(s) : 1 - ',dataset
WRITE (*,*) ' 0 to quit, <ENTER> = current dataset'
datain=blank//blank
READ (*,97) datain
CALL ToggleDataSet (fits,xstart,f1,f2,ans,datain,dataset,
* maxdataset,quit)
IF (.NOT.quit) GOTO 2
ELSE IF (ans.EQ.'2') THEN
c
c ----- Toggle and calculate the cubic spline fitting routine for
c the chosen data set
c
3 CONTINUE
WRITE (*,'((A),(A),I2)') '0Fit Cubic splines to which ',
* 'dataset(s) : 1 - ',dataset
WRITE (*,*) ' 0 to quit, <ENTER> = current dataset'
datain=blank//blank
READ (*,97) datain
CALL ToggleDataSet (fits,xstart,f1,f2,ans,datain,dataset,
* maxdataset,quit)
IF (.NOT.quit) GOTO 3
ELSE IF (ans.EQ.'3') THEN
c
c ----- Toggle and calculate the Bezier polynomial data smoothing
c for the chosen data set
c
4 CONTINUE
WRITE (*,'((A),(A),I2)') '0Fit a Bezier polynomial to which',
* ' dataset(s) : 1 - ',dataset
WRITE (*,*) ' 0 to quit, <ENTER> = current dataset'
datain=blank//blank
READ (*,97) datain
CALL ToggleDataSet (fits,xstart,f1,f2,ans,datain,dataset,
* maxdataset,quit)
IF (.NOT.quit) GOTO 4
ELSE IF (ans.EQ.'4') THEN
c
c ----- Toggle and calculate the Fourier transform data smoothing
c for the chosen data set
c
5 CONTINUE
WRITE (*,'((A),(A),I2)') '0Smooth using an FFT of which ',
* 'dataset(s) : 1 - ',dataset
WRITE (*,*) ' 0 to quit, <ENTER> = current dataset'
datain=blank//blank
READ (*,97) datain
CALL ToggleDataSet (fits,xstart,f1,f2,ans,datain,dataset,
* maxdataset,quit)
IF (.NOT.quit) GOTO 5
ELSE IF (ans.EQ.'5') THEN
c
c ----- Toggle and calculate the best fit polynomial of data for the
c chosen data set
c
6 CONTINUE
WRITE (*,'((A),(A),I2)') '0Fit a polynomial to which ',
* 'dataset(s) : 1 - ',dataset
WRITE (*,*) ' 0 to quit, <ENTER> = current dataset, multiple'
* //' entries allowed'
datain=blank//blank
READ (*,97) datain
CALL ToggleDataSet (fits,xstart,f1,f2,ans,datain,dataset,
* maxdataset,quit)
IF (.NOT.quit) GOTO 6
ELSE IF (ans.EQ.'6') THEN
c
c ----- Toggle and calculate the base 10 logs of the x,y data as requested
c for the chosen data set
c
65 CONTINUE
j=2
outstring=blank//blank
DO 7 i=1,dataset
IF (xlog(i).OR.ylog(i)) THEN
WRITE (outstring(j:j+1),'(I2)') i
j=j+3
ENDIF
7 CONTINUE
IF (j.GT.2) THEN
WRITE (*,97) '0Logs are already calculated for data sets # :'
WRITE (*,97) outstring
ENDIF
8 CONTINUE
WRITE (*,'((A),I2)') '0Take logs of which dataset : 1 - ',
* dataset
WRITE (*,*) ' 0 to quit, <ENTER> = current dataset'
READ (*,97) datain
IF (datain(1:1).EQ.'0') GOTO 1006
cdataset=ChooseDataSet(datain,dataset,ok)
IF (.NOT.ok) GOTO 8
IF ((cdataset.GT.dataset).OR.(cdataset.LT.1)) THEN
WRITE (*,99) 7,7,'Error in input. Reenter data set number'
GOTO 8
ENDIF
offset=xstart(cdataset,1)-1
WRITE (*,*)
WRITE (*,98) 'Take logs of x data [n]: '
READ (*,97) ans
IF (UpCase(ans).EQ.'Y') THEN
IF (.NOT.xlog(cdataset)) THEN
xlog(cdataset)=t
x1=1.0E35
x2=-1.0E35
DO 9 i=1,xstart(cdataset,2)
IF (x(offset+i).GT.zero) THEN
x(offset+i)=LOG10(x(offset+i))
x1=MIN(x(offset+i),x1)
x2=MAX(x(offset+i),x2)
ELSE
WRITE (*,99) 7,7,'Error - log of a non-positive number'
x(offset+i)=-100.0
ENDIF
9 CONTINUE
DO 10 i=2,5
fits(i,cdataset)=f
10 CONTINUE
ENDIF
ELSE IF (xlog(cdataset)) THEN
xlog(cdataset)=f
x1=1.0E35
x2=-1.0E35
DO 11 i=1,xstart(cdataset,2)
x(offset+i)=1.0D1**DBLE(x(offset+i))
x1=MIN(x(offset+i),x1)
x2=MAX(x(offset+i),x2)
11 CONTINUE
DO 12 i=2,5
fits(i,cdataset)=f
12 CONTINUE
ENDIF
WRITE (*,98) 'Take logs of y data [n]: '
READ (*,97) ans
IF (UpCase(ans).EQ.'Y') THEN
IF (.NOT.ylog(cdataset)) THEN
ylog(cdataset)=t
y1=1.0E35
y2=-1.0E35
DO 13 i=1,xstart(cdataset,2)
IF (y(offset+i).GT.zero) THEN
y(offset+i)=LOG10(y(offset+i))
y1=MIN(y(offset+i),y1)
y2=MAX(y(offset+i),y2)
ELSE
WRITE (*,99) 7,7,'Error - log of a non-positive number'
y(offset+i)=-100.0
ENDIF
13 CONTINUE
DO 14 i=2,5
fits(i,cdataset)=f
14 CONTINUE
ENDIF
ELSE IF (ylog(cdataset)) THEN
ylog(cdataset)=f
y1=1.0E35
y2=-1.0E35
DO 15 i=1,xstart(cdataset,2)
y(offset+i)=1.0D1**DBLE(y(offset+i))
y1=MIN(y(offset+i),y1)
y2=MAX(y(offset+i),y2)
15 CONTINUE
DO 16 i=2,5
fits(i,cdataset)=f
16 CONTINUE
ENDIF
CALL SetLimits (x1,x2)
CALL SetLimits (y1,y2)
f1=x1
f2=x2
GOTO 65
1006 CONTINUE
ELSE IF (ans.EQ.'7') THEN
c
c ----- Set the range of the x coordinate to plot
c
ii=1
17 CONTINUE
WRITE (*,96) '0Current plotting range of x-coordinate is [ ',
* x1,' to ',x2,' ]'
WRITE (*,98) 'Enter new range: '
READ (*,*,ERR=1000,IOSTAT=ierror) x1,x2
IF (x1.EQ.x2) THEN
x2=x2+one
ELSE IF (x1.GT.x2) THEN
CALL Swap (x1,x2)
ENDIF
f1=MIN(f1,x1)
f2=MAX(f2,x2)
ELSE IF (ans.EQ.'8') THEN
c
c ----- Set the range of the y coordinate to plot
c
ii=2
18 CONTINUE
WRITE (*,96) '0Current plotting range of y-coordinate is [ ',
* y1,' to ',y2,' ]'
WRITE (*,98) 'Enter new range: '
READ (*,*,ERR=1000,IOSTAT=ierror) y1,y2
IF (y1.EQ.y2) THEN
y2=y2+one
ELSE IF (y1.GT.y2) THEN
CALL Swap (y1,y2)
ENDIF
ELSE IF (ans.EQ.'9') THEN
c
c ----- Set the range of the x coordinate over which to use the
c different fitting routines
c
ii=3
19 CONTINUE
WRITE (*,96) '0Current fitting range of x-coordinate is [ ',
* f1,' to ',f2,' ]'
WRITE (*,98) 'Enter new range: '
READ (*,*,ERR=1000,IOSTAT=ierror) f1,f2
IF (f1.EQ.f2) THEN
f2=f2+one
ELSE IF (f1.GT.f2) THEN
CALL Swap (f1,f2)
ENDIF
ELSE IF (ans.EQ.'V') THEN
c
c ----- Choose the display device to use. Unless you have the latest
c version of PGPLOT, comment out the next program line.
c
WRITE (*,1900)
1900 FORMAT ('0',10X,'Choose your video display terminal'//10X,
* '(Default device is /VT)'//)
CALL PGLDEV
WRITE (*,*)
video=' '
READ (*,97) video
IF (video(1:1).NE.'/') video='/vt'
ELSE IF (ans.EQ.'N') THEN
c
c ----- Get a new data file to analyse and start a new plot
c
WRITE (*,98) 'This will erase the current plot. Proceed'//
* ' [n] ? '
READ (*,97) ans
IF (UpCase(ans).EQ.'Y') THEN
y1=1E35
y2=-y1
x1=y1
x2=-y1
dataset=0
xlabel=blank//blank
ylabel=blank//blank
title=blank//blank
labels=f
DO 205 i=1,maxdataset
styles(i,1)=1
styles(i,2)=1
styles(i,3)=-1
DO 20 j=1,5
fits(j,i)=f
20 CONTINUE
xlog(i)=f
ylog(i)=f
205 CONTINUE
fits(1,1)=t
points=f
linestyle=f
CALL ReadData (dataset,xstart,x1,y1,x2,y2,fileopen,
* totalpoints)
f1=x1
f2=x2
ENDIF
ELSE IF (ans.EQ.'A') THEN
c
c ----- Add a new data file to current plot. MAXDATASET data sets are
c permitted.
