File: txdriv.f

package info (click to toggle)
pgplot5 5.2.2-19.8
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 7,192 kB
  • sloc: fortran: 39,795; ansic: 22,554; objc: 1,534; sh: 1,298; makefile: 269; pascal: 233; perl: 209; tcl: 190; awk: 51; csh: 25
file content (4663 lines) | stat: -rw-r--r-- 180,122 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
C*TXDRIV -- driver for TeX PK Font output
C+
      SUBROUTINE TXDRIV (IFUNC, RBUF, NBUF, CHR, LCHR)
      IMPLICIT NONE
      SAVE
      INTEGER IFUNC, NBUF, LCHR
      REAL    RBUF(*)
      CHARACTER*(*) CHR
C                                                            
C PGPLOT driver for PGPLOT TeX PK Font Output files 
C (produces output files 'pgplot.300pk' and 'pgplot.tfm'),
C {the 300 is dots/per inch and might be different if a 
C different resolution is used}).
C                                                           
C Device type code: /TX
C                                                              
C Supported device: PK Font files for TeX on a Vax or on MIPS.
C                                                          
C Default file names: 'pgplot.RESpk', 'pgplot.tfm'  where the 
C "res" is a default value of 300 but may be set to something
C else.  If "res"=300, then the default file names would be
C 'pgplot.300pk' and 'pgplot.tfm'.
C If more than 15 font characters are produced, then the file
C names become 'pgplot_2.300pk' and 'pgplot_2.tfm'  ,etcetera
C for each set of 15 characters output (i.e.- for each PK
C font produced).
C                                                             
C Default view surface dimensions: 2.8 inches x 2.8 inches
C (but may be overridden by the logicals  PGPLOT_TX_YINCHES,
C and PGPLOT_TX_XINCHES        
C      { $DEFINE PGPLOT_TX_XINCHES "5.0"   
C        $DEFINE PGPLOT_TX_YINCHES "4.5"
C   would provide a "view" surface of 5.0 inches horizontally
C       by 4.5 inches vertically.}).
C       { setenv PGPLOT_TX_XINCHES "5.0"
C         setenv PGPLOT_TX_YINCHES "4.5"
C         would be the equivalent UNIX command.  Everywhere
C         you see the command $DEFINE...   use the command 
C         setenv...  under UNIX}.
C                                                       
C    Driver        Size (H x V) inches
C    ------        ------------
C     TX01          2.80 x 2.80
C                                                                    
C                                                                
C                                                              
C                      
C Resolution: 300 dots per inch Horizontal and Vertical
C             (made be overridden by the logicals
C              PGPLOT_TX_XRESOL and PGPLOT_TX_YRESOL
C             { $DEFINE PGPLOT_TX_XRESOL "78.0" 
C               $DEFINE PGPLOT_TX_YRESOL "78.0"
C              will produce a font at 78 dots per inch
C              resolution.  This would be good for a
C              Vaxstation 2000 workstation.}).
C              The default 300 dots per inch is good for a
C              laser printer such as a QMS1200 LaserGrafix 
C              or an HP2000 LaserJet.
C--
C
C+
C                                                 
C Color capability: Color indices 0 (erase, white)
C and 1 (black) are supported. It is not possible to
C change color representation.
C                                                 
C Output Orientation: Portrait.  (Can be overridden by the
C                      logical PGPLOT_TX_ORIENT 
C               { $DEFINE PGPLOT_TX_ORIENT "LANDSCAPE"}).
C                                                    
C Input capability: None.
C                                                         
C File formats: TeX PK Font file format, and TeX
C               TFM file format.  The files are output as
C               FORTRAN, DIRECT ACCESS, UNFORMATTED, 
C               512 BYTE RECORDS so that we can have
C               compatability with the VAX and our
C               UNIX machine.  {A raw bitmap copy is
C               also possible if you define the logical
C               PGPLOT_TX_BITFILE .  
C               $ DEFINE PGPLOT_TX_BITFILE "MINIMAL"
C               will produce a file copy of the portion
C               of the bitmap which is within the minimal
C               bounding box of the character.
C               $ DEFINE PGPLOT_TX_BITFILE "ALL" will produce
C               a file copy of the complete bitmap of the
C               graphics character.}
C                                                       
C Obtaining hardcopy: Use the command DUMP to view the
C               output files, or run TeX and include the
C               character of this new font and DVI the output
C               and print the resulting  binary file to the
C               correct printer (with PASSALL, NOFEED, or
C               whatever is required for printing binary
C               output to your specific printer). Also, the
C               PKTYPE and TFTOPL TeX debugging programs will
C               allow you to view your output font
C               characteristics.
C                                                             
C ----------------------------------------------------------------------
C                                                        
C----------------------------------------------------------------------
C
C+
C TeX Example:  Assume you have produced a graph into a
C PK Font and that the output file names are 'pgplot.300pk' 
C and 'pgplot.tfm' then the following lines in your TeX code
C would include the graph corresponding to the letter "A"
C of the TeX PK font "PGPLOT" in the middle of your paper:
C                                                                 
C            \font\myfntname=pgplot
C              This is sentence one of the TeX file.
C              Now I will include the character.
C            \centerline{\myfntname A }
C              This is the last sentence.
C            \bye
C                                                         
C   Of course, you must tell TeX and the DVI driver where
C   to find your fonts.  On our VAX, we have defined a
C   search list so that if you define the logical
C   TEX_USER_FONTS to be your directory where you keep your
C   fonts, then TeX and the DVI driver will find the
C   'pgplot.tfm' file and the 'pgplot.300pk' file.  So, 
C   $DEFINE TEX_USER_FONTS  SYS$USERDISK:[USERNAME.FONTS]
C   would cause TeX and the DVI driver to search the normal
C   search path and also the directory 
C   SYS$USERDISK:[USERNAME.FONTS] for any fonts that you
C   specified in your TeX file.  {Here is an exception for
C   the UNIX. Our UNIX TeX and DVI programs will look in your
C   current directory automatically for the fonts and then
C   will check the system library if it cannot find the
C   fonts in your directory.  So you CANNOT  setenv 
C   TEX_USER_FONTS on our UNIX system...}.
C                                                    
C   Notes:
C     You must change the resolution for different output
C   devices (our DVI driver, DVIHP, for our HP2000 LaserJet
C   would use a resolution of 300 dots per inch; while our
C   DVI driver for the Vaxstation 2000 workstation would
C   need a resolution of 78 dots per inch.  The 'pgplot.tfm'
C   file would of course be the same in both cases, but the  
C   DVI drivers would look for 'pgplot.300pk' and 'pgplot.78pk'
C   respectively).  If you produce an image which is too large
C   (by defining logicals PGPLOT_TX_XINCHES and PGPLOT_TX_YINCHES)
C   then some DVI drivers will leave the page blank where the
C   graph of the character belongs (can sometimes use \hsize and
C   \vsize to help with this).  Finally,  if your device driver
C   only works with PXL files (like our PRINTRONIX DVI driver),
C   then you may want to run the   PKTOPX  program to convert
C   the PK Font into a PXL Font which your device driver needs.
C  -----------------------------------------------------------------------
C-------------------------------------------------------------------------
C
C+
C                                                                 
C                                                                
C  The above example for LaTeX would be: 
C                                                     
C           This is the first sentence.
C           Now I will include the character as a figure.
C           \begin{figure}
C           \newfont{\myfntname}{pgplot}
C           \centerline{\myfntname A}
C           \caption{Letter A of PGPLOT font}
C           \end{figure}
C           This is the last sentence.
C                                                    
C  And you would need to define TEX_USER_FONTS on the Vax
C  as before {but again, not under UNIX}.
C  ---------------------------------------------------------------------
C                                                   
C Version 1.2 - 24-SEP-1989 - Bob Forrest, Electrical Engineering Dept.
C     Texas A&M University; College Station,Texas 77843
C                 bitnet: FORREST@TAMVXEE
C               internet: forrest@ee.tamu.edu  
C ----------------------------------------------------------------------
C----------------------------------------------------------------------
C               
C ***  Note: SAVE statement is required in this routine, TXDRIV, and
C ***  in routines GRTX11 and GRTX12.  The values of some of
C ***  the variables in each of these 3 routines are required
C ***  upon entry to remain the same as the last time the routine was
C ***  executed.
C 
C *** PORTABILITY NOTES: ...search for the word "portability"
C ***                               or the word "PORTABILITY"  
C     -- ... -- 
C Note: {The Vax uses bytes with values from -128 to 127. I therefore
C use integers for my calculations, and then output the resulting
C values as a byte by calling two routines which buffer the output
C up until 512 bytes have been buffered and then writes this 1 record,
C resets the buffer count and starts buffering again,   and also the
C routine recieves the integer value in the range 0 to 255, 
C then converts the value to the byte value from -128 to 127 and
C then buffers the byte value for the write to the file.
C The routines GRTX11 does this for the PK file, and GRTX12 does
C this for the TFM file.  Routines GRTX11 and GRTX12 will definitely
C haved to be modified if bytes are read and written as NON-SIGNED
C quantities on a different computer.}
C Note: {The routine GRTX05 uses an assignment statement SOLBLK='FF'X
C to set a parameter to have all ones in its bit positions -
C and SOLWHT='00'X to set a parameter to have all zeros in its bit positions--
C this may need to be changed in porting the code to other machines.
C The variables BITMAP and BUFFER are byte variables and thus
C use non-standard FORTRAN language in setting and comparing
C values  throughout this driver code. Anywhere that byte variables
C are used is a suspect in porting this code to other machines.}
C *** I believe that TeX, etc., uses ASCII internally so that
C *** the way I have coded the letters will work correctly.
C *** However, if porting to other machines, keep in mind that
C *** I have hard-coded the character representations as ASCII values
C *** specific to a VAX.
C *** Note:  I wrote most of the comments as I was writing these routines.
C ***        There had to be some rewrites on some of the routines,
C ***        such as changing BENCOD from a byte array to an integer
C ***        array, and rewriting the RUN CODING routine.  I tried to
C ***        go back and modify the comments that
C ***        I could think of being incorrect.  However, I was admittedly
C ***        pressed for time, and may have missed some of the comments,
C ***        I did not go back over the source code line for line.
C=======================================================================
C-----------------------------------------------------------------------
C *** NDEV is an integer parameter containing the number of currently
C *** supported default device configurations (1, the rest have to be
C *** gotten by using logicals (or "environment variables"). 
C *** LNWFIL is a logical variable which determines whether a
C *** a new PK font file and TFM file are to be opened while
C *** closing the current PK and TFM files.
C *** INIT is a logical variable which is used to set up the initial
C *** variables the first time this routine is invoked. INIT is used
C *** as a flag, the first time we initialize the variables, the next
C *** time we do not.
C *** PORTRAIT is a logical array which is used to tell whether the 
C *** output is to be assumed to be in PORTRAIT mode or LANDSCAPE mode.
C *** BITMAP is an integer which is used to hold an address pointing
C *** to a dynamically allocated memory array.  In later 
C *** routines, BITMAP is a two dimensional array which contains
C *** a bitmap of the current graph.
C *** BX is an integer giving the x-direction dimension of the array BITMAP.
C *** BY is an integer giving the y-direction dimension of the array BITMAP.
C *** DEVICE is an integer pointing to the current default device selected
C *** (some of the setup may still be overridden by logicals however).
C *** IC is an integer variable containing the color index (1=black,0=white)
C *** to be used on calls to GRTX00 to draw dots, lines, or to clear dots,lines.
C *** ITMPVR is a temporary integer variable used only intermediately in
C *** calculations.
C *** GRGMEM is an integer function used to allocate contiguous bytes
C *** of memory dynamically at run time.
C *** GRFMEM is an integer function used free contiguous bytes of
C *** memory back up.
C *** LUN is an integer array containing the logical unit numbers of
C *** the PK file (LUN(1)) and the TFM file (LUN(2)).
C *** NPICT is an integer used to reference the current picture frame
C *** being drawn?????.
C *** PKOUT is an integer variable containing the count on the
C *** number of PK Font files up through the current one, that
C *** have (or are) being written.
C *** CURCHA is an integer variable containing the ASCII value in
C *** base10 for the current character being encoded as a PK 
C *** Font character.
C *** IER is an integer array used to obtain the function return values
C *** for the GRGMEM and GRFMEM functions.
C *** BC is an integer used to contain the ASCII value for the beginning
C *** character of the PK Font.
C *** NPKBYT is an integer variable used to keep a running total on 
C *** the number of bytes written to the PK file.
C *** MAXX is a real variable which contains the default maximum
C *** horizontal device coordinate. [0,MAXX(DEVICE)] is the allowed 
C *** default range.
C *** MAXY is a real variable which contains the default maximum
C *** vertical device coordinate. [0,MAXY(DEVICE)] is the allowed 
C *** default range.
C *** RESOLX is a real variable which contains the default resolution in
C *** dots per inch in the horizontal direction.
C *** RESOLY is a real variable which contains the default resolution in
C *** dots per inch in the vertical direction.
C *** XMAX is a real variable which contains the actual chosen maximum
C *** horizontal device coordinate (MAXX unless user specifies different).
C *** YMAX is a real variable which contains the actual chosen maximum
C *** vertical device coordinate (MAXY unless user specifies different).
C *** TMPRES is a real variable used only for temporary calculations.
C *** TMPMXX is a real variable used only for temporary calculations.
C *** TMPMXY is a real variable used only for temporary calculations.
C *** DEFNAM is a character variable used to contain the default
C *** file name prefix.
C *** MODE is a temporary character variable used for checking the 
C *** values of logical variabels (or "environment variables").
C *** MSG is a temporary character variable used in string operations.
C *** PKFILE is a character variable used to contain the PK file name.
C *** TFMFIL is a character variable used to contain the TFM file name.
C *** DEFPK is a character variable used to contain the default PK
C *** file name.
C *** TFMDEF is a character variable used to contain the default TFM
C *** file name.
C *** CTMPST is a temporary character variable used in string operations.
C *** BITFIL is a character variable used to contain the BITMAP file
C *** name.
C *** DEFBIT is a character variable used to contain the default BITMAP
C *** file name.
C *** CHINFO is an integer array used to contain information about each PK
C *** font character.  CHINFO is output as part of the TFM file.  
C *** WIDTH is an integer array used to contain information about each PK
C *** font character. WIDTH is a table containing the width of each
C *** of the PK font characters. WIDTH is output to the TFM file.
C *** HEIGHT is an integer array used to contain information about each PK
C *** font character.  HEIGHT is a table containing the height of each
C *** of the PK font characters. HEIGHT is output to the TFM file.
C *** IXBXLL, IYBXLL is the lower left corner of the minimal bounding
C *** box of the graphics character (which is found in the RUN CODE routine).
C *** IXBXUR, IYBXUR is the upper right corner of the minimal bounding
C *** box of the graphics character (which is found in the RUN CODE routine).
C *** CHBITD is a character variable used to contain the requested
C *** type of BITMAP DUMP if one is requested -- possible values
C *** are 'MINIMAL' and 'ALL'.
C *** LBUSED is a logical used to determine whether the BITMAP has been
C *** written to or not (in case PGPAGE or PGADVANCE are called before
C *** actually drawing anything in the BITMAP array).
C-----------------------------------------------------------------------
C                                       This is the number of currently
C                                       installed devices.
      INTEGER*4  NDEV
      PARAMETER  (NDEV = 1)
C
      LOGICAL    LBITFO, LNEWFL, INIT, PORTRAIT(NDEV), LBUSED
      INTEGER*4  BITMAP, BX,BY,DEVICE,I,J,K,IC,ITMPVR
      INTEGER*4  PKOUT,CURCHA,JTMP1,JTMP2,NPICT,LUN(2),SS_NORMAL
C
      INTEGER*4  GRFMEM, GRGMEM
C 
      INTEGER*4  IER, BC, NPKBYT,IXBXLL,IYBXLL,IXBXUR,IYBXUR
      REAL*4     MAXX(NDEV),MAXY(NDEV),RESOLX(NDEV),RESOLY(NDEV) 
      REAL*4     XBUF(4), XMAX, YMAX , TMPRES, TMPMXX, TMPMXY
      CHARACTER  DEFNAM*6,MODE*20,MSG*10,CHBITD*7
      CHARACTER  PKFILE*80,TFMFIL*80,DEFPK*80,DEFTFM*80,CTMPST*80
      CHARACTER  BITFIL*80,DEFBIT*80,CHTMPS*80
      BYTE BYTVAL
C *** PARAMETER  (DEFNAM = 'PGPLOT')
C *** Use lower case instead for unix...
      PARAMETER  (DEFNAM = 'pgplot')
      PARAMETER  (SS_NORMAL = 1)
      PARAMETER  (BC=65)
C ***    BC could be chosen to be a different value here (and it
C ***    would be changed throught the TeX PK font driver routines).
C ***    Note:  0<=BC<256 is required.  BC is the beginning ASCII
C ***    value of the PK font,  A=65base10.  If you want some other
C ***    character as first, then change the value of BC.
C ***    These TeX PK Font driver routines were designed to only
C ***    have 15 characters per font, but the driver is capable of
C ***    producing several fonts.  The Characters codes reset to
C ***    begin with BC for each font.
      INTEGER CHINFO(BC:BC+14,4),WIDTH(0:15,4),HEIGHT(0:15,4),IWHITE
      PARAMETER(IWHITE='00'X)
C                                      Set up initialization for first call.
      DATA INIT  /.TRUE./
C                                      Set the default color to black(=1).
      DATA IC /1/
C                                      Set the bitmap to not used.
      DATA LBUSED /.FALSE./  
C                                      These are the NDEV sets of 
C                                      device characteristics.
      DATA PORTRAIT /.TRUE./
      DATA MAXX     / 855.0/
      DATA MAXY     / 855.0/
      DATA RESOLX   / 300.0/
      DATA RESOLY   / 300.0/
C-----------------------------------------------------------------------
      IF (INIT) THEN
         DEVICE=1
C ***       Check the logicals (or "Environment variables") beginning
C ***       with "PGPLOT_" for overriding the defaults listed above.