c
IF (dataset.EQ.maxdataset) THEN
WRITE (*,99) 7,7,'No more room for additional data sets'
ELSE
Call ReadData (dataset,xstart,x1,y1,x2,y2,fileopen,
* totalpoints)
xlog(dataset)=f
ylog(dataset)=f
fits(1,dataset)=t
DO 21 i=2,5
fits(i,dataset)=f
21 CONTINUE
f1=x1
f2=x2
ENDIF
ELSE IF (ans.EQ.'F') THEN
c
c ----- Exchange the x and y axes, with the various fits being set to
c false (i.e. they need to be redone)
c
22 CONTINUE
WRITE (*,'((A),(A),I2)') '0Flip the X-Y axes of which ',
* 'dataset : 1 - ',dataset
WRITE (*,*) ' 0 to quit, <ENTER> = current dataset'
READ (*,97) datain
IF (datain(1:1).EQ.'0') GOTO 1007
cdataset=ChooseDataSet(datain,dataset,ok)
IF (.NOT.ok) GOTO 22
IF ((cdataset.GT.dataset).OR.(cdataset.LT.1)) THEN
WRITE (*,99) 7,7,'Error in input. Reenter data set number'
GOTO 22
ENDIF
DO 23 i=1,xstart(cdataset,2)
CALL Swap (x(offset+i),y(offset+i))
23 CONTINUE
fits(1,cdataset)=t
DO 24 i=2,5
fits(i,cdataset)=f
24 CONTINUE
flip=.NOT.flip
CALL Swap (x1,y1)
CALL Swap (x2,y2)
f1=x1
f2=x2
GOTO 22
1007 CONTINUE
ELSE IF (ans.EQ.'H') THEN
c
c ----- Choose the hardcopy device, and send it
c
WRITE (*,101)
101 FORMAT ('1'///10X,'Choose your hardcopy device:'///10X,
* '(Default device is /IM)'//)
CALL PGLDEV
WRITE (*,*)
hardcopy=' '
READ (*,97) hardcopy
IF (hardcopy(1:1).NE.'/') hardcopy='/im'
CALL Plot (xstart,x1,x2,y1,y2,f1,f2,xlabel,ylabel,title,labels,
* points,hardcopy,fits,dataset,t,totalpoints,styles,
* linestyle)
ELSE IF (ans.EQ.'S') THEN
CALL ScaleDataSet (x1,x2,y1,y2,fits,xstart,dataset)
ELSE IF (ans.EQ.'T') THEN
c
c ----- Place and toggle labels and title on the plot
c
IF (labels) THEN
WRITE (*,*)
WRITE (*,98) 'Remove the title/labels [n] ? '
READ (*,97) ans
IF (UpCase(ans).NE.'Y') THEN
WRITE (*,*)
WRITE (*,98) 'Change the title/labels [y] ? '
READ (*,97) ans
IF (UpCase(ans).NE.'N') THEN
WRITE (*,*)
WRITE (*,98) 'Change the x-axis label [n] ? '
READ (*,97) ans
IF (UpCase(ans).EQ.'Y') THEN
WRITE (*,*) xlabel
WRITE (*,*) 'Enter the new x-axis label :'
READ (*,97) xlabel
ENDIF
WRITE (*,*)
WRITE (*,98) 'Change the y-axis label [n] ? '
READ (*,97) ans
IF (UpCase(ans).EQ.'Y') THEN
WRITE (*,*) ylabel
WRITE (*,*) 'Enter the new y-axis label :'
READ (*,97) ylabel
ENDIF
WRITE (*,*)
WRITE (*,98) 'Change the title [n] ? '
READ (*,97) ans
IF (UpCase(ans).EQ.'Y') THEN
WRITE (*,*) title
WRITE (*,*) 'Enter the new title of the plot :'
READ (*,97) title
ENDIF
ENDIF
ELSE
labels=f
ENDIF
ELSE
labels=t
WRITE (*,*) 'Enter the x-axis label :'
READ (*,97) xlabel
WRITE (*,*) 'Enter the y-axis label :'
READ (*,97) ylabel
WRITE (*,*) 'Enter the title of the plot :'
READ (*,97) title
ENDIF
ELSE IF (ans.EQ.'D') THEN
c
c ----- Toggle the plotting of the data points
c
points=.NOT.points
IF (points) THEN
WRITE (*,3200) dataset
3200 FORMAT ('0There is/are currently ',I2,
* ' different set(s) of data plotted.'//,4X,
* 'Choose the symbol for graphing of data points from the',
* ' table below'//,19X,
* '(-1) do not plot this dataset'//,12X,
* '(2) plus sign',13X,'(12) open star'/,12X
* '(3) asterisk',14X,'(13) filled triangle'/,12X,
* '(4) open circle',11X,'(14) open cross'/,12X,
* '(5) times sign',12X,'(15) star of david'/,12X,
* '(6) open square',11X,'(16) filled square'/,12X,
* '(7) open triangle',9X,'(17) filled circle'/,12X,
* '(10) hyperbolic square',5X,'(18) filled star'/,12X,
* '(11) open diamond'//)
WRITE (*,*)
ii=4
DO 36 i=1,dataset
34 CONTINUE
WRITE (*,'((A),I2,(A),$)') ' Choice for data set #',i,': '
READ (*,*,ERR=1000,IOSTAT=ierror) m
IF (.NOT.(((m.GE.2).AND.(m.LE.7)).OR.
* ((m.GE.10).AND.(m.LE.18)).OR.(m.EQ.-1))) GOTO 1000
styles(i,3)=m
36 CONTINUE
ELSE
DO 37 i=1,maxdataset
styles(i,3)=-1
37 CONTINUE
ENDIF
ELSE IF (ans.EQ.'L') THEN
c
c ----- Toggle the choice of linestyle to and from USER / SYSTEM, and
c set the user's choice of linestyle.
c
linestyle=.NOT.linestyle
IF (linestyle) THEN
WRITE (*,3700) dataset
3700 FORMAT ('0There is/are currently ',I2,
* ' different set(s) of data plotted.'//,4X,
* 'Choose the line style and the line width from'/,2X,
* 'the table below and enter as ls,lw (ex 1,9)'//,5X,
* 'Line style: 1) solid line'/,21X,
* '2) long dashes'/,21X,'3) dash-dot-dash'/,21X,
* '4) dotted'/,21X,'5) dash-dot-dot-dot'//,5X,
* 'Line width: 1 through 21'//)
ii=5
DO 40 i=1,dataset
38 CONTINUE
WRITE (*,'((A),I2,(A),$)') ' Choice for data set #',i,': '
READ (*,*,ERR=1000,IOSTAT=ierror) m,n
IF ((m.LT.1).OR.(m.GT.5).OR.(n.LT.1).OR.(n.GT.21)) GOTO 1000
styles(i,1)=m
styles(i,2)=n
40 CONTINUE
ELSE
DO 41 i=1,dataset
styles(i,1)=1
styles(i,2)=1
41 CONTINUE
ENDIF
ELSE
WRITE (*,*)
WRITE (*,'(2A1,(A))') 7,7,'Confirm exit from CurveFit - enter'//
* ' a capital `C'': '
READ (*,97) ans
c
c ----- Quit the programme CurveFit - requires an upper-case `C'
c
IF (ans.EQ.'C') STOP
ENDIF
GOTO 1111
c
c ----- Error checking/error flag resetting routine.
c
1000 CONTINUE
WRITE (*,99) 7,7,'*** Error in input - redo! ***'
IF (ierror.GT.0) CALL ERRTST (ierror,m)
GOTO (17,18,19,34,38),ii
96 FORMAT ((A),E10.3,A4,E10.3,A2)
97 FORMAT ((A))
98 FORMAT (1X,(A),$)
99 FORMAT ('0',2(A1),(A))
END
c
c-------------------------------------------------------------------------------
c
SUBROUTINE ToggleDataSet (fits,xstart,f1,f2,ans,datain,dataset,
* maxdataset,quit)
c
c ----- Takes an input string of dataset numbers, separates them and
c operates on the valid values. Errors are detected and the user is
c notified. This allows more than one data set number to be included
c on each input line, including the 0 data set which quits entry. All
c numbers after 0 on the entry line are ignored.
c
REAL f1,f2
INTEGER dataset,maxdataset,xstart(maxdataset,2),ind,last,ians,
* cdataset,ierror,j
LOGICAL quit,fits(5,maxdataset),ok
CHARACTER ans*1,datain*80,ch*1
c
ians=ICHAR(ans)-ICHAR('0')
last=80
ind=1
c
c ----- Determine the length of the input string. If zero, default is used.
c
DO 1 last=80,1,-1
ch=datain(last:last)
IF ((ch.GE.'0').AND.(ch.LE.'9')) GOTO 2
1 CONTINUE
last=0
GOTO 3
2 CONTINUE
last=last+1
3 CONTINUE
IF (last.EQ.0) THEN
cdataset=dataset
GOTO 5
ENDIF
4 CONTINUE
c
c ----- Read the dataset number from the given passed substring
c
READ (datain(ind:last),*,IOSTAT=ierror) cdataset
IF (ierror.NE.0) THEN
c
c ----- Bad, non-integer, input
c
IF (ierror.GT.0) CALL ERRTST (ierror,j)
WRITE (*,400) 7,7
400 FORMAT (1X,2A1,'*** Error in input. ***')
ELSEIF ((cdataset.GT.dataset).OR.(cdataset.LT.0)) THEN
c
c ----- Invalid integer input
c
WRITE (*,401) 7,7,cdataset
401 FORMAT (1X,2A1,'*** Error in input. ',I4,' is not valid. ***')
GOTO 6
ENDIF
5 CONTINUE
c
c ----- Toggle the dataset logical and do the appropriate action
c
IF (cdataset.EQ.0) GOTO 8
fits(ians,cdataset)=.NOT.fits(ians,cdataset)
IF (fits(ians,cdataset)) THEN
IF (ians.EQ.1) THEN
ok=.TRUE.
ELSEIF (ians.EQ.2) THEN
CALL SplineCalc (xstart(cdataset,1)-1,xstart(cdataset,2),
* f1,f2,cdataset,ok)
ELSEIF (ians.EQ.3) THEN
CALL BezierCalc (xstart(cdataset,1)-1,xstart(cdataset,2),f1,
* f2,cdataset,ok)
ELSEIF (ians.EQ.4) THEN
CALL FourierCalc (xstart(cdataset,1)-1,xstart(cdataset,2),f1,
* f2,cdataset,ok)
ELSEIF (ians.EQ.5) THEN
CALL PolynomialCalc (xstart(cdataset,1)-1,xstart(cdataset,2),
* f1,f2,cdataset,ok)
ENDIF
fits(ians,cdataset)=ok
ENDIF
c
c ----- Inform user of result
c
IF (fits(ians,cdataset)) THEN
WRITE (*,500) cdataset,' is now ON'
ELSE
WRITE (*,500) cdataset,' is now OFF'
ENDIF
500 FORMAT (' Dataset #',I2,(A))
6 CONTINUE
c
c ----- Find first numeric character in input string from current position
c
ch=datain(ind:ind)
IF ((ch.GE.'0').AND.(ch.LE.'9')) GOTO 7
ind=ind+1
IF (ind.GE.last) GOTO 8
GOTO 6
7 CONTINUE
c
c ----- When first numeric character is found, look for a non-numeric
c character (a delimiter - i.e. NOT one of 0..9,+,-)
c
ind=ind+1
IF (ind.GE.last) GOTO 8
ch=datain(ind:ind)
IF (((ch.GE.'0').AND.(ch.LE.'9')).OR.(ch.EQ.'-').OR.(ch.EQ.'+'))
* GOTO 7
ind=ind+1
IF (ind.GE.last) GOTO 8
GOTO 4
8 CONTINUE
quit=cdataset.EQ.0
RETURN
END
c
c-------------------------------------------------------------------------------
c
FUNCTION ChooseDataSet (datain,dataset,ok)
c
INTEGER ChooseDataSet,dataset,ierror,idummy
CHARACTER datain*2
LOGICAL ok
c
READ (datain,*,IOSTAT=ierror) idummy
ok=ierror.LE.0
IF (.NOT.ok) THEN
WRITE (*,'(1X,2A1,(A))') 7,7,'*** Error in input ***'
RETURN
ENDIF
IF (idummy.EQ.0) THEN
ChooseDataSet=dataset
ELSE
ChooseDataSet=idummy
ENDIF
RETURN
END
c
c ----------------------------------------------------------------------
c
FUNCTION UpCase (ch)
c
c ----- This function works on ASCII machines. EBCDIC is a ?