         CALL GRGENV ('TX_XRESOL', MODE, I)
         READ(UNIT=MODE,FMT=*,ERR=1,END=1) TMPRES
           IF(TMPRES.LE.0.0 .AND. MODE.NE.' ')
     2         CALL GRWARN('PGPLOT_TX_XRESOL '
     3         //'has been defined to be < 0.0 dots per inch. '
     4         //' **** IGNORING and continuing... *** ')
           IF(TMPRES.GT.0.0) RESOLX(DEVICE)=TMPRES
1        CALL GRGENV ('TX_YRESOL', MODE, I)
         READ(UNIT=MODE,FMT=*,ERR=2,END=2) TMPRES
           IF(TMPRES.LE.0.0 .AND. MODE.NE.' ')
     2         CALL GRWARN('PGPLOT_TX_YRESOL '
     3         //'has been defined to be <= 0.0 dots per inch. '
     4         //' **** IGNORING and continuing... *** ')
           IF(TMPRES.GT.0.0) RESOLY(DEVICE)=TMPRES
2        CALL GRGENV ('TX_XINCHES', MODE, I)
         READ(UNIT=MODE,FMT=*,ERR=3,END=3) TMPMXX
           IF(TMPMXX.GT.22.0) THEN
              CALL GRWARN('******-- PGPLOT_TX_XINCHES > 22.0 **** --- '
     2              //' This may not work correctly. The design '
     3              //'size specified in the PGPLOT TX Driver '
     4              //' (TeX PK Font output) allows a range from '
     5              //' a little less than 1/11 of an inch to '
     6              //' a little more thant 22 inches. '
     7              //' You will probably have to modify the '
     8              //'source code in order to produce output '
     9              //'larger than 22 inches. ')
           ENDIF
           IF(TMPMXX.LT.1.0/11.0 .AND. TMPMXX.GT.0.0) THEN
              CALL GRWARN('******-- PGPLOT_TX_XINCHES < 1.0/11.0 **** -'
     2              //'--  This may not work correctly. The design '
     3              //'size specified allows a range from '
     4              //' a little less than 1/11 of an inch to a '
     5              //' a little more than 22 inches. '
     6              //' You will probably have to modify the '
     7              //'source code in order to produce output '
     8              //'less than 1/11 inches. ')
           ENDIF
           IF(TMPMXX.LE.0.0 .AND. MODE.NE.' ')
     2          CALL GRWARN('PGPLOT_TX_XINCHES '
     3         //'has been defined to be <= 0.0 inches '
     4         //' **** IGNORING and continuing... *** ')
           IF(TMPMXX.GT.0.0) MAXX(DEVICE)=TMPMXX*RESOLX(DEVICE)
3        CALL GRGENV ('TX_YINCHES', MODE, I)
         READ(UNIT=MODE,FMT=*,ERR=4,END=4) TMPMXY
           IF(TMPMXY.GT.22.0) THEN
              CALL GRWARN('******-- PGPLOT_TX_YINCHES > 22.0 **** --- '
     2              //' This may not work correctly. The design '
     3              //'size specified allows a range from '
     4              //' a little less than 1/11 of an inch to a '
     5              //' a little more than 22 inches. '
     6              //' You will probably have to modify the '
     7              //'source code in order to produce output '
     8              //'greater than 22 inches. ')
           ENDIF
           IF(TMPMXY.GT.0.0 .AND. TMPMXY.LT.1.0/11.0) THEN
              CALL GRWARN('******-- PGPLOT_TX_YINCHES < 1.0/11.0 **** -'
     2              //'--  This may not work correctly. The design '
     3              //'size specified allows a range from '
     4              //' a little less than 1/11 of an inch to a '
     5              //' a little more than 22 inches. '
     6              //' You will probably have to modify the '
     7              //'source code in order to produce output '
     8              //'less than 1/11 inches. ')
           ENDIF
           IF(TMPMXY.LE.0.0 .AND. MODE.NE.' ') 
     2         CALL GRWARN('PGPLOT_TX_YINCHES '
     3         //'has been defined to be <= 0.0 inches '
     4         //' **** IGNORING and continuing... *** ')
           IF(TMPMXY.GT.0.0) MAXY(DEVICE)=TMPMXY*RESOLY(DEVICE)
4        CALL GRGENV ('TX_ORIENT', MODE, I)
           IF(MODE(1:8).EQ.'PORTRAIT') THEN
              PORTRAIT(DEVICE)=.TRUE.
              CALL GRWARN('PGPLOT_TX_ORIENT ''''PORTRAIT'''' has '
     2          //'been specified.')
           ENDIF
           IF(MODE(1:9).EQ.'LANDSCAPE') THEN
              PORTRAIT(DEVICE)=.FALSE.
              CALL GRWARN('PGPLOT_TX_ORIENT ''''LANDSCAPE'''' has '
     2          //'been specified.')
           ENDIF
         CALL GRGENV ('TX_BITFILE', MODE, I)
         LBITFO=.FALSE.
         CHBITD=' '
         IF(MODE(1:7).EQ.'MINIMUM' .OR. MODE(1:3).EQ.'ALL')THEN
              LBITFO=.TRUE.
              CHBITD=MODE
         ENDIF
C ***     Set INIT to be .FALSE. so that the above checks on 
C ***     environment variables will only occur the first time
C ***     that TXDRIV is called.
         INIT = .FALSE.
      ENDIF
C                                       Branch on opcode.
      GOTO ( 10,  20,  30,  40,  50,  60,  70,  80,  90, 100,
     1      110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
     2      210, 220, 230, 240, 250, 260), IFUNC
C                                       Signal an error.
  900 WRITE (MSG, '(I10)') IFUNC
      CALL GRWARN ('Unimplemented function in TeX PK Font' 
     1             //' device driver: '// MSG)
      NBUF = -1
      RETURN
C
C--- IFUNC = 1, Return device name -------------------------------------
C
   10 CONTINUE
C ***      This is the name seen when a "?" is entered by the user for
C ***      the desired output device for PGPLOT.
      CHR='TX (TeX PK Font generation)'
      LCHR=LEN(CHR)
      NBUF = 0
      RETURN
C
C--- IFUNC = 2, Return physical min and max for plot device, and range
C               of color indices ---------------------------------------
C
   20 CONTINUE
C ***     Negative one implies that the physical maximums are unlimited for
C ***     this device.   PGPLOT requires the minimums to be ZERO.
      RBUF(1) = 0.0
      RBUF(2) = -1
      RBUF(3) = 0.0
      RBUF(4) = -1
      RBUF(5) = 0.0
      RBUF(6) = 1.0
      NBUF = 6
      LCHR = 0
      RETURN
C
C--- IFUNC = 3, Return device resolution -------------------------------
C
   30 CONTINUE
C ***     This give the device resolution in dots per inch in the 
C ***     horizontal and vertical directions.
      RBUF(1) = RESOLX(DEVICE)
      RBUF(2) = RESOLY(DEVICE)
      RBUF(3) = 1.0
      NBUF = 3
      LCHR = 0
      RETURN
C
C--- IFUNC = 4, Return misc device info --------------------------------
C    (This device is Hardcopy, No cursor, No dashed lines, No area fill,
C    no thick lines)
C
   40 CONTINUE
      CHR = 'HNNNNNNNNN'
      NBUF = 0
      LCHR = 10
      RETURN
C
C--- IFUNC = 5, Return default file name -------------------------------
C
   50 CONTINUE
C ***    This returns the default prefix for the filenames of  TXDRIV.
      CHR = DEFNAM
      NBUF = 0
      LCHR = LEN(DEFNAM)
      RETURN
C
C--- IFUNC = 6, Return default physical size of plot -------------------
C
   60 CONTINUE
C ***   These defaults are in device coordinate values.
      RBUF(1) = 0.0
      RBUF(2) = MAXX(DEVICE)
      RBUF(3) = 0.0
      RBUF(4) = MAXY(DEVICE)
      NBUF = 4
      LCHR = 0
      RETURN
C
C--- IFUNC = 7, Return misc defaults -----------------------------------
C
   70 CONTINUE
C ***   Has to do with character fonts that PGPLOT reads in.
      IF (RESOLX(DEVICE) .GE. 300.0) THEN
         RBUF(1) = 3.0
      ELSE IF (RESOLX(DEVICE) .GE. 150.0) THEN
         RBUF(1) = 2.0
      ELSE 
         RBUF(1) = 1.0
      END IF
      NBUF = 1
      LCHR = 0
      RETURN
C
C--- IFUNC = 8, Select plot  --------------------------------------------
C                    This will be a possible future enhancement to 
C                    have several devices open at one time...
C
   80 CONTINUE
      RETURN
C
C--- IFUNC = 9, Open workstation ---------------------------------------
C
   90 CONTINUE
C                                       Assume success.
      RBUF(2) = 1.0
C
C
C *** Set up the default file name for the TeX PK Font file.
      ITMPVR=INT(RESOLX(DEVICE))
      WRITE(UNIT=MSG,FMT='(I10)') ITMPVR
      DO 91, I=10,1, -1
        IF(MSG(1:1).EQ.' ') THEN
            MSG(1:1)=MSG(2:2)
            MSG(2:2)=MSG(3:3)
            MSG(3:3)=MSG(4:4)
            MSG(4:4)=MSG(5:5)
            MSG(5:5)=MSG(6:6)
            MSG(6:6)=MSG(7:7)
            MSG(7:7)=MSG(8:8)
            MSG(8:8)=MSG(9:9)
            MSG(9:9)=MSG(10:10)
         ELSE
            GOTO 92
         ENDIF
91    CONTINUE
92    CONTINUE
      DEFPK=DEFNAM//'.'//MSG(1:I)//'pk'
C ***
C ***
C ***
C *** Set up the default file name for the TeX TFM file.
      DEFTFM=DEFNAM//'.tfm'
C *** Set up the default file name for the raw unformatted BITMAP file.
      DEFBIT=DEFNAM//'.bitmap'
C ***
C ***
C ***  Remove the '.' and any remaining characters after the '.'
C ***  from the file name.  We will append the resolution and PK to
C ***  the PK Font output file, and  TFM to the TFM file, and
C ***  BITMAP to the raw unformatted bitmap file.
C  
C *** Store CHR(1:LCHR) in a temporary string, CTMPST to work with.
      CTMPST=CHR(1:LCHR)
      DO 94, K=LCHR,1, -1
C ***                                Check for ending period on Vax.
         IF(CTMPST(K:K).EQ.'.') THEN
            DO 93, J=K,LCHR
               CTMPST(J:J)=' '
93          CONTINUE
            GOTO 95
C ***                                 Check for logical name on Vax.
         ELSE IF(CTMPST(K:K).EQ.':') THEN
            GOTO 95
C ***                                 Check for end of directory name on Vax.
         ELSE IF(CTMPST(K:K).EQ.']') THEN
            GOTO 95
C ***                                 Check for end of directory name on Unix.
         ELSE IF(CTMPST(K:K).EQ.'/') THEN
            GOTO 95
         ENDIF
94    CONTINUE
95    CONTINUE
C *** 
C *** Now, find the end of the string.
      DO 96, K=LCHR,1, -1
         IF(CTMPST(K:K).NE.' ') GOTO 97
96    CONTINUE
97    CONTINUE
      IF(K.GT.0) THEN
C ***     Set up the requested file names (otherwise, we will set it to the
C ***     DEFAULT NAMES.
          PKFILE=CTMPST(1:K)//'.'//MSG(1:I)//'pk'
          TFMFIL=CTMPST(1:K)//'.tfm'
          BITFIL=CTMPST(1:K)//'.bitmap'
      ELSE              
          PKFILE=DEFPK
          TFMFIL=DEFTFM
          BITFIL=DEFBIT
      ENDIF
C *** ----------------------------------------------------------
C                                       Obtain a logical unit number
C                                       for TeX PK Font file.
      CALL GRGLUN (LUN(1))
C                                       Check for an error.
      IF (LUN(1) .EQ. -1) THEN
          CALL GRWARN ('Cannot allocate a logical unit for PK File.')
          RBUF(2) = 0
          RETURN
      ELSE
C                                        Need to return the logical unit
C                                        number of the file.
         RBUF(1) = LUN(1)
      END IF
C ***
C
C                                                   OPEN the files.
C     *VMS         We will write out 512 bytes at a time. RMS will take 
C                  care of us when we read the file back in for DVIing it
C                  If you have problems, change ACCESS='DIRECT' to
C                  ACCESS='SEQUENTIAL' and add RECORDTYPE=FIXED and
C                  modify write statements in GRTX11 and GRTX12 to
C                  be writes to sequential files. Also, consider
C                  using the rewind statement if you do a sequential file.
      OPEN(UNIT=LUN(1),FILE=PKFILE,ACCESS='DIRECT',
     2     FORM='UNFORMATTED',STATUS='NEW',IOSTAT=IER,
     3     DISP='DELETE',
     4     RECL=128)
C
C ***      *UNIX    Want to open up a file to put "bytes on a disk --
C ***               with NO segmented record information... 512 bytes
C ***               will be written out at a time.  128*4=512 
C ***      OPEN(UNIT=LUN(1),FILE=PKFILE,ACCESS='DIRECT',
C ***     2     FORM='UNFORMATTED',STATUS='NEW',IOSTAT=IER,
C ***     3     RECL=128)
C     
C
C                                       Check for an error and cleanup if
C                                       one occurred.
      IF (IER .NE. 0) THEN
          CALL GRWARN ('Cannot open output file for TeX PK '
     2                 //'Font.')
          RBUF(2) = 0
          CALL GRFLUN (LUN(1))
          RETURN
      ELSE
C                                       Get the full file specification
C                                       and calculate the length of the 
C                                       string
          INQUIRE (UNIT = LUN(1), NAME = CHR)
          LCHR = LEN (CHR)
98        CONTINUE
          IF (CHR (LCHR:LCHR) .EQ. ' ') THEN
              LCHR = LCHR - 1
              GOTO 98
          END IF
      END IF
C ***                                   Initialize some indirect 
C ***                                   file pointer information.
      CALL GRTX14
C ***
C
C                                             
C
C                                        Obtain a logical unit number
C                                        for TeX TFM file.
      CALL GRGLUN (LUN(2))
C                                       Check for an error.
      IF (LUN(2) .EQ. -1) THEN
          CALL GRWARN ('Cannot allocate a logical unit for TFM file.')
          CLOSE(UNIT=LUN(1))
          CALL GRFLUN (LUN(1))
          RBUF(2) = 0
          RETURN
      END IF
C
      IF (LUN(2) .EQ. LUN(1)) THEN
         CALL GRWARN('ERROR IN PGPLOT LIBRARY GRGLUN FUNCTION. '
     2            //'IDENTICAL UNIT NUMBERS WERE RETURNED TO '
     3            //'TXDRIV ROUTINE.')
         CALL GRQUIT('EXITING BACK TO OPERATING SYSTEM FROM TXDRIV.')
         STOP
      ENDIF
C

C     *VMS         We will write out 512 bytes at a time. RMS will take 
C                  care of us when we read the file back in for DVIing it
C                  If you have problems, change ACCESS='DIRECT' to
C                  ACCESS='SEQUENTIAL' and add RECORDTYPE=FIXED and
C                  modify write statements in GRTX11 and GRTX12 to
C                  be writes to sequential files. Also,
C                  consider using the rewind statement if you do sequential
C                  files.
      OPEN(UNIT=LUN(2),FILE=TFMFIL,ACCESS='DIRECT',
     2     FORM='UNFORMATTED',STATUS='NEW',IOSTAT=IER,
     3     DISP='DELETE',
     4     RECL=128)
C
C ***      *UNIX    Want to open up a file to put "bytes on a disk --
C ***               with NO segmented record information... 512 bytes
C ***               will be written out at a time.  128*4=512 
C ***      OPEN(UNIT=LUN(2),FILE=TFMFIL,ACCESS='DIRECT',
C ***     2     FORM='UNFORMATTED',STATUS='NEW',IOSTAT=IER,
C ***     3     RECL=128)
C
C                                       Check for an error and cleanup if
C                                       one occurred.
      IF (IER .NE. 0) THEN
          CALL GRWARN('Cannot open output file for TeX TFM.')
          RBUF(2) = 0
          CLOSE(UNIT=LUN(1))
          CALL GRFLUN (LUN(1))
          CALL GRFLUN (LUN(2))
          RETURN
      ENDIF
C ***                                   Initialize some indirect 
C ***                                   file pointer information.
      CALL GRTX15
C ***
C 
C                                       Initialize the plot file.
C
C *** Set the character number to 1.
      CURCHA=1
C *** Set the PK Font file to 1.
      PKOUT=1
C *** Set the number of bytes written to the PK file to 0.
      NPKBYT=0
C *** Write the preamble to the PK Font file UNIT=LUN(1).
      CALL GRTX04 (RESOLX,RESOLY,NDEV,DEVICE,LUN,NPKBYT)
C *** Set up the TFM file arrays  CHINFO, WIDTH, HEIGHT.
C *** The CHINFO table will remain as set up.  The WIDTH and HEIGHT
C *** tables will be modified for each of the PK Font characters
C *** as the character is written to the PK file. 
      DO 99, I=0,14
C ***    The width table index is in the first byte.
         CHINFO(BC+I,1)=I+1
C ***    The height table index is in the first nybble of the 
C ***    of the second byte, while the depth table index is in the 
C ***    second nybble of the second byte. 
         CHINFO(BC+I,2)=16*(I+1)
C ***    The italic table index is in the first six bits of the 
C ***    third byte, while the tag index is in the last two bits
C ***    of the third byte. (Tag=0 means remainder byte 4 is unused).
         CHINFO(BC+I,3)=0
C ***    This is the remainder byte.  It is unused for our purposes.
         CHINFO(BC+I,4)=0
C ***    Initialize the width table to zero.  The width table will be
C ***    modified as each character is written to the PK file.
         WIDTH(I,1)=0
         WIDTH(I,2)=0
         WIDTH(I,3)=0
         WIDTH(I,4)=0
C ***    Initialize the height table to zero. The height table will be
C ***    modified as each character is written to the PK file.