c
CHARACTER*1 UpCase,ch
c
IF ((ch.GE.'a').AND.(ch.LE.'z')) THEN
Upcase=CHAR(ICHAR(ch)-ICHAR('a')+ICHAR('A'))
ELSE
UpCase=ch
ENDIF
RETURN
END
c
c ------------------------------------------------------------------------------
c
FUNCTION StrLen (string)
c
c ----- Returns the real length of the string, not the amount of memory set
c aside for it.
c
INTEGER StrLen,i,ilength
CHARACTER string*(*)
c
ilength=LEN(string)
StrLen=0
DO i=ilength,1,-1
IF (string(i:i).NE.' ') THEN
StrLen=i
RETURN
ENDIF
ENDDO
RETURN
END
c
c-------------------------------------------------------------------------------
c
SUBROUTINE Menu (ans,fits,dataset,xlog,ylog,flip,labels,points,
* linestyle,x1,x2,y1,y2,f1,f2)
c
c ----- The main menu screen with all of the current plot settings for
c the current data
c
INTEGER maxpoints,spoly,ncoeff,maxdataset,dataset,ma,i,j
PARAMETER (maxpoints=20000,ncoeff=10,maxdataset=30,
* spoly=8*maxpoints)
REAL xp(spoly),yp(spoly),coeff(ncoeff,2),x1,x2,y1,y2,
* f1,f2
INTEGER power(ncoeff),maxply(maxdataset)
CHARACTER*1 ans,UpCase
CHARACTER*34 plotted(5),dummy
LOGICAL fits(5,maxdataset),xlog,ylog,flip,labels,points,
* linestyle
c
COMMON /PlyDat/xp,yp,coeff,power,maxply,ma
c
WRITE (*,100)
100 FORMAT ('0',24X,'CurveFit - Main Menu'/)
DO 2 i=1,5
dummy='[ ]'
DO 1 j=1,dataset
dummy(j+2:j+2)='-'
IF (fits(i,j)) dummy(j+2:j+2)='+'
1 CONTINUE
plotted(i)=dummy
2 CONTINUE
WRITE (*,93) '(1) Connect points with straight line ',plotted(1)
WRITE (*,93) '(2) Connect points with cubic spline ',plotted(2)
WRITE (*,93) '(3) Smooth data with Bezier polynomial',plotted(3)
WRITE (*,93) '(4) Smooth data with Fourier transform',plotted(4)
WRITE (*,93) '(5) Best fit polynomial ',plotted(5)
IF (xlog.AND.ylog) THEN
WRITE (*,97) '(6) Logarithms of x or y data','[ XY ]'
ELSE IF (xlog) THEN
WRITE (*,97) '(6) Logarithms of x or y data','[ X ]'
ELSE IF (ylog) THEN
WRITE (*,97) '(6) Logarithms of x or y data','[ Y ]'
ELSE
WRITE (*,97) '(6) Logarithms of x or y data','[ NONE ]'
ENDIF
WRITE (*,94) '(7) Plotting range of x coordinate [',
* x1,' to ',x2,' ]'
WRITE (*,94) '(8) Plotting range of y coordinate [',
* y1,' to ',y2,' ]'
WRITE (*,94) '(9) Fitting range of x coordinate [',
* f1,' to ',f2,' ]'
IF (flip) THEN
WRITE (*,95) '(F) Flip the x and y axes','[ ON ]'
ELSE
WRITE (*,95) '(F) Flip the x and y axes','[ OFF ]'
ENDIF
IF (points) THEN
WRITE (*,98) '(D) Data points are plotted','[ ON ]'
ELSE
WRITE (*,98) '(D) Data points are plotted','[ OFF ]'
ENDIF
IF (labels) THEN
WRITE (*,99) '(T) Labels and title placed on the plot','[ ON ]'
ELSE
WRITE (*,99) '(T) Labels and title placed on the plot',
* '[ OFF ]'
ENDIF
WRITE (*,92) '(A) Add a data file to existing plot','[ ',dataset,
* ' ]'
IF (linestyle) THEN
WRITE (*,96) '(L) User/System defined plotted line styles',
* '[ USER ]'
ELSE
WRITE (*,96) '(L) User/System defined plotted line styles',
* '[ SYSTEM ]'
ENDIF
WRITE (*,101)
101 FORMAT (1X,'(S) Scale/Slide/Subtract a particular dataset'/1X,
* '(H) Send plot to disk for hardcopy'/1X,
* '(V) Select a new video display device'/1X,
* '(N) New data file and plot'/1X,'(E,Q,X) Exit CurveFit',
* //10X,'Choose one of the above [Plot to screen]: ',$)
READ (*,'(A)') ans
ans=UpCase(ans)
92 FORMAT (1X,(A),17X,(A),I<INT(LOG10(FLOAT(dataset)))+1>,(A))
93 FORMAT (1X,(A),3X,(A))
94 FORMAT (1X,(A),E10.3,A4,E10.3,A2)
95 FORMAT (1X,(A),28X,(A))
96 FORMAT (1X,(A),10X,(A))
97 FORMAT (1X,(A),24X,(A))
98 FORMAT (1X,(A),26X,(A))
99 FORMAT (1X,(A),14X,(A))
RETURN
END
c
c-------------------------------------------------------------------------------
c
SUBROUTINE Plot (xstart,x1,x2,y1,y2,f1,f2,xlabel,ylabel,title,
* labels,points,device,fits,dataset,hard,totalpoints,styles,
* linestyle)
c
c ----- The general plotting subroutine
c
INTEGER maxpoints,s2,ncoeff,maxdataset,dataset,i,j,ma,
* totalpoints,symbol,offset
PARAMETER (maxpoints=20000,s2=8*maxpoints,ncoeff=10,
* maxdataset=30)
REAL x(maxpoints),y(maxpoints),coeff(ncoeff,2),
* xbez(s2),ybez(s2),xspl(s2),x1,x2,y1,y2,
* yspl(s2),xfr(maxpoints),xplot(s2),yplot(s2),f1,f2,
* yfr(maxpoints),xpoly(s2),ypoly(s2)
INTEGER power(ncoeff),plotsym(maxdataset),xstart(maxdataset,2),
* styles(maxdataset,3),maxply(maxdataset),maxbez(maxdataset),
* maxfr(maxdataset),maxspl(maxdataset)
CHARACTER xlabel*(*),ylabel*(*),title*(*),device*3,ans*1,
* plotname*25,UpCase*1,blank*40
LOGICAL fits(5,maxdataset),labels,hard,points,linestyle
c
DATA plotsym/3,11,6,7,12,4,16,17,2,5,13,14,15,18,10,3,11,6,7,12,
* 4,16,17,2,5,13,14,15,18,10/
DATA blank/'+ '/
c
c ----- These are the PGPlot plot symbols, appearing in the following
c (default) order (twice to cover the 30 possible data sets):
c asterisk, diamond, square, triangle, star, circle,
c filled square, filled circle, plus, times, filled triangle,
c open cross, star of David, filled star, rounded square
c
COMMON /XYDat/x,y,/SplDat/xspl,yspl,maxspl
COMMON /BezDat/xbez,ybez,maxbez,/FrDat/xfr,yfr,maxfr
COMMON /PlyDat/xpoly,ypoly,coeff,power,maxply,ma
c
IF (hard) THEN
WRITE (*,'((A),$)') '0Enter plot file name : '
READ (*,'((A))') plotname
CALL PGBegin (0,plotname//device,1,1)
ELSE
CALL PGBegin (0,device,1,1)
ENDIF
CALL PGSCH (1.0)
CALL PGSCF (2)
IF (hard) CALL PGSLW (2)
CALL PGEnv (x1,x2,y1,y2,0,1)
DO 8 i=1,dataset
offset=xstart(i,1)-1
symbol=styles(i,3)
IF (symbol.EQ.-1) GOTO 2
IF (symbol.EQ.0) symbol=plotsym(i)
DO 1 j=1,xstart(i,2)
xplot(j)=x(offset+j)
yplot(j)=y(offset+j)
1 CONTINUE
CALL PGSCH (MAX(0.5,1.0-0.1*(totalpoints/200)))
IF (hard) THEN
CALL PGSLW (2)
IF (points) CALL PGPoint (xstart(i,2),xplot,yplot,symbol)
IF (i.EQ.1) THEN
CALL PGSLW (1)
CALL PGSCH (1.0)
c CALL PGIden
ENDIF
ELSE
CALL PGSLW (1)
CALL PGSCH (MAX(0.5,1.0-0.1*(totalpoints/200)))
IF (points) CALL PGPoint (xstart(i,2),xplot,yplot,symbol)
ENDIF
2 CONTINUE
CALL PGSCH (1.0)
CALL PGSLS (styles(i,1))
CALL PGSLW (styles(i,2))
IF (fits(1,i)) THEN
DO 3 j=1,xstart(i,2)
xplot(j)=x(offset+j)
yplot(j)=y(offset+j)
3 CONTINUE
CALL PGLine (xstart(i,2),xplot,yplot)
ENDIF
IF (fits(2,i)) THEN
DO 4 j=1,maxspl(i)
xplot(j)=xspl(8*offset+j)
yplot(j)=yspl(8*offset+j)
4 CONTINUE
CALL PGLine (maxspl(i),xplot,yplot)
ENDIF
IF (fits(3,i)) THEN
DO 5 j=1,maxbez(i)
xplot(j)=xbez(8*offset+j)
yplot(j)=ybez(8*offset+j)
5 CONTINUE
CALL PGLine (maxbez(i),xplot,yplot)
ENDIF
IF (fits(4,i)) THEN
DO 6 j=1,maxfr(i)
xplot(j)=xfr(offset+j)
yplot(j)=yfr(offset+j)
6 CONTINUE
CALL PGLine (maxfr(i),xplot,yplot)
ENDIF
IF (fits(5,i)) THEN
DO 7 j=1,maxply(i)
xplot(j)=xpoly(8*offset+j)
yplot(j)=ypoly(8*offset+j)
7 CONTINUE
CALL PGLine (maxply(i),xplot,yplot)
ENDIF
8 CONTINUE
IF (.NOT.hard) THEN
WRITE (*,800) 7,'Press T for titles, <ENTER> to quit: '
800 FORMAT (1X,A1,(A),$)
READ (*,'((A))') ans
IF (UpCase(ans).NE.'T') GOTO 9
ENDIF
WRITE (*,'((A))') blank
CALL PGSCH (1.0)
CALL PGSCF (2)
IF (hard) CALL PGSLW (2)
IF (labels) CALL PGLabel (xlabel,ylabel,title)
IF (.NOT.hard) THEN
WRITE (*,800) 7,'Finished plotting - press <ENTER> to '//
* 'continue: '
READ (*,'((A))') ans
c
c ----- The following is done to clear the screen after the plot is
c finished, i.e. when the main menu appears again, on some strange
c terminals, like the LANPAR Vision II (VT240 clone).
c
9 CONTINUE
CALL PGAsk (.FALSE.)