         HEIGHT(I,1)=0
         HEIGHT(I,2)=0
         HEIGHT(I,3)=0
         HEIGHT(I,4)=0
99    CONTINUE
C ***
C ***
C ***      
C
C                                       Initialize the page counter.
      NPICT = 0
      RETURN
C
C--- IFUNC = 10, Close workstation -------------------------------------
C
  100 CONTINUE
C                                       Write out the postamble to
C                                       the TeX PK file and TeX TFM 
C                                       file and close the files.
C
               LNEWFL=.FALSE.
               CALL GRTX03 (LUN,PKFILE,TFMFIL,
     2                 CURCHA,PKOUT,RESOLX,RESOLY,XMAX,YMAX,
     3                 NDEV,DEVICE,LNEWFL,NPKBYT,CHINFO,
     4                 WIDTH,HEIGHT,BC)

C
      RETURN
C
C--- IFUNC = 11, Begin picture -----------------------------------------
C
  110 CONTINUE
C                                       Set the bitmap size.
      XMAX = RBUF(1)
      YMAX = RBUF(2)
C                                       Calculate the dimensions of the
C                                       plot BITMAP.
      IF (PORTRAIT(DEVICE)) THEN
         BX = INT (XMAX) / 8 + 1
         BY = INT (YMAX) + 1
      ELSE
         BX = INT (YMAX) / 8 + 1
         BY = INT (XMAX) + 1
      END IF
C                                       Allocate a 2-D array in memory 
C                                       for the BITMAP plot by obtaining
C                                       BX*BY contiguous bytes of memory.      
      IER = GRGMEM (BX * BY, BITMAP)
C                                       Check for error and clean up
C                                       if one was found.
      IF (IER .NE. SS_NORMAL) THEN
          CALL GRGMSG (IER)
          CALL GRQUIT ('Failed to allocate a memory for plot BITMAP.')
      END IF
C                                       Increment the page number.
      NPICT = NPICT + 1
C                                       start graphics mode.
C                                       Zero out the plot BITMAP memory array.
      BYTVAL='00'X
      CALL GRTX13 (BX*BY, %VAL(BITMAP),BYTVAL)
C                                       Set up BITMAP as not used.
      LBUSED=.FALSE.
      RETURN
C
C--- IFUNC = 12, Draw line ---------------------------------------------
C
  120 CONTINUE
C                                       Apply any needed tranformation.
      IF (PORTRAIT(DEVICE)) THEN
         DO 125 I = 1, 4
            XBUF(I) = RBUF(I)
  125    CONTINUE
      ELSE      
         XBUF(1) = RBUF(2)
         XBUF(2) = XMAX - RBUF(1)
         XBUF(3) = RBUF(4)
         XBUF(4) = XMAX - RBUF(3)
      END IF
C                                       Draw the point into the bitmap.
      CALL GRTX00 (1, XBUF, IC, BX, BY, %VAL (BITMAP))
C                                       If point "drawn" was not an 
C                                       erasure (white), then set 
C                                       BITMAP as having been used.
      IF(IC.NE.IWHITE) LBUSED=.TRUE.
      RETURN
C
C--- IFUNC = 13, Draw dot ----------------------------------------------
C
  130 CONTINUE
C                                       Apply any needed tranformation.
      IF (PORTRAIT(DEVICE)) THEN
         DO 135 I = 1, 2
            XBUF(I) = RBUF(I)
  135    CONTINUE
      ELSE
         XBUF(1) = RBUF(2)
         XBUF(2) = XMAX - RBUF(1)
      END IF
C                                       Draw the point into the bitmap.
      CALL GRTX00 (0, XBUF, IC, BX, BY, %VAL(BITMAP))
C                                       If point "drawn" was not an 
C                                       erasure (white), then set 
C                                       BITMAP as having been used.
      IF(IC.NE.IWHITE) LBUSED=.TRUE.
      RETURN
C

C--- IFUNC = 14, End picture -------------------------------------------
C
  140 CONTINUE
C                                       Need to write out the Font character.
C ***    Encode the current PK Font character and write it out.
C *** ------------------------------------
         DO 141, JTMP2=LEN(PKFILE),2,-1
           IF(PKFILE(JTMP2:JTMP2).NE.' ') GOTO 142
141      CONTINUE
142      CONTINUE
C ***    PORTABILITY NOTE: Might want to use   JTMP1=ICHAR('A')+CURCHA-1
C ***    or something equivalent if on an EBCDIC machine... ?
C ***    I think (but I'm not sure) that TeX, etcetera, use ASCII internally.
C ***    I coded this as VaX specific.
         JTMP1=BC+CURCHA-1
C        IF(ICHAR('A').NE.65) CALL GRWARN('Next message is not correct.'
C    2     //'it assumes that the ASCII value of A was 65base10.')
C
C ----------------
C *** *UNIX impossible string concatenation bug workaround. Also works
C ***       under *VMS .
         CHTMPS=PKFILE
         CALL GRWARN('Starting to process the image '
     2            //'to produce the PK Font    '''//CHTMPS(1:JTMP2)
     3            //'''    letter   '''//CHAR(JTMP1)//'''   from '
     4            //'your BITMAP...')
C -----------------
C
C ***    Test to se if BITMAP has been drawn to (used).
         IF(.NOT. LBUSED) THEN
            CALL GRWARN('Blank page was submitted for making '
     2              //'a character out of. -- ignoring this '
     3              //'blank character and continuing.')
            GOTO 149
         ENDIF
C ----------------
C *** Time to process the bitmap into a PK Font character.
C
         CALL GRTX02 (BX,BY,%VAL(BITMAP),CURCHA,
     2                RESOLX,RESOLY,XMAX,YMAX,NDEV,
     3                DEVICE,LUN,NPKBYT,CHINFO,
     4                WIDTH,HEIGHT,BC,IXBXLL,IYBXLL,IXBXUR,IYBXUR)
C ----------------
C ***    PORTABILITY NOTE: Might want to use   JTMP1=ICHAR('A')+CURCHA-1
C ***    or something equivalent if on an EBCDIC machine... ?
C ***    I think (but I'm not sure) that TeX, etcetera, use ASCII internally.
C ***    I coded this as VaX specific.
C        IF(ICHAR('A').NE.65) CALL GRWARN('Next message is not correct.'
C    2     //'it assumes that the ASCII value of A was 65base10.')
C
C ----------------
C ***    Increment the character count.
C ----------------
C *** *UNIX impossible string concatenation bug workaround. Also works
C ***       under *VMS .
         CHTMPS=PKFILE
         CALL GRWARN('Finished processing '
     2            //'the PK Font    '''//CHTMPS(1:JTMP2)
     3            //'''    letter   '''//CHAR(JTMP1)//'''   from '
     4            //'your BITMAP...')
C -----------------
         CURCHA=CURCHA+1
         IF(CURCHA.GE.16) THEN
C ***       Need to start a new PK Font. We may only have up to
C ***       15 characters per Font.
            LNEWFL=.TRUE.
            CALL GRTX03 (LUN,PKFILE,TFMFIL,
     2             CURCHA,PKOUT,RESOLX,RESOLY,XMAX,YMAX,
     3             NDEV,DEVICE,LNEWFL,NPKBYT,CHINFO,
     4             WIDTH,HEIGHT,BC)
C ***       Set the current character to the first one in the Font.
            CURCHA=1
C ***       Increment the number of Fonts produced.
            PKOUT=PKOUT+1                           
C ***       Reset the TFM arrays CHINFO, WIDTH, HEIGHT for the new Font.
C ***       The CHINFO table will remain as set up.  The WIDTH and HEIGHT
C ***       tables will be modified for each of the PK Font characters
C ***       as the character is written to the PK file. 
            DO 143, I=0,14
C ***         The width table index is in the first byte.
              CHINFO(BC+I,1)=I+1
C ***         The height table index is in the first nybble of the 
C ***         of the second byte, while the depth table index is in the 
C ***         second nybble of the second byte. 
              CHINFO(BC+I,2)=16*(I+1)
C ***         The italic table index is in the first six bits of the 
C ***         third byte, while the tag index is in the last two bits
C ***         of the third byte. (Tag=0 means remainder byte 4 is unused).
              CHINFO(BC+I,3)=0
C ***         This is the remainder byte.  It is unused for our purposes.
              CHINFO(BC+I,4)=0
C ***         Initialize the width table to zero.  The width table will be
C ***         modified as each character is written to the PK file.
              WIDTH(I,1)=0
              WIDTH(I,2)=0
              WIDTH(I,3)=0
              WIDTH(I,4)=0
C ***         Initialize the height table to zero. The height table will be
C ***         modified as each character is written to the PK file.
              HEIGHT(I,1)=0
              HEIGHT(I,2)=0
              HEIGHT(I,3)=0
              HEIGHT(I,4)=0
143         CONTINUE
C ***
C ***
C ***
          ENDIF
C ***
C ***
         IF(LBITFO.EQ..TRUE.) THEN
C ***       Dump the bitmap out to a file.
            CALL GRWARN('Writing out a copy of BITMAP '
     2              //'as you requested by PGPLOT_TX_BITFILE '
     3              //' logical.')
            CALL GRTX01 (BX, BY, %VAL (BITMAP),BITFIL,
     2              CHBITD,IXBXLL,IYBXLL,IXBXUR,IYBXUR,
     3              LUN,PKOUT,CURCHA)
         ENDIF
C
149      CONTINUE
C                                       Deallocate the memory for the 
C                                       BITMAP plot array.
        IER = GRFMEM (BX * BY, BITMAP)
C                                       Check for an error.
         IF (IER .NE. SS_NORMAL) THEN
           CALL GRGMSG (IER)
           CALL GRWARN('Failed to deallocate memory for plot BITMAP.')
         END IF
      RETURN
C
C--- IFUNC = 15, Select color index ------------------------------------
C
  150 CONTINUE
C                                       Save the requested color index.
      IC = RBUF(1)
C                                       If out of range set to black.
      IF (IC .LT. 0 .OR. IC .GT. 1) THEN
          IC = 1
          RBUF(1) = IC
      END IF
      RETURN
C
C--- IFUNC = 16, Flush buffer. -----------------------------------------
C    (Not implemented: ignored.)
C
  160 CONTINUE
      RETURN
C
C--- IFUNC = 17, Read cursor. ------------------------------------------
C    (Not implemented: should not be called.)
C
  170 CONTINUE
      GOTO 900
C
C--- IFUNC = 18, Erase alpha screen. -----------------------------------
C    (Not implemented: ignored.)
C
  180 CONTINUE
      RETURN
C
C--- IFUNC = 19, Set line style. ---------------------------------------
C    (Not implemented: should not be called.)
C
  190 CONTINUE
      GOTO 900
C
C--- IFUNC = 20, Polygon fill. -----------------------------------------
C    (Not implemented: should not be called.)
C
  200 CONTINUE
      GOTO 900
C
C--- IFUNC = 21, Set color representation. -----------------------------
C    (Not implemented: ignored.)
C
  210 CONTINUE
      RETURN
C
C--- IFUNC = 22, Set line width. ---------------------------------------
C    (Not implemented: should not be called.)
C
  220 CONTINUE
      GOTO 900
C
C--- IFUNC = 23, Escape ------------------------------------------------
C    (Not implemented: ignored.)
C
  230 CONTINUE
      RETURN
C
C--- IFUNC = 24, Rectangle fill. ---------------------------------------
C    (Not implemented: should not be called.)
C
  240 CONTINUE
      GOTO 900
C
C--- IFUNC = 25, -------------------------------------------------------
C    (Not implemented: should not be called.)
C
  250 CONTINUE
      GOTO 900
C
C--- IFUNC = 26, Line of pixels. ---------------------------------------
C    (Not implemented: should not be called.)
C
  260 CONTINUE
      GOTO 900
C-----------------------------------------------------------------------
      END
C<FF>
C *GRTX00 -- PGPLOT TeX PK Font Driver, draw line in BITMAP
C
      SUBROUTINE GRTX00 (LINE,RBUF,ICOLOR,IBXDIM,
     2                  IBYDIM,BITMAP)
      IMPLICIT NONE
      INTEGER*4  IBXDIM,IBYDIM,ICOLOR,LINE
      BYTE       BITMAP(0:IBXDIM-1,0:IBYDIM-1)
      REAL*4     RBUF(4)
C
C Draw a straight line segment from absolute pixel coordinates (RBUF(1),
C RBUF(2)) to (RBUF(3), RBUF(4)).  The line either overwrites (sets to
C black) or erases (sets to white) the previous contents of the bitmap,
C depending on the current color index. Setting bits is accomplished
C with Non-standard Fortran as .OR.; clearing
C bits is accomplished with Non-standard Fortran as .AND. .NOT..
C
C Arguments:
C
C LINE            I I      =0 for dot, =1 for line.
C RBUF(1),RBUF(2) I R      Starting point of line.
C RBUF(3),RBUF(4) I R      Ending point of line.
C ICOLOR          I I      =0 for erase, =1 for write (black point).
C BITMAP        I/O B      (address of) the frame buffer.
C
C-----------------------------------------------------------------------
      BYTE       QMASK(0 : 7)
      INTEGER*4  K,KX,KY,LENGTH
      REAL*4     D,XINC,XP,YINC,YP
      QMASK(0)='80'X
      QMASK(1)='40'X
      QMASK(2)='20'X
      QMASK(3)='10'X
      QMASK(4)='08'X
      QMASK(5)='04'X
      QMASK(6)='02'X
      QMASK(7)='01'X
C-----------------------------------------------------------------------
      IF (LINE .GT. 0) THEN
         D = MAX (ABS (RBUF(3) - RBUF(1)), ABS (RBUF(4) - RBUF(2)))
         LENGTH = D
         IF (LENGTH .EQ. 0) THEN
            XINC = 0.0
            YINC = 0.0
         ELSE
            XINC = (RBUF(3) - RBUF(1)) / D
            YINC = (RBUF(4) - RBUF(2)) / D
         END IF
      ELSE
         LENGTH = 0
         XINC = 0.0
         YINC = 0.0
      END IF
C *** Round to nearest integer in device coordinates.
      XP = RBUF(1) + 0.5
      YP = RBUF(2) + 0.5
      IF (ICOLOR .NE. 0) THEN
         DO 100, K = 0, LENGTH
            KX = XP
            KY = YP
            BITMAP(KX/8,KY)=BITMAP(KX/8,KY) .OR.
     1                      QMASK(MOD (KX, 8))
            XP = XP + XINC
            YP = YP + YINC
100      CONTINUE
      ELSE
         DO 200, K=0,LENGTH
            KX = XP
            KY = YP
            BITMAP(KX/8,KY) = BITMAP(KX/8,KY) 
     1                 .AND. (.NOT. QMASK(MOD (KX, 8)))
            XP = XP + XINC
            YP = YP + YINC
200      CONTINUE
      END IF
C-----------------------------------------------------------------------
      RETURN
      END
C<FF>
C *GRTX01 -- PGPLOT Bitmap File Output driver, copy bitmap to output file
C
      SUBROUTINE GRTX01 (IBXDIM,IBYDIM,BITMAP,BITFIL,
     2                   CHBITD,IXBXLL,IYBXLL,IXBXUR,IYBXUR,
     3                   LUN,PKOUT,CURCHA)
      IMPLICIT NONE
      INTEGER  IBXDIM,IBYDIM,IBTLUN,IRECLB,LUN(2),PKOUT,CURCHA
      INTEGER  IXBXLL,IYBXLL,IXBXUR,IYBXUR
      BYTE     BITMAP(0:IBXDIM-1,0:IBYDIM-1)
      CHARACTER*(*) BITFIL,CHBITD
C
C Arguments:
C
C  BITLFIL         the BITMAP file name (or the default BITMAP file name).
C  IBXDIM,IBYDIM (input)  dimensions of BITMAP
C  BITMAP        (input)  the bitmap array
C  IXBXLL,IYBXLL (input)  the pixel numbers of the lower left corner of
C                         the minimal bounding box of the graphics character
C  IXBXUR,IYBXUR (input)  the pixle numbers of the upper right corner of
C                         the minimal bounding box of the graphics character
C                         NOTE: IXBXLL<IXBXUR and IYBXLL<IYBXUR .
C  LUN           (input)  contains a list of the device numbers already
C                         allocated to enable error checking.
C-----------------------------------------------------------------------
      INTEGER  I,J,IER,ITEMPV,IRECRD,ILENGT
      CHARACTER*10 MSG
C-----------------------------------------------------------------------
C                                       Set up initial record to first record.
       IRECRD=1
C                                       Set up the file name for output.
         WRITE(UNIT=MSG,FMT='(I5)') (PKOUT-1)*15+CURCHA
C ***    We will used J to keep track of the length of MSG for the
C ***    file name below.
         DO 10, J=5,1,-1
           IF(MSG(1:1).EQ.' ') THEN
              MSG(1:1)=MSG(2:2)
              MSG(2:2)=MSG(3:3)
              MSG(3:3)=MSG(4:4)
              MSG(4:4)=MSG(5:5)
              MSG(5:5)=' '
           ELSE
              GOTO 11
           ENDIF
10       CONTINUE
11       CONTINUE
       
C ***
         ILENGT=LEN(BITFIL)
         DO 20, I=ILENGT,1,-1
            IF(BITFIL(I:I).EQ.'.') GOTO 21
20      CONTINUE
21      CONTINUE
         IF(I.GT.0) THEN 
            BITFIL=BITFIL(1:I-1)//'_'//MSG(1:J)//BITFIL(I:ILENGT)
         ELSE
             CALL GRWARN('PROGRAMMING ERROR IN BITFIL FILE NAME '
     2                //'IN ROUTINE GRTX01. ERROR WAS MADE '
     3                //'BY AUTHOR OF TXDRIVER ROUTINE.')
             CALL GRWARN('TRY ANOTHER NAME FOR YOUR FILE NAME.')
             CALL GRQUIT('EXITING BACK TO OPERATING SYSTEM FROM '
     2               //'ROUTINE GRTX01.')
             STOP
         ENDIF
C                Finished with I,J,and ILENGT...
C *** -----------------------

C                                       Allocate file.