CALL PGAdvance
ENDIF
CALL PGEnd
c
c ----- For Tektronics emulators, recall plot routines to return to text mode
c
IF (device.EQ.'/te') THEN
ans=CHAR(27)
WRITE (*,'(A6)') ans//'[?38l'
ENDIF
RETURN
END
c
c-------------------------------------------------------------------------------
c
OPTIONS /G_FLOATING
c
c ----- The above options statement allows the use of this routine with
c more than 140 data points, due to N! problems just before label 3.
c
SUBROUTINE BezierCalc (offset,numpt,f1,f2,dataset,ok)
c
c ----- The routine for calculating the Bezier polynomial over the
c x-coordinate range from F1 to F2. The routine is translated exactly
c from Borland's TURBO Graphix Toolbox. The polynomial will space an
c additional 7 points {xp,yp} between every two data points {x,y},
c i.e. 8 times as dense.
c
INTEGER maxpoints,s2,maxdataset,dataset,numpt,i,j,maxcpt,
* intpt,n,maxpointset,offset,maxnum
PARAMETER (maxpoints=20000,s2=8*maxpoints,maxdataset=30,
* maxpointset=2000)
INTEGER maxbez(maxdataset)
REAL x(maxpoints),y(maxpoints),xp(s2),yp(s2),t,quot,f1,f2,
* one,deltat
REAL*8 c(0:maxpointset),sumx,sumy,done,prod
LOGICAL ok
c
DATA one,done/1.0,1.0D0/
c
COMMON /XYDat/x,y,/BezDat/xp,yp,maxbez
c
ok=.FALSE.
i=0
1 CONTINUE
i=i+1
IF (x(offset+i).LT.f1) GOTO 1
j=i
2 CONTINUE
IF (j+1.LE.numpt.AND.x(offset+j+1).LE.f2) THEN
j=j+1
GOTO 2
ENDIF
maxcpt=j-i
maxnum=(j-i+1)*8
maxbez(dataset)=maxnum
IF (maxcpt.LT.2) THEN
WRITE (*,'(1X,A1,(A))') 7,'Error in Bezier Calculation routine!'
RETURN
ENDIF
f1=x(offset+i)
f2=x(offset+j)
IF (f1.GT.f2) CALL Swap (f1,f2)
deltat=one/(maxnum-1)
c(0)=done
c(maxcpt)=done
DO 3 n=0,maxcpt-2
c(n+1)=c(n)*(maxcpt-n)/(n+1)
3 CONTINUE
DO 8 intpt=1,maxnum
t=(intpt-1)*deltat
IF (t.LE.0.5) THEN
quot=one-t
prod=quot
DO 4 n=1,maxcpt-1
prod=prod*quot
4 CONTINUE
quot=t/quot
sumx=x(offset+j)
sumy=y(offset+j)
DO 5 n=maxcpt,1,-1
sumx=c(n-1)*x(offset+i+n-1)+quot*sumx
sumy=c(n-1)*y(offset+i+n-1)+quot*sumy
5 CONTINUE
ELSE
quot=t
prod=quot
DO 6 n=1,maxcpt-1
prod=prod*quot
6 CONTINUE
quot=(one-t)/quot
sumx=x(offset+i)
sumy=y(offset+i)
DO 7 n=1,maxcpt
sumx=c(n)*x(offset+i+n)+quot*sumx
sumy=c(n)*y(offset+i+n)+quot*sumy
7 CONTINUE
ENDIF
xp(8*offset+intpt)=SNGL(sumx*prod)
yp(8*offset+intpt)=SNGL(sumy*prod)
8 CONTINUE
ok=.TRUE.
RETURN
END
c
c-------------------------------------------------------------------------------
c
OPTIONS /G_FLOATING
c
SUBROUTINE PolynomialCalc (offset,numpt,f1,f2,dataset,ok)
c
c ----- Calculate the best fit polynomial over the x-coordinate range
c F1 to F2. The routine used is called Singular Value Decomposition
c (SVDFIT), taken from the book Numerical Recipes by W.H. Press et al.
c It is slower than normal solving of the matrices involved, but will
c never give an infinite coefficient. Coefficients that tend toward
c infinity while cancelling another are set to zero with this method.
c Other negligible coefficients are also set to zero (determined by
c the size of TOL*WMAX). The best fit is done with a polynomial of
c user specified order, though the number of non-zero coefficients must
c be less than 10. This routine also returns the error in the
c coefficients and data points to plot. It is assumed that no
c uncertainties exist in the input data.
c
INTEGER maxpoints,s2,ncoeff,maxdataset,dataset,ma,i,j,k,
* numpt,maxpointset,offset,maxnum,ierror
CHARACTER ans*1
PARAMETER (maxpoints=20000,s2=8*maxpoints,maxdataset=30,
* ncoeff=10,maxpointset=2000)
REAL x(maxpoints),y(maxpoints),coeff(ncoeff,2),
* xpoly(s2),ypoly(s2),tol,zero,f1,f2,const,xp,FPoly
REAL*8 v(ncoeff,ncoeff),u(maxpointset,ncoeff),w(ncoeff),
* wmax,thresh
INTEGER power(ncoeff),maxply(maxdataset)
LOGICAL ok
c
COMMON /XYDat/x,y,/PlyDat/xpoly,ypoly,coeff,power,maxply,ma
c
DATA tol,zero/1.0E-10,0.0/
c
ok=.FALSE.
i=0
1 CONTINUE
i=i+1
IF (x(offset+i).LT.f1) GOTO 1
j=i
2 CONTINUE
IF (j+1.LE.numpt.AND.x(offset+j+1).LE.f2) THEN
j=j+1
GOTO 2
ENDIF
maxnum=j-i+1
IF (maxnum.LT.2) THEN
WRITE (*,'(1X,A1,(A),(A))') 7,'Error in Polynomial Calculation',
* ' routine!'
RETURN
ENDIF
f1=x(offset+i)
f2=x(offset+j)
IF (f1.GT.f2) CALL Swap (f1,f2)
c
c ----- Enter the user chosen non-zero coefficients. The data will
c be fit only to these powers of the polynomial.
c
WRITE (*,100)
100 FORMAT (' Enter the power of any coefficient that is to be ',
* 'included in the fit.'/' (^Z to finish)'//2X,
* 'ex. Best-fit to a cubic, enter'/5X,'0 1 2 3^Z'//)
ma=0
DO 3 j=1,ncoeff
coeff(j,1)=zero
coeff(j,2)=zero
power(j)=1000
3 CONTINUE
WRITE (*,'(1X,(A),$)') 'Power(s) : '
READ (*,*,ERR=1000,END=4,IOSTAT=ierror) (power(k),k=1,ncoeff)
4 CONTINUE
CALL PowerSort (power,k,ma,ncoeff)
DO 6 j=1,maxnum
xp=x(offset+i+j-1)
DO 5 k=1,ma
IF (xp.EQ.zero) THEN
u(j,k)=zero
ELSE
u(j,k)=xp**power(k)
ENDIF
5 CONTINUE
ypoly(8*offset+j)=y(offset+i+j-1)
6 CONTINUE
CALL SVDCMP (u,maxnum,ma,ncoeff,w,v)
wmax=zero
DO 7 j=1,ma
wmax=MAX(wmax,w(j))
7 CONTINUE
thresh=tol*wmax
DO 8 j=1,ma
IF (w(j).LT.thresh) w(j)=zero
8 CONTINUE
CALL SVBKSB (u,w,v,maxnum,ma,ncoeff,ypoly,dataset,coeff,8*offset)
CALL SVDVar (v,ma,ncoeff,w,coeff)
maxply(dataset)=10*maxnum
const=(f2-f1)/(maxply(dataset)-1)
DO 9 j=1,maxply(dataset)
xpoly(8*offset+j)=const*(j-1)+f1
ypoly(8*offset+j)=FPoly(xpoly(8*offset+j),coeff,power,ma)
9 CONTINUE
ok=.TRUE.
WRITE (*,101)
101 FORMAT ('0The calculated coefficients are : '//)
DO 10 i=1,ma,2
IF (i+1.LE.ma) THEN
WRITE (*,102) power(i),coeff(i,1),coeff(i,2),
* power(i+1),coeff(i+1,1),abs(coeff(i+1,2))
102 FORMAT (2(7X,'x^',I3,4X,E12.5,' +- ',E9.3))
ELSE
WRITE (*,103) power(i),coeff(i,1),abs(coeff(i,2))
103 FORMAT (7X,'x^',I3,4X,E12.5,' +- ',E9.3)
ENDIF
10 CONTINUE
WRITE (*,104)
104 FORMAT ('0Press <return> to continue ',$)
11 CONTINUE
READ (*,'((A))') ans
RETURN
c
c ----- Error checking/error flag resetting routine.
c
1000 CONTINUE
IF (ierror.GT.0) CALL ERRTST (ierror,j)
WRITE (*,105) 7,7,'*** Error in input - redo! ***'
105 FORMAT ('0',2A1,(A))
GOTO 3
END
c
c-------------------------------------------------------------------------------
c
OPTIONS /G_FLOATING
c
c ----- This was added to help reduce problems with large powers and x
c very small or very large.
c
FUNCTION FPoly (x,coeff,power,ma)
c
c ----- This calculates the polynomial at a point x. If x=0, then the
c polynomial is set to the constant, coeff(0), instead of to a
c possible infinity. This is needed by the routine PolynomialCalc.
c
INTEGER ncoeff,m,ma,i
REAL*8 sum,zero,xp
PARAMETER (ncoeff=10)
REAL coeff(ncoeff,2),FPoly,x
INTEGER power(ncoeff)
c
DATA zero/0.0D0/
c
xp=DBLE(x)
IF (xp.NE.zero) THEN
sum=zero
DO 1 i=1,ma
sum=sum+DBLE(coeff(i,1))*(xp**power(i))
1 CONTINUE
c
c ----- The following idiot-proofing is made to avoid over- and
c underflows. Of course, it could still happen in the previous
c step if x is too large or too small.
c
IF (sum.EQ.zero) THEN
FPoly=0.0
ELSE IF (DLOG10(DABS(sum)).GT.38) THEN
FPoly=1.0E30
ELSE IF (DLOG10(DABS(sum)).LT.-38) THEN
FPoly=0.0
ELSE
FPoly=SNGL(sum)
ENDIF
ELSE
m=0
2 CONTINUE
m=m+1
IF ((power(m).NE.0).AND.(m.LE.ma)) GOTO 2
IF (m.GT.ma) THEN
FPoly=0.0
ELSE
FPoly=coeff(m,1)
ENDIF
ENDIF
RETURN
END
c
c-------------------------------------------------------------------------------
c
SUBROUTINE PowerSort (power,k,ma,ncoeff)
c
c ----- This routine is a simple insertion sort. It sorts the vector
c POWER into ascending order, counting the number of distinct powers
c while eliminating any doubled powers.