       CALL GRGLUN(IBTLUN)
       IF(IBTLUN.EQ.-1) THEN
         CALL GRWARN ('Cannot allocate a logical unit for the'
     2                //' BITMAP copy to a file.')
         RETURN
       ELSE IF (IBTLUN.EQ.LUN(1) .OR. IBTLUN.EQ.LUN(2))THEN
         CALL GRWARN('ERROR IN PGPLOT ROUTINE GRGLUN.  IDENTICAL '
     2            //'FORTRAN UNIT NUMBERS WERE RETURNED.')
         CALL GRQUIT('EXITING BACK TO OPERATING SYSTEM '
     2            //'FROM ROUTINE GRTX01.')
       ELSE
         IF(CHBITD(1:7).NE.'MINIMAL') THEN
C ------------------------------------------------------------------
           IRECLB=IBXDIM/4
           IF(FLOAT(IRECLB).LT.(FLOAT(IBXDIM)/4.0))IRECLB=IRECLB+1
C     *VMS         We will write out IRECLB*4 bytes at a time to the file.
           OPEN(UNIT=IBTLUN,FILE=BITFIL,ACCESS='DIRECT',
     2          FORM='UNFORMATTED',STATUS='NEW',
     3          IOSTAT=IER,
     4          DISP='DELETE',RECL=IRECLB)
C ***      *UNIX    
C ***           OPEN(UNIT=IBTLUN,FILE=BITFIL,ACCESS='DIRECT',
C ***     2          FORM='UNFORMATTED',STATUS='NEW',
C ***     3          IOSTAT=IER,RECL=IRECLB)
           IF(IER.NE.0) THEN
              CALL GRWARN('Cannot open the file for the BITMAP'
     2                  //' copy to a file.')
              CALL GRFLUN(IBTLUN)
              RETURN
           ENDIF
C 
C                                       Loop through bitmap
C                                       starting at top left and working
C                                       down while outputing one horizontal 
C                                       row for every write statement.
        DO 100, J=IBYDIM-1,0,-1
C                                       Write out the bitmap row (raster line)
           WRITE(IBTLUN,REC=IRECRD,ERR=600)
     2         (BITMAP(I,J),I=0,IBXDIM-1)
           IRECRD=IRECRD+1
100     CONTINUE
C                                       Close the Bitmap output file.
C ***   *VMS
        CLOSE(UNIT=IBTLUN,DISP='KEEP',ERR=500)
C ***   *UNIX
C ***        CLOSE(UNIT=IBTLUN,ERR=500)
C ***
C -------------------------------------------------------------------
      ELSE
C -------------------------------------------------------------------
           ITEMPV=(IXBXUR/8 - IXBXLL/8 + 1 ) 
           IRECLB=ITEMPV/4
           IF(FLOAT(ITEMPV/4).LT.(FLOAT(ITEMPV)/4.0))IRECLB=IRECLB+1
C                                                   OPEN the files.
C     *VMS         We will write out ireclb*4 bytes at a time to
C                  the file.
           OPEN(UNIT=IBTLUN,FILE=BITFIL,ACCESS='DIRECT',
     2          FORM='UNFORMATTED',STATUS='NEW',
     3          IOSTAT=IER,
     4          DISP='DELETE',RECL=IRECLB)
C ***      *UNIX    
C ***           OPEN(UNIT=IBTLUN,FILE=BITFIL,ACCESS='DIRECT',
C ***     2          FORM='UNFORMATTED',STATUS='NEW',
C ***     3          IOSTAT=IER,RECL=IRECLB)
           IF(IER.NE.0) THEN
              CALL GRWARN('Cannot open the file for the BITMAP'
     2                  //' copy to a file.')
              CALL GRFLUN(IBTLUN)
              RETURN
           ENDIF
C 
C                                       Loop through the bitmap
C                                       starting at top left of the 
C                                       minimal bounding box of the graphics
C                                       character and working down to the
C                                       bottom right of the minimal bounding
C                                       box of the graphics character
C                                       while outputing one horizontal 
C                                       row for every write statement.
        DO 200, J=IYBXUR,IYBXLL,-1
C                                       Write out the bitmap row (raster line)
           WRITE(IBTLUN,REC=IRECRD,ERR=600)
     2        (BITMAP(I,J),I=IXBXLL/8,IXBXUR/8)
           IRECRD=IRECRD+1
200     CONTINUE
C                                       Close the Bitmap output file.
C ***   *VMS
         CLOSE(UNIT=IBTLUN,DISP='KEEP',ERR=500)
C ***   *UNIX
C ***         CLOSE(UNIT=IBTLUN,ERR=500)
C
C-----------------------------------------------------------------------
       ENDIF
C                                       Free the logical unit back up.
300   CONTINUE
      CALL GRFLUN(IBTLUN)
      ENDIF
      RETURN
500   CONTINUE
      CALL GRWARN('ERROR CLOSING FILE CONTAINING COPY OF THE '
     2         //' BITMAP')
      CALL GRQUIT('EXITING BACK TO OPERATING SYSTEM FROM GRTX01')
      STOP
600   CONTINUE
      CALL GRWARN('ERROR WRITING OUT COPY OF THE BITMAP TO A FILE.')
      CALL GRWARN('EXITING BACK TO OPERATING SYSTEM FROM GRTX01')
      STOP
      END
C<FF>
C *GRTX02 -- PGPLOT Encode current PK Font character and store it.
C
      SUBROUTINE GRTX02 (IBXDIM,IBYDIM,BITMAP,CURCHA,
     2           RESOLX,RESOLY,XMAX,YMAX,NDEV,DEVICE,
     3           LUN,NPKBYT,CHINFO,WIDTH,HEIGHT,BC,
     4           IXBXLL,IYBXLL,IXBXUR,IYBXUR)
C-----------------------------------------------------------------------
C ***
      IMPLICIT NONE
      INTEGER IBXDIM,IBYDIM,NDEV,DEVICE,CURCHA,I
      INTEGER LUN(2),NPKBYT,BC,NC,IRCIND,IRPIND
      REAL RESOLX(NDEV),RESOLY(NDEV),XMAX,YMAX
      BYTE BITMAP(0:IBXDIM-1,0:IBYDIM-1)
      INTEGER WIDTH(0:15,4),HEIGHT(0:15,4),CHINFO(BC:BC+14,4)
C
      INTEGER GRFMEM, GRGMEM
C
      INTEGER IRUNCD,IRPEAT,BENCOD,IRCDIM,IRPDIM,IBEDIM
      INTEGER IXBXLL,IYBXLL,IXBXUR,IYBXUR,IER,SS_NORMAL 
      INTEGER IBOXDX,IBOXDY,IDYNF(0:14),IDYNFO,IDYNFV
      LOGICAL LIBLAK,LTX05E
C ***      PARAMETER(SS_NORMAL = 1)
      SS_NORMAL=1       
C *** -------------------------------------------------------------
C *** Get the RUN CODE count values of the BITMAP for later ENCODING.
C *** First, we need to allocate an array for containing the
C *** run code count values {IRUNCD(IRCDIM))}, and an array
C *** for containing the repeat counts {IRPEAT(IRPDIM)}.
C *** Instead of guessing that the worst case should be no
C *** worse than the image changing every other pixel for
C *** run code counts, and then allocating that much virtual memory,
C *** we first do all of the RUN-CODE calculations without storing
C *** the RUN-CODE results, then we allocate the exact amount of
C *** of space required for doing the RUN-CODING and then 
C *** reenter the GRTX05 routine and store the RUN CODE counts
C *** as they are calculated the second time. The logical variable
C *** LTX05E is used inside of the GRTX05 routine to determine which
C *** pass we are on (LTX05E=.FALSE. for the first pass, and
C *** LTX05E=.TRUE. for the second pass).
C *** PORTABILITY NOTE: {4 bytes in an integer assumed!. The arrays
C *** IRUNCD, IRPEAT and BENCOD are 4 byte integers.}
C *** 
C *** Set the dimension of IRUNCD to be 2 and 
C *** the dimension of IRPEAT to be 2 initially.(We need to
C *** have values for IRUNCD and IRPEAT to be dimensioned inside
C *** the GRTX05 routine).
      IRCDIM=2
      IRPDIM=2
C
      IER = GRGMEM (IRCDIM*4,IRUNCD)
      IF(IER.NE.SS_NORMAL) THEN
        CALL GRGMSG(IER)
        CALL GRQUIT('Failed to allocate a TeX PK Font IRUNCD '
     2              //' RUN CODE count array the 8 bytes.')
      END IF
C
      IER = GRGMEM (IRPDIM*4,IRPEAT)
      IF(IER.NE.SS_NORMAL) THEN
        CALL GRGMSG(IER)
        CALL GRQUIT('Failed to allocate a TeX PK Font IRPEAT'
     2              //' repeat count RUN CODE array 8 bytes.')
      END IF
C *** Call the RUN CODEing routine, GRTX05 to determine the size
C *** needed for allocating virtual memory to contain the RUN CODE 
C *** counts.  IRCIND and IRPIND will contain the needed dimension 
C *** values upon return from routine GRTX05.
      LTX05E=.FALSE.