c
INTEGER ncoeff,ma,i,j,k,power(ncoeff),ip
c
DO 3 i=2,ncoeff
ip=power(i)
DO 1 j=i-1,1,-1
IF (power(j).LE.ip) GOTO 2
power(j+1)=power(j)
1 CONTINUE
j=0
2 CONTINUE
power(j+1)=ip
3 CONTINUE
DO 6 i=1,ncoeff-1
IF (power(i+1).EQ.1000) GOTO 7
4 CONTINUE
IF (power(i).EQ.power(i+1)) THEN
DO 5 j=i+1,ncoeff-1
power(j)=power(j+1)
5 CONTINUE
GOTO 4
ENDIF
6 CONTINUE
7 CONTINUE
ma=i
RETURN
END
c
c-------------------------------------------------------------------------------
c
OPTIONS /G_FLOATING
c
SUBROUTINE SVDCMP (a,m,n,np,w,v)
c
c ----- This subroutine is taken exactly from the book Numerical Recipes
c by W.H. Press et al., and is used by the routine PolynomialCalc to
c do the singular value decomposition (SVD) of the input data matrix.
c The results of the SVD can have certain values zeroed to eliminate
c them from the resultant coefficients.
c
INTEGER i,j,k,l,m,n,its,nm,maxpointset,np
PARAMETER (maxpointset=2000)
REAL*8 a(maxpointset,np),w(np),v(np,np),rv1(maxpointset),
* x,y,z,h,c,s,f,g,scale,anorm,zero,one
c
DATA zero,one/0.0D0,1.0D0/
c
g=zero
scale=zero
anorm=zero
DO 25 i=1,n
l=i+1
rv1(i)=scale*g
g=zero
s=zero
scale=zero
IF (i.LE.m) THEN
DO 11 k=i,m
scale=scale+ABS(a(k,i))
11 CONTINUE
IF (scale.NE.zero) THEN
DO 12 k=i,m
a(k,i)=a(k,i)/scale
s=s+a(k,i)*a(k,i)
12 CONTINUE
f=a(i,i)
g=-SIGN(SQRT(s),f)
h=f*g-s
a(i,i)=f-g
IF (i.NE.n) THEN
DO 15 j=l,n
s=zero
DO 13 k=i,m
s=s+a(k,i)*a(k,j)
13 CONTINUE
f=s/h
DO 14 k=i,m
a(k,j)=a(k,j)+f*a(k,i)
14 CONTINUE
15 CONTINUE
ENDIF
DO 16 k=i,m
a(k,i)=scale*a(k,i)
16 CONTINUE
ENDIF
ENDIF
w(i)=scale*g
g=zero
s=zero
scale=zero
IF ((i.LE.m).AND.(i.NE.n)) THEN
DO 17 k=l,n
scale=scale+ABS(a(i,k))
17 CONTINUE
IF (scale.NE.zero) THEN
DO 18 k=l,n
a(i,k)=a(i,k)/scale
s=s+a(i,k)*a(i,k)
18 CONTINUE
f=a(i,l)
g=-SIGN(SQRT(s),f)
h=f*g-s
a(i,l)=f-g
DO 19 k=l,n
rv1(k)=a(i,k)/h
19 CONTINUE
IF (i.NE.m) THEN
DO 23 j=l,m
s=zero
DO 21 k=l,n
s=s+a(j,k)*a(i,k)
21 CONTINUE
DO 22 k=l,n
a(j,k)=a(j,k)+s*rv1(k)
22 CONTINUE
23 CONTINUE
ENDIF
DO 24 k=l,n
a(i,k)=scale*a(i,k)
24 CONTINUE
ENDIF
ENDIF
anorm=MAX(anorm,(ABS(w(i))+ABS(rv1(i))))
25 CONTINUE
DO 32 i=n,1,-1
IF (i.LT.n) THEN
IF (g.NE.zero) THEN
DO 26 j=l,n
v(j,i)=(a(i,j)/a(i,l))/g
26 CONTINUE
DO 29 j=l,n
s=zero
DO 27 k=l,n
s=s+a(i,k)*v(k,j)
27 CONTINUE
DO 28 k=l,n
v(k,j)=v(k,j)+s*v(k,i)
28 CONTINUE
29 CONTINUE
ENDIF
DO 31 j=l,n
v(i,j)=zero
v(j,i)=zero
31 CONTINUE
ENDIF
v(i,i)=one
g=rv1(i)
l=i
32 CONTINUE
DO 39 i=n,1,-1
l=i+1
g=w(i)
IF (i.LT.n) THEN
DO 33 j=l,n
a(i,j)=zero
33 CONTINUE
ENDIF
IF (g.NE.zero) THEN
g=one/g
IF (i.NE.n) THEN
DO 36 j=l,n
s=zero
DO 34 k=l,m
s=s+a(k,i)*a(k,j)
34 CONTINUE
f=s*g/a(i,i)
DO 35 k=i,m
a(k,j)=a(k,j)+f*a(k,i)
35 CONTINUE
36 CONTINUE
ENDIF
DO 37 j=i,m
a(j,i)=a(j,i)*g
37 CONTINUE
ELSE
DO 38 j=i,m
a(j,i)=zero
38 CONTINUE
ENDIF
a(i,i)=a(i,i)+one
39 CONTINUE
DO 49 k=n,1,-1
DO 48 its=1,30
DO 41 l=k,1,-1
nm=l-1
IF ((ABS(rv1(l))+anorm).EQ.anorm) GOTO 2
IF ((ABS(w(nm))+anorm).EQ.anorm) GOTO 1
41 CONTINUE
1 c=zero
s=one
DO 43 i=l,k
f=s*rv1(i)
IF ((ABS(f)+anorm).NE.anorm) THEN
g=w(i)
h=SQRT(f*f+g*g)
w(i)=h
h=one/h
c=g*h
s=-f*h
DO 42 j=1,m
y=a(j,nm)
z=a(j,i)
a(j,nm)=y*c+z*s
a(j,i)=-y*s+z*c
42 CONTINUE
ENDIF
43 CONTINUE
2 z=w(k)
IF (l.EQ.k) THEN
IF (z.LT.zero) THEN
w(k)=-z
DO 44 j=1,n
v(j,k)=-v(j,k)
44 CONTINUE
ENDIF
GOTO 3
ENDIF
IF (its.EQ.30) PAUSE 'No convergence in 30 iterations'
x=w(l)
nm=k-1
y=w(nm)
g=rv1(nm)
h=rv1(k)
f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y)
g=SQRT(f*f+one)
f=((x-z)*(x+z)+h*(y/(f+SIGN(g,f))-h))/x
c=one
s=one
DO 47 j=l,nm
i=j+1
g=rv1(i)
y=w(i)
h=s*g
g=c*g
z=SQRT(f*f+h*h)
rv1(j)=z
c=f/z
s=h/z
f=x*c+g*s
g=-x*s+g*c
h=y*s
y=y*c
DO 45 nm=1,n
x=v(nm,j)
z=v(nm,i)
v(nm,j)=x*c+z*s
v(nm,i)=-x*s+z*c
45 CONTINUE
z=SQRT(f*f+h*h)
w(j)=z
IF (z.NE.zero) THEN
z=one/z
c=f*z
s=h*z
ENDIF
f=c*g+s*y
x=-s*g+c*y
DO 46 nm=1,m
y=a(nm,j)
z=a(nm,i)
a(nm,j)=y*c+z*s
a(nm,i)=-y*s+z*c
46 CONTINUE
47 CONTINUE
rv1(l)=zero
rv1(k)=f
w(k)=x
48 CONTINUE
3 CONTINUE
49 CONTINUE
RETURN
END
c
c-------------------------------------------------------------------------------
c
OPTIONS /G_FLOATING
c
SUBROUTINE SVBKSB (u,w,v,m,n,np,b,dataset,coeff,offset)
c
c ----- This subroutine is taken from the book Numerical Recipes by
c W.H. Press et al., and is used by the routine PolynomialCalc to
c calculate the final solution of the least-squares fit coefficients,
c after negligible coefficients have been zeroed.
c
INTEGER i,j,n,m,np,jj,dataset,maxpointset,s2,maxdataset,
* maxpoints,offset
PARAMETER (maxpoints=20000,s2=8*maxpoints,maxdataset=30,
* maxpointset=2000)
REAL*8 u(maxpointset,np),w(np),v(np,np),tmp(maxpointset),zero,
* s
REAL b(s2),coeff(np,2)
c
DATA zero/0.0D0/
c
DO 2 j=1,n
s=zero
IF (w(j).NE.zero) THEN
DO 1 i=1,m
s=s+u(i,j)*b(offset+i)
1 CONTINUE
s=s/w(j)
ENDIF
tmp(j)=s
2 CONTINUE
DO 4 j=1,n
s=zero
DO 3 jj=1,n
s=s+v(j,jj)*tmp(jj)
3 CONTINUE
coeff(j,1)=s
4 CONTINUE
RETURN
END
c
c-------------------------------------------------------------------------------
c
OPTIONS /G_FLOATING
c
SUBROUTINE SVDVar (v,m,np,w,stdev)
c
c ----- A subroutine taken from the book Numerical Recipes by W.H. Press
c et al., required by the routine PolynomialCalc to obtain standard
c deviations of the least-squares fit coefficients.
c
INTEGER i,m,np,k,ncoeff
PARAMETER (ncoeff=10)
REAL*8 v(np,np),w(np),wti(ncoeff),zero,sum
REAL stdev(np,2)
c
DATA zero/0.0D0/
c
DO 1 i=1,m
wti(i)=zero
IF (w(i).NE.zero) wti(i)=1.0/w(i)/w(i)
1 CONTINUE
DO 3 i=1,m
sum=zero
DO 2 k=1,m
sum=sum+v(i,k)*v(i,k)*wti(k)
2 CONTINUE
stdev(i,2)=SQRT(sum)
3 CONTINUE
RETURN
END
c
c-------------------------------------------------------------------------------
c
SUBROUTINE FourierCalc (offset,numpt,f1,f2,dataset,ok)
c
c ----- Calculate the Fourier transform smoothed data from x-coordinate
c F1 to F2. The method is paraphrased from the book Numerical Recipes
c by W.H. Press et al. The extra size for YFOUR is due to zero padding
c out to the next largest power of 2. For larger values for the number
c of smoothing points (PTS), the resultant curve will become less
c featureless as more high frequency 'noise' is removed.
c
INTEGER dataset,i,j,k,m,nmin,maxpoints,maxdataset,offset,
* numpt,maxnum,ierror,maxpointset
PARAMETER (maxpoints=20000,maxpointset=2000,maxdataset=30)
INTEGER maxfr(maxdataset)
REAL x(maxpoints),y(maxpoints),xfr(maxpoints),
* yfr(maxpoints),zero,one,pts,f1,f2,rn1,const,window,yn,y1,
* yfour(4*maxpointset)
LOGICAL ok
c
COMMON /XYDat/x,y,/FrDat/xfr,yfr,maxfr
c
DATA zero,one/0.0,1.0/
c
ok=.FALSE.
i=0
1 CONTINUE
i=i+1
IF (x(offset+i).LT.f1) GOTO 1
j=i
2 CONTINUE
IF (j+1.LE.numpt.AND.x(offset+j+1).LE.f2) THEN
j=j+1
GOTO 2
ENDIF
maxnum=j-i+1
maxfr(dataset)=maxnum
IF (maxnum.LT.2) THEN
WRITE (*,'(1X,A1,(A),(A))') 7,'Error in Fourier Calculation',
* ' routine!'
RETURN
ENDIF
f1=x(offset+i)
f2=x(offset+j)
IF (f1.GT.f2) CALL Swap (f1,f2)
DO 3 k=0,maxnum-1
yfour(2*k+1)=y(offset+i+k)
yfour(2*k+2)=zero
xfr(offset+k+1)=x(offset+i+k)
3 CONTINUE
WRITE (*,'(''0'',(A),I4,(A),I3,(A),$)') 'Number of smoothing '//
* 'points to use [ n <',maxnum,' - ',maxnum/10,' is good ]: '
READ (*,*,ERR=1000,IOSTAT=ierror) pts
IF (pts.GE.maxnum) THEN
WRITE (*,'(1X,A1,(A),(A),I3)') 7,'Error in input - number of ',
* 'points must be less than ',maxnum
GOTO 3
ENDIF
nmin=maxnum+2.0*pts
m=2
4 IF (m.LE.nmin) THEN
m=2*m
GOTO 4
ENDIF
const=pts/m*pts/m
y1=yfour(1)
yn=yfour(2*maxnum-1)
rn1=one/(maxnum-one)
DO 5 j=1,maxnum
yfour(2*j-1)=yfour(2*j-1)-rn1*(y1*(maxnum-j)+yn*(j-1))
5 CONTINUE
DO 6 j=2*maxnum+1,2*m
yfour(j)=zero
6 CONTINUE
CALL Four1 (yfour,2*m,1)
c
c ----- The FFT is multiplied by a low band pass filter of characteristic
c size PTS. PTS > 2 will eliminate some high frequencies completely.
c
DO 7 j=1,m/2-1
window=AMAX1(zero,one-const*j*j)
k=2*j+1
yfour(k)=yfour(k)*window
yfour(k+1)=yfour(k+1)*window
k=2*(m-j)+1
yfour(k)=yfour(k)*window
yfour(k+1)=yfour(k+1)*window
7 CONTINUE
yfour(m+1)=zero
yfour(m+2)=zero
CALL Four1 (yfour,2*m,-1)
DO 8 j=1,maxnum
yfr(offset+j)=yfour(2*j-1)/m+rn1*(y1*(maxnum-j)+yn*(j-1))
8 CONTINUE
ok=.TRUE.
RETURN
c
c ----- Error checking/error flag resetting routine.
c
1000 CONTINUE
IF (ierror.GT.0) CALL ERRTST (ierror,j)
WRITE (*,100) 7,7,'*** Error in input - redo! ***'
100 FORMAT ('0',2A1,(A))
GOTO 3
END
c
c-------------------------------------------------------------------------------
c
OPTIONS /G_FLOATING
c
SUBROUTINE Four1 (data,nn,isign)
c
c ----- A FFT subroutine needed for the subroutine FourierCalc. This
c routine is taken exactly from the book Numerical Recipes by
c W.H. Press et al.
c
REAL*8 wr,wi,wpr,wpi,wtemp,theta,twopi,two
INTEGER nn,isign,j,n,i,istep,mmax,m
REAL data(nn),tempi,tempr
c
DATA two,twopi/2.0D0,6.28318530717958647692D0/
c
n=nn
j=1
DO 2 i=1,n,2
IF (j.GT.i) THEN
tempr=data(j)
tempi=data(j+1)
data(j)=data(i)
data(j+1)=data(i+1)
data(i)=tempr
data(i+1)=tempi
ENDIF
m=n/2
1 IF ((m.ge.2).AND.(j.GT.m)) THEN
j=j-m
m=m/2
GOTO 1
ENDIF
j=j+m
2 CONTINUE
mmax=2
3 IF (n.GT.mmax) THEN
istep=2*mmax
theta=twopi*isign*mmax
wpr=-two*DSIN(theta/two)**2
wpi=DSIN(theta)
wr=1.0D0
wi=0.0D0
DO 5 m=1,mmax,2
DO 4 i=m,n,istep
j=i+mmax
tempr=SNGL(wr)*data(j)-SNGL(wi)*data(j+1)
tempi=SNGL(wr)*data(j+1)+SNGL(wi)*data(j)
data(j)=data(i)-tempr
data(j+1)=data(i+1)-tempi
data(i)=data(i)+tempr
data(i+1)=data(i+1)+tempi
4 CONTINUE
wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
5 CONTINUE
mmax=istep
GOTO 3
ENDIF
RETURN
END
c
c-------------------------------------------------------------------------------
c
SUBROUTINE SplineCalc (offset,numpt,f1,f2,dataset,ok)
c
c ----- Calculates the cubic spline fit from x-coordinates F1 to F2.
c The routine algorithm is derived from Borland's TURBO Graphix
c Toolbox along with the equations given in Numerical Recipes by
c W.H. Press et al.
c
INTEGER dataset,n,j,i,k,maxpoints,s2,maxdataset,offset,numpt,
* maxnum,maxpointset
PARAMETER (maxpoints=20000,s2=8*maxpoints,maxdataset=30,
* maxpointset=2000)
INTEGER maxspl(maxdataset)
REAL x(maxpoints),y(maxpoints),xp(maxpointset),Spline2,
* yp(maxpointset),y2prime(maxpoints),xspl(s2),yspl(s2),f1,f2,
* deltax
LOGICAL ok
c
COMMON /XYDat/x,y,/SplDat/xspl,yspl,maxspl
c
ok=.TRUE.
i=0
1 CONTINUE
i=i+1
IF (x(offset+i).LT.f1) GOTO 1
j=i
2 CONTINUE
IF (j+1.LE.numpt.AND.x(offset+j+1).LE.f2) THEN
j=j+1
GOTO 2
ENDIF
n=j-i+1
IF (n.LT.2) THEN
WRITE (*,'(1X,A1,(A))') 7,'Error in Spline Calculation routine!'
ok=.FALSE.
RETURN
ENDIF
f1=x(offset+i)
f2=x(offset+j)
IF (f1.GT.f2) CALL Swap (f1,f2)
maxnum=8*n
maxspl(dataset)=maxnum
DO 3 k=1,n
xp(k)=x(offset+i+k-1)
yp(k)=y(offset+i+k-1)
3 CONTINUE
CALL Spline1 (xp,yp,y2prime,n)
deltax=(f2-f1)/(maxnum-1)
DO 4 k=1,maxnum-1
xspl(8*offset+k)=f1+(k-1)*deltax
4 CONTINUE
xspl(8*offset+maxnum)=f2
DO 5 k=1,maxnum
yspl(8*offset+k)=Spline2(xspl(8*offset+k),xp,yp,y2prime,n)
5 CONTINUE
RETURN
END
c
c-------------------------------------------------------------------------------
c
OPTIONS /G_FLOATING
c
SUBROUTINE Spline1 (x,y,y2prime,n)
c
c ----- A subroutine needed for the cubic spline calculations. It is
c an algorithm derived from the cubic spline equations given in
c Numerical Recipes by W.H. Press et al. The boundary condition
c of zero first derivative at the endpoints is assumed here.
c
INTEGER n,i,maxpointset
PARAMETER (maxpointset=2000)
REAL x(n),y(n),y2prime(n)
REAL*8 a(2:maxpointset),b(2:maxpointset-1),dummy(maxpointset)
c
a(2)=DBLE(x(2))-x(1)
a(3)=DBLE(x(3))-x(2)
b(2)=2.0D0*(DBLE(x(3))-x(1))+a(2)/2.0D0
dummy(2)=6.0D0*(DBLE(y(3))-y(2))/a(3)-3.0D0*(DBLE(y(2))-y(1))/a(2)
DO 1 i=3,n-1
a(i+1)=DBLE(x(i+1))-x(i)
b(i)=2.0D0*(DBLE(x(i+1))-x(i-1))-a(i)*a(i)/b(i-1)
dummy(i)=6.0D0*((DBLE(y(i+1))-y(i))/a(i+1)-
* (DBLE(y(i))-y(i-1))/a(i))-a(i)*dummy(i-1)/b(i-1)
1 CONTINUE
dummy(n)=(dummy(n-1)/b(n-1)-6.0D0*(DBLE(y(n))-y(n-1))/a(n)/a(n))/
* (2.0D0+a(n)/b(n-1))
DO 2 i=n-1,2,-1
dummy(i)=(dummy(i)-a(i+1)*dummy(i+1))/b(i)
2 CONTINUE
dummy(1)=dummy(2)*0.5D0-3.0D0*(DBLE(y(2))-y(1))/a(2)/a(2)
DO 3 i=1,n
y2prime(i)=SNGL(dummy(i))
3 CONTINUE
RETURN
END
c
c-------------------------------------------------------------------------------
c
OPTIONS /G_FLOATING
c
FUNCTION Spline2 (x,xp,yp,y2prime,n)
c
c ----- A subroutine needed for the cubic spline calculations. It is
c an algorithm derived from the eqautions given in Numerical Recipes
c by W.H. Press et al.
c
INTEGER n,j
REAL xp(n),yp(n),y2prime(n),x,Spline2
REAL*8 dx,a,b,c,d
c
IF (x.LE.xp(1)) THEN
Spline2=yp(1)
ELSE IF (x.GE.xp(n)) THEN
Spline2=yp(n)
ELSE
j=1
1 CONTINUE
IF ((x.GT.xp(j)).AND.(x.LE.xp(j+1))) GOTO 2
j=j+1
GOTO 1
2 CONTINUE
dx=DBLE(xp(j+1))-xp(j)
a=(DBLE(xp(j+1))-x)/dx
b=1.0D0-a
c=(a*a*a-a)*dx*dx/6.0D0
d=(b*b*b-b)*dx*dx/6.0D0
Spline2=a*yp(j)+b*yp(j+1)+c*y2prime(j)+d*y2prime(j+1)
ENDIF
RETURN
END
c
c-------------------------------------------------------------------------------
c
SUBROUTINE ReadData (dataset,xstart,x1,y1,x2,y2,fileopen,
* totalpoints)
c
c ----- This subroutine reads in all data files, sets the plotting limits,
c and counts the number of points read in. ReadData asks if more data is
c to be read from the current open data file. If not, it will prompt for
c a filename until a correct one is entered. ReadData then prompts for the
c number of lines to skip from the current position in the file,
c where N >= 0 simply skips that number of lines and reads the data,
c N = -1 reads a line, prints it, and confirms the skip,
c N < -1 skips ABS(N) lines and prompts again for lines to skip,
c 'Bn' backs up n line(s) (not case-sensitive!).
c Finally, the data is read in, after prompting for the columns for the
c (x,y) input. Up to 25 columns are accessible from a single data file.
c A data set ends when a non-numeric line is run into, or the file ends.
c
INTEGER maxpoints,maxdataset,dataset,ierror,i,j,xcol,ycol,
* lineskip,totalpoints,maxcolumn,ii,offset,maxcol,maxpointset,
* linesread,StrLen
PARAMETER (maxpoints=20000,maxdataset=30,maxpointset=2000,
* maxcolumn=25)
REAL xdata(maxpointset),ydata(maxpointset),x(maxpoints),
* y(maxpoints),x1,x2,y1,y2,one,zero,data(maxcolumn),
* xminmax(2,maxdataset),yminmax(2,maxdataset)
INTEGER xstart(maxdataset,2)
CHARACTER fname*40,blank*40,ans*1,linein*500,UpCase*1,longans*6
LOGICAL fileopen
c
DATA blank/' '/
DATA zero,one/0.0,1.0/
SAVE fname,linesread
COMMON /XYDat/x,y,xdata,ydata,xminmax,yminmax
c
1 CONTINUE
IF (fileopen) THEN
WRITE (*,*)
WRITE (*,98) 'More data from the same file [y] ? '
READ (*,97) ans
IF (UpCase(ans).EQ.'N') THEN
CLOSE (10)
fileopen=.FALSE.
linesread=0
ENDIF
ENDIF
IF (.NOT.fileopen) THEN
WRITE (*,*)
WRITE (*,98) 'Input the full name of the data file '//
* '(^Z to quit): '
2 CONTINUE
fname=blank
READ (*,97,END=11) fname
OPEN (UNIT=10,FILE=fname,STATUS='old',IOSTAT=ierror)
IF (ierror.NE.0) THEN
WRITE (*,'(A1,A20,(A))') 7,' Error opening file ',fname
WRITE (*,*)
WRITE (*,98) 'Input the correct data file name: '
GOTO 2
ENDIF
fileopen=.TRUE.
linesread=0
ENDIF
ii=1
3 CONTINUE
WRITE (*,300)
300 FORMAT ('0Skip n lines before data is read'/,' (n=-1, show ',
* 'each line and confirm skip -- n<-1, skip ABS(n) lines ',
* 'and prompt)'/,' (Bn, go backwards n lines and prompt --',
* ' otherwise skip n lines and continue on)')
WRITE (*,98) 'Skip how many lines ? '
READ (*,97) longans
ans=UpCase(longans(1:1))
IF (ans.EQ.'B') THEN
READ (longans(2:6),*,ERR=1000,END=33,IOSTAT=ierror) lineskip
IF (lineskip.LE.1) lineskip=1
33 CONTINUE
REWIND (10,ERR=3)
linesread=MAX(linesread-lineskip-1,0)
DO 34 i=1,linesread
READ (10,*)
34 CONTINUE
GOTO 3
ELSE
IF (ans.EQ.' ') GOTO 3
READ (longans,*,ERR=1000,IOSTAT=ierror) lineskip
ENDIF
IF (lineskip.EQ.-1) THEN
4 CONTINUE
READ (10,97,END=55) linein
linesread=linesread+1
WRITE (*,*) linein(1:StrLen(linein))
WRITE (*,98) 'Skip line (Bn = n lines backwards) [y] ? '
READ (*,97) longans
ans=UpCase(longans)
IF (ans.EQ.'B') THEN
READ (longans(2:6),*,ERR=465,END=465,IOSTAT=ierror) lineskip
IF (lineskip.LE.1) lineskip=1
465 CONTINUE
IF (ierror.GT.0) CALL ERRTST (ierror,j)
linesread=MAX(linesread-lineskip-1,0)
REWIND (10)
DO 47 i=1,linesread
READ (10,*)
47 CONTINUE
48 CONTINUE
GOTO 4
ENDIF
IF (ans.NE.'N') GOTO 4
BACKSPACE 10
linesread=linesread-1
ELSE
DO 5 i=1,ABS(lineskip)
READ (10,*,END=55)
5 CONTINUE
linesread=linesread+ABS(lineskip)
IF (lineskip.LT.0) GOTO 3
GOTO 6
55 CONTINUE
i=0
GOTO 8
ENDIF
6 CONTINUE
ii=2
WRITE (*,*)
WRITE (*,98) 'Choose the columns for the x,y data (1 - 25): '
READ (*,*,ERR=1000,IOSTAT=ierror) xcol,ycol
maxcol=MAX(xcol,ycol)
IF ((maxcol.GT.maxcolumn).OR.(xcol.EQ.ycol)) GOTO 6
ii=3
DO 7 i=1,MIN(maxpoints-totalpoints,maxpointset)
linesread=linesread+1
READ (10,97,ERR=1000,END=8,IOSTAT=ierror) linein
READ (linein,*,ERR=1000,END=65,IOSTAT=ierror)
* (data(j),j=1,maxcol)
xdata(i)=data(xcol)
ydata(i)=data(ycol)
GOTO 7
65 CONTINUE
WRITE (*,96) 7,7,'*** ERROR - Incorrect number of '//
* 'columns - Re-enter requested columns ***'
IF (i.EQ.1) GOTO 66
WRITE (*,*) 'Input line number: ',linesread
WRITE (*,*) linein
WRITE (*,98) 'Ignore error - continue on [n] ?: '
READ (*,97) ans
IF (UpCase(ans).EQ.'Y') GOTO 7
66 CONTINUE
BACKSPACE (10)
linesread=linesread-1
GOTO 6
7 CONTINUE
8 CONTINUE
CLOSE (10)
fileopen=.FALSE.
linesread=0
9 CONTINUE
c
c ----- General initialization routines
c
IF (i-1.LE.0) THEN
WRITE (*,96) 7,7,'*** ERROR - No points read from data '//
* 'file ***'
GOTO 1
ENDIF
dataset=dataset+1
IF (dataset.EQ.1) THEN
xstart(dataset,1)=1
ELSE
xstart(dataset,1)=xstart(dataset-1,1)+xstart(dataset-1,2)
ENDIF
xstart(dataset,2)=i-1
totalpoints=totalpoints+i-1
WRITE (*,*) i-1,' data points read'
xminmax(1,dataset)=1E35
xminmax(2,dataset)=-1E35
yminmax(1,dataset)=1E35
yminmax(2,dataset)=-1E35
offset=xstart(dataset,1)-1
DO 10 i=1,xstart(dataset,2)
x(i+offset)=xdata(i)
xminmax(1,dataset)=MIN(xminmax(1,dataset),xdata(i))
xminmax(2,dataset)=MAX(xminmax(2,dataset),xdata(i))
x1=MIN(x1,xdata(i))
x2=MAX(x2,xdata(i))
y(i+offset)=ydata(i)
yminmax(1,dataset)=MIN(yminmax(1,dataset),ydata(i))
yminmax(2,dataset)=MAX(yminmax(2,dataset),ydata(i))
y1=MIN(y1,ydata(i))
y2=MAX(y2,ydata(i))
10 CONTINUE
CALL SetLimits (x1,x2)
CALL SetLimits (y1,y2)
11 CONTINUE
IF (.NOT.fileopen) WRITE (*,96) 7,7,'*** No more data in '
* //fname(1:StrLen(fname))//' - file is closed ***'
IF (dataset.NE.0) RETURN
WRITE (*,98) 'No datasets have been entered. Try [a]gain or'//
* ' [s]top [A]: '
READ (*,97) ans
IF (UpCase(ans).NE.'S') GOTO 1
STOP
96 FORMAT ('0',2A1,(A))
97 FORMAT ((A))
98 FORMAT (1X,(A),$)
c
c ----- Error checking/error flag resetting routine.
c
1000 CONTINUE
IF (ierror.GT.0) CALL ERRTST (ierror,j)
IF (ii.EQ.3) THEN
GOTO 9
ELSE
WRITE (*,97) 7,7,'*** Error in input - redo! ***'
GOTO (3,6),ii
ENDIF
END
c
c-------------------------------------------------------------------------------
c
SUBROUTINE SetLimits (lo,hi)
c
c ----- This subroutine sets the X-Y plotting limits anytime that new
c data is input or logs/antilogs are calculated from the data. It
c is meant to be accurate to 2 significant figures.
c
REAL oldlo,oldhi,lo,hi,flo,fhi,zero,one,loglo,loghi,
* mantlo,manthi
INTEGER ordlo,ordhi
LOGICAL neglo,neghi
c
DATA zero/0.0/,one/1.0/
c
oldlo=lo
oldhi=hi
neglo=(oldlo.LT.zero)
neghi=(oldhi.LT.zero)
loglo=zero
loghi=zero
IF (oldlo.NE.zero) THEN
loglo=LOG10(ABS(oldlo))
ordlo=INT(loglo)
mantlo=loglo-ordlo+one
IF (mantlo.LT.one) THEN
mantlo=mantlo+one
ordlo=ordlo-one
ENDIF
flo=10.0**mantlo
IF (ABS(flo-NINT(flo)).GT.0.1) THEN
flo=INT(flo)
IF (neglo) flo=flo+one
ENDIF
lo=SIGN(flo*10.0**(ordlo-1),lo)
ENDIF
IF (oldhi.NE.zero) THEN
loghi=LOG10(ABS(oldhi))
ordhi=INT(loghi)
manthi=loghi-ordhi+one
IF (manthi.LT.one) THEN
manthi=manthi+one
ordhi=ordhi-one
ENDIF
fhi=10.0**manthi
IF (ABS(fhi-NINT(fhi)).GT.0.1) THEN
fhi=INT(fhi)
IF (.NOT.neghi) fhi=fhi+one
ENDIF
hi=SIGN(fhi*10.0**(ordhi-1),hi)
ENDIF
IF ((loglo-loghi.GE.2.0).AND.(oldlo.NE.zero)) THEN
hi=zero
ELSE IF ((loghi-loglo.GE.2.0).AND.(oldhi.NE.zero)) THEN
lo=zero
ENDIF
IF (ABS(lo-hi).LT.1.E-4*lo) THEN
lo=lo*.999
hi=hi*1.001
ENDIF
RETURN
END
c
c-------------------------------------------------------------------------------
c
SUBROUTINE Swap (f1,f2)
c
c ----- Swaps the values F1 and F2.
c
REAL f1,f2,temp
c
temp=f1
f1=f2
f2=temp
RETURN
END
c
c-------------------------------------------------------------------------------
c
SUBROUTINE ScaleDataSet (x1,x2,y1,y2,fits,xstart,dataset)
c
c ----- Slide/Expand/Difference the chosen data sets. This only acts on
c the raw data, NOT on the various possible fits. The fits are turned
c off for the data set affected.
c
INTEGER maxpoints,maxpointset,maxdataset,ii,i,ChooseDataSet,
* offset,cdataset,dataset,ierror,m,ds1,ds2,start1,start2,
* finish1,finish2,less,more,point
PARAMETER (maxpoints=20000,maxdataset=30,maxpointset=2000)
REAL x(maxpoints),y(maxpoints),xdata(maxpointset),
* ydata(maxpointset),xminmax(2,maxdataset),x1,x2,y1,y2,
* yminmax(2,maxdataset),r1,r2,r3,r4,slide,scale,diff,value
INTEGER xstart(maxdataset,2)
CHARACTER dset*2,UpCase*1,ans*2
LOGICAL ok,fits(5,maxdataset),f,add
c
DATA f/.FALSE./
c
COMMON /XYDat/x,y,xdata,ydata,xminmax,yminmax
c
1 CONTINUE
WRITE (*,100)
100 FORMAT ('0Choose one of the following actions:'//10X,'[S]lide ',
* 'a data set'/10X,'[E]xpand/shrink a data set'/10X,
* '[A]dd/subtract one data set from another'/10X,
* '[Q]uit and return to main menu'//' Choice [q]: ',$)
READ (*,97) ans
IF (UpCase(ans).EQ.'S') GOTO 10
IF (UpCase(ans).EQ.'E') GOTO 20
IF (UpCase(ans).EQ.'A') GOTO 30
RETURN
c
c ----- Slide the data set up/down and/or left/right
c
10 CONTINUE
WRITE (*,'((A),I2)') '0Slide which dataset : 1 - ',dataset
WRITE (*,98) ' 0 to quit, <ENTER> = current dataset: '
READ (*,97,END=1) dset
IF (dset(1:1).EQ.'0') GOTO 1
cdataset=ChooseDataSet(dset,dataset,ok)
IF (.NOT.ok) GOTO 10
IF ((cdataset.GT.dataset).OR.(cdataset.LT.1)) THEN
WRITE (*,99) 7,7,'Error in input. Reenter data set number'
GOTO 10
ENDIF
offset=xstart(cdataset,1)-1
WRITE (*,*)
WRITE (*,98) 'Do you wish to slide the data set horzontally '//
* '[n] ? '
READ (*,97,END=1) ans
IF (UpCase(ans).EQ.'Y') THEN
WRITE (*,10000) xminmax(1,cdataset),xminmax(2,cdataset),x1,x2
ii=1
12 CONTINUE
WRITE (*,98) 'Enter the amount to slide (+ve = right, -ve'//
* ' = left): '
READ (*,*,ERR=1000,IOSTAT=ierror,END=1) slide
DO 13 i=1,xstart(cdataset,2)
x(offset+i)=x(offset+i)+slide
13 CONTINUE
xminmax(1,cdataset)=xminmax(1,cdataset)+slide
xminmax(2,cdataset)=xminmax(2,cdataset)+slide
DO 14 i=2,5
fits(i,cdataset)=f
14 CONTINUE
ENDIF
WRITE (*,*)
WRITE (*,98) 'Do you wish to slide the data set vertically '//
* '[n] ? '
READ (*,97,END=1) ans
IF (UpCase(ans).EQ.'Y') THEN
WRITE (*,10001) yminmax(1,cdataset),yminmax(2,cdataset),y1,y2
ii=2
15 CONTINUE
WRITE (*,98) 'Enter the amount to slide (+ve = up, -ve'//
* ' = down): '
READ (*,*,ERR=1000,IOSTAT=ierror,END=1) slide
DO 16 i=1,xstart(cdataset,2)
y(offset+i)=y(offset+i)+slide
16 CONTINUE
yminmax(1,cdataset)=yminmax(1,cdataset)+slide
yminmax(2,cdataset)=yminmax(2,cdataset)+slide
DO 17 i=2,5
fits(i,cdataset)=f
17 CONTINUE
ENDIF
GOTO 10
c
c ----- Expand/contract the data set in the x/y directions
c
20 CONTINUE
WRITE (*,'((A),I2)') '0Scale which dataset : 1 - ',dataset
WRITE (*,98) ' 0 to quit, <ENTER> = current dataset: '
READ (*,97,END=1) dset
IF (dset(1:1).EQ.'0') GOTO 1
cdataset=ChooseDataSet(dset,dataset,ok)
IF (.NOT.ok) GOTO 20
IF ((cdataset.GT.dataset).OR.(cdataset.LT.1)) THEN
WRITE (*,99) 7,7,'Error in input. Reenter data set number'
GOTO 20
ENDIF
offset=xstart(cdataset,1)-1
WRITE (*,*)
WRITE (*,98) 'Do you wish to scale the X range [n] ? '
READ (*,97,END=1) ans
IF (UpCase(ans).EQ.'Y') THEN
WRITE (*,10000) xminmax(1,cdataset),xminmax(2,cdataset),x1,x2
WRITE (*,10002)
ii=3
21 CONTINUE
WRITE (*,98) 'Conversion: '
READ (*,*,ERR=1000,IOSTAT=ierror,END=1) r1,r2,r3,r4
IF ((r1.EQ.r2).OR.(r3.EQ.r4)) GOTO 1000
scale=(r4-r3)/(r2-r1)
DO 22 i=1,xstart(cdataset,2)
x(offset+i)=x(offset+i)*scale
22 CONTINUE
xminmax(1,cdataset)=xminmax(1,cdataset)*scale
xminmax(2,cdataset)=xminmax(2,cdataset)*scale
DO 23 i=2,5
fits(i,cdataset)=f
23 CONTINUE
ENDIF
WRITE (*,*)
WRITE (*,98) 'Do you wish to scale the Y range [n] ? '
READ (*,97,END=1) ans
IF (UpCase(ans).EQ.'Y') THEN
WRITE (*,10001) yminmax(1,cdataset),yminmax(2,cdataset),y1,y2
WRITE (*,10002)
ii=4
24 CONTINUE
WRITE (*,98) 'Conversion: '
READ (*,*,ERR=1000,IOSTAT=ierror,END=1) r1,r2,r3,r4
IF ((r1.EQ.r2).OR.(r3.EQ.r4)) GOTO 1000
scale=(r4-r3)/(r2-r1)
DO 25 i=1,xstart(cdataset,2)
y(offset+i)=y(offset+i)*scale
25 CONTINUE
yminmax(1,cdataset)=yminmax(1,cdataset)*scale
yminmax(2,cdataset)=yminmax(2,cdataset)*scale
DO 26 i=2,5
fits(i,cdataset)=f
26 CONTINUE
ENDIF
GOTO 20
c
c ----- Subtract/add one data set from/to another
c
30 CONTINUE
WRITE (*,*)
WRITE (*,98) '[A]dd, [S]ubtract, or [Q]uit [q]: '
READ (*,97,END=1) ans
IF (ans.EQ.'qq') RETURN
ans=UpCase(ans)
IF (ans.EQ.'Q') GOTO 1
add=(ans.EQ.'A')
ii=5
31 CONTINUE
WRITE (*,3100) dataset
3100 FORMAT (' Enter the dataset numbers (first +- second = newfirst)',
* ' [ 1 - ',I<INT(LOG10(FLOAT(dataset)))+1>,']: ',$)
READ (*,*,ERR=1000,IOSTAT=ierror,END=1) ds1,ds2
IF ((ds1.GT.dataset).OR.(ds2.GT.dataset).OR.(ds1.LT.1).OR.
* (ds2.LT.1).OR.(ds1.EQ.ds2)) GOTO 1000
start1=xstart(ds1,1)
start2=xstart(ds2,1)
finish1=start1-1+xstart(ds1,2)
finish2=start2-1+xstart(ds2,2)
32 CONTINUE
IF (x(start1).LT.x(start2)) THEN
start1=start1+1
IF (start1.GT.finish1) GOTO 37
GOTO 32
ENDIF
33 CONTINUE
IF (x(finish1).GT.x(finish2)) THEN
finish1=finish1-1
IF (start1.GT.finish1) GOTO 37
GOTO 33
ENDIF
c
c ----- Now, data set 1 is bracketed inside data set 2. A linear
c interpolation is used between two points from data set 2 to
c correspond to the point in question from data set 1.
c
more=start2+1
DO 35 point=start1,finish1
34 CONTINUE
IF (x(more).LT.x(point)) THEN
more=more+1
IF (more.GT.finish2) GOTO 38
GOTO 34
ENDIF
less=more-1
diff=x(more)-x(less)
value=y(more)
IF (diff.GT.0.0) value=value-(value-y(less))*(x(more)-x(point))/
* diff
IF (add) value=-value
y(point)=y(point)-value
35 CONTINUE
DO 36 i=2,5
fits(i,ds1)=f
36 CONTINUE
GOTO 30
37 CONTINUE
WRITE (*,'(''0'',2A1,(A),I3,A2,I3,(A))') 7,7,
* '*** Error. Datasets',ds1,',',ds2,' do not overlap. ***'
GOTO 30
c
c ----- Should never actually get here
c
38 CONTINUE
WRITE (*,99) 7,7,'*** Program error in adding/subtracting. ***'
GOTO 30
c
c ----- Error checking/error flag resetting routine
c
1000 CONTINUE
WRITE (*,99) 7,7,'*** Error in input - redo! ***'
IF (ierror.GT.0) CALL ERRTST (ierror,m)
GOTO (12,15,21,24,31),ii
97 FORMAT ((A))
98 FORMAT (1X,(A),$)
99 FORMAT ('0',2(A1),(A))
10000 FORMAT ('0Range of x-coordinate for this dataset is [ ',E10.3,
* ' to ',E10.3,' ]'/' Current plotting range of x-coordinate',
* ' is [ ',E10.3,' to ',E10.3,' ]'/)
10001 FORMAT ('0Range of y-coordinate for this dataset is [ ',E10.3,
* ' to ',E10.3,' ]'/' Current plotting range of y-coordinate',
* ' is [ ',E10.3,' to ',E10.3,' ]'/)
10002 FORMAT ('0Enter the value to be scaled by specifying a range ',
* 'conversion:'//3X,'ex. 0 1 0 35.7'/8X,'converts the ',
* 'old range from 0 to 1 to a new range from 0 to 35.7'/)
END
c
c-------------------------------------------------------------------------------
c
c SUBROUTINE Description
cc
cc ----- A short description of the programme CurveFit
cc
c CHARACTER ans*1
cc
c WRITE (*,100)
c100 FORMAT ('0',32X,'CurveFit'//7X,'A general curve fitting routin',
c * 'e with graphics for systems with PGPlot.'//5X,
c * 'CurveFit will plot up to 30 data sets of up to 2000 points',
c * ' each,'/1X,'(to a maximum of 20000 points), saved as (xp,',
c * 'yp) in ascending {xp}'/1X,'order. It can also modify the ',
c * 'data set, by flipping the x and/or y'/1X,
c * 'axes, taking logarithms of any x and/or y data, and/or ',
c * 'scaling any'/1X,'data set in the x and/or y directions.'//5X,
c * 'In addition, CurveFit allows one to fit ',
c * 'various types of curves to'/1X,'the data sets. These ',
c * 'include:'/7X,'(a) straight line (connect the dots)'/7X,
c * '(b) cubic spline'/7X,'(c) smoothing (Bezier) polynomial',
c * /7X,'(d) low-pass Fourier transform filter'/7X,'(e) a ',
c * 'best-fit polynomial of up to 10 terms'//5X,'CurveFit is ',
c * 'menu driven and allows one to display any intermediary'/1X,
c * 'results. The x,y plotting ranges are user determined, as',
c * ' is the fitting'/1X,'range (over the x coordinate). Plots',
c * ' can be made on any device that is'/1X,'supported by PG',
c * 'Plot.'////1X,'Press <return> to continue',$)
c READ (*,'((A))') ans
c WRITE (*,'(''1'')')
c RETURN
c END
|