      IRCIND=0
      IRPIND=0
      CALL GRTX05 (BITMAP,IBXDIM,IBYDIM,%VAL(IRUNCD),
     2             IRCDIM,%VAL(IRPEAT),IRPDIM,LIBLAK,
     3             IXBXLL,IYBXLL,IXBXUR,IYBXUR,
     4             LTX05E,IRCIND,IRPIND)
C *** Calculate the width of the minimal bounding box for the character.
      IBOXDX=IXBXUR-IXBXLL+1
      IBOXDY=IYBXUR-IYBXLL+1
C *** Now Deallocate the 8 bytes of Virtual memory contained in
C *** the IRCUND and IRPEAT arrays and allocate the amount of
C *** virtual memory that we really need for calculating the
C *** RUN CODE counts.
C
      IER=GRFMEM (IRPDIM*4,IRPEAT)
      IF(IER.NE.SS_NORMAL) THEN
        CALL GRGMSG(IER)
        CALL GRQUIT('FAILED TO DEALLOCATE IRPEAT ARRAY'
     2           //' MEMORY 8 bytes.')
      ENDIF
C
      IER=GRFMEM (IRCDIM*4,IRUNCD)
      IF(IER.NE.SS_NORMAL) THEN
        CALL GRGMSG(IER)
        CALL GRQUIT('FAILED TO DEALLOCATE IRUNCD ARRAY'
     2           //' MEMORY 8 bytes.')
      ENDIF
C ***
C *** Now allocate the actual virtual memory space that we need.
      IRCDIM=IRCIND-1
      IRPDIM=IRPIND-1
C *** Add test for 0 allocation...
      IF(IRCDIM.EQ.0) THEN 
         CALL GRQUIT('ERROR in RUN CODING the IMAGE. The size '
     2       //'of the RUN-CODed image is ZERO.  Routine GRTX02.')
      ENDIF
C
      IF(IRPDIM.EQ.0) THEN
         IRPDIM=1
         CALL GRWARN('There were no repeat counts for the '
     2       //'current graphics character.')
      ENDIF
C
      IER = GRGMEM (IRCDIM*4,IRUNCD)
      IF(IER.NE.SS_NORMAL) THEN
        CALL GRGMSG(IER)
        CALL GRQUIT('Failed to allocate a TeX PK Font IRUNCD '
     2              //' RUN CODE count array.')
      END IF
C
      IER = GRGMEM (IRPDIM*4,IRPEAT)
      IF(IER.NE.SS_NORMAL) THEN
        CALL GRGMSG(IER)
        CALL GRQUIT('Failed to allocate a TeX PK Font IRPEAT'
     2              //' repeat count RUN CODE array.')
      END IF
C ***
C *** Now call GRTX05 and calculate -- and this time STORE -- the actual
C *** RUN CODE counts.
      LTX05E=.TRUE.
      IRCIND=0
      IRPIND=0
      CALL GRTX05 (BITMAP,IBXDIM,IBYDIM,%VAL(IRUNCD),
     2             IRCDIM,%VAL(IRPEAT),IRPDIM,LIBLAK,
     3             IXBXLL,IYBXLL,IXBXUR,IYBXUR,
     4             LTX05E,IRCIND,IRPIND)
C ***
C ***
C *** -------------------------------------------------------------
C *** Get the dyn_f value for the current RUN CODE counts for
C *** optimal encoding. 
      CALL GRWARN('Calculating the optimal dyn_f value '
     2           //'for PK ENCODE-ing the character.')
      CALL GRTX06(%VAL(IRUNCD),IRCDIM,IBOXDX,
     2            IBOXDY,IDYNF,%VAL(IRPEAT),
     3            IRPDIM,BITMAP,IBXDIM,IBYDIM)
C *** Determine what the optimal dyn_f value is.
      IDYNFO=14
      IDYNFV=IDYNF(14)
      DO 100, I=0,14
         IF(IDYNF(I).LT.IDYNFV) THEN
           IDYNFO=I
           IDYNFV=IDYNF(I)
         ENDIF
100   CONTINUE
C *** The optimal value of dyn_f is contained in IDYNFO.
C *** The number of nybbles required for encoding is contained in IDYNFV.
C *** -------------------------------------------------------------
C *** ENCODE the RUN CODE counts using the optimal dyn_f.
C *** First, we need to allocate enough space for the optimal
C *** encoding. IDYNFV contains the number of nybbles required.
C *** 
      IBEDIM=0
      IF(MOD(IDYNFV,2).EQ.1) IBEDIM=1
      IBEDIM=IBEDIM+INT(IDYNFV/2)
C *** Add a test for Zero allocation...
      IF(IBEDIM.EQ.0) THEN
         CALL GRQUIT('ERROR.  The specified allocation for '
     2        //'Encoding the RUN-CODE is ZERO
     3        // for the BENCOD array in Routine GRTX02.')
      ENDIF
C                            
      IER = GRGMEM (IBEDIM*4,BENCOD)
      IF(IER.NE.SS_NORMAL) THEN
        CALL GRGMSG(IER)
        CALL GRQUIT('Failed to allocate a TeX PK Font BENCOD'
     2              //' ENCODEing array for RUN COUNT.')
      END IF
      IF(IDYNFO.EQ.14) THEN
          CALL GRWARN('PK ENCODE-ing the character using '
     2               //'the optimal dyn_f=14 -- ')
          CALL GRWARN('which means '
     2           //'''raw compressed bitmapping''...')
C ***     We should encode using raw compressed bitmapping...
          CALL GRTX07(BITMAP,IBXDIM,IBYDIM,%VAL(BENCOD),
     2             IBEDIM,IXBXLL,IYBXLL,IXBXUR,IYBXUR)
      ELSE
C ***     We should encode using the packed number encoding
C ***     with the optimal value of dyn_f, IDYNFO.
          CALL GRWARN('PK ENCODE-ing the character using '
     2       //'the optimal dyn_f value...')
          CALL GRTX08(%VAL(IRUNCD),IRCDIM,IDYNFO,
     2                %VAL(IRPEAT),IRPDIM,
     3                %VAL(BENCOD),IBEDIM)
      ENDIF
C ***
C *** -------------------------------------------------------------
C *** Write out the current PK character.
      CALL GRWARN('Writing out the current PK character...')
      NC=CURCHA-1
      CALL GRTX09 (IBEDIM,BC,NC,XMAX,RESOLX,NDEV,DEVICE,
     2             IXBXLL,IXBXUR,IYBXLL,IYBXUR,IDYNFO,
     3             LIBLAK,NPKBYT,LUN,%VAL(BENCOD),HEIGHT,
     4             WIDTH,YMAX,RESOLY)
C *** -------------------------------------------------------------
C *** Free the memory back up ...
C
      IER=GRFMEM (IBEDIM*4,BENCOD)
      IF(IER.NE.SS_NORMAL) THEN
        CALL GRGMSG(IER)
        CALL GRQUIT('FAILED TO DEALLOCATE BENCOD ARRAY MEMORY.')
      ENDIF
C
      IER=GRFMEM (IRPDIM*4,IRPEAT)
      IF(IER.NE.SS_NORMAL) THEN
        CALL GRGMSG(IER)
        CALL GRQUIT('FAILED TO DEALLOCATE IRPEAT ARRAY MEMORY.')
      ENDIF
C
      IER=GRFMEM (IRCDIM*4,IRUNCD)
      IF(IER.NE.SS_NORMAL) THEN
        CALL GRGMSG(IER)
        CALL GRQUIT('FAILED TO DEALLOCATE IRUNCD ARRAY MEMORY.')
      ENDIF
C ***
C-----------------------------------------------------------------------
      RETURN
      END
C<FF>
C *GRTX03 -- PGPLOT Close the current Font, and possibly start new one.
C
      SUBROUTINE GRTX03 (LUN,PKFILE,TFMFIL,
     2                   CURCHA,PKOUT,RESOLX,RESOLY,XMAX,
     3                   YMAX,NDEV,DEVICE,LNEWFL,NPKBYT,
     4                   CHINFO,WIDTH,HEIGHT,BC)
C----------------------------------------------------------------------
C ***
C ***
C *** If LNEWFL=.TRUE. then close the current PK Font and start a 
C *** new one.  IF LNEWFL=.FALSE. then just close the current PK Font
C *** file.  In either case, write out the Postambles to PK file
C *** and to TFM file.  IF LNEWFL=.TRUE., then we need to also call
C *** GRTX04  to write the Preamble to the new PK file.
C ***
C *** ------------------------------------------------------------------
C-----------------------------------------------------------------------
      IMPLICIT NONE
      INTEGER LUN(2),I,J,NPKBYT,NC,CURCHA,PKOUT,NDEV
      INTEGER DEVICE,BC,ILENGT,IER 
      INTEGER BYTOUT,CHINFO(BC:BC+14,4),WIDTH(0:15,4)
      INTEGER HEIGHT(0:15,4),JTMP1,JTMP2
      LOGICAL LNEWFL
      REAL RESOLX(NDEV),RESOLY(NDEV),XMAX,YMAX
      CHARACTER*(*) PKFILE,TFMFIL
      CHARACTER MSG*5,CHTMPS*80
C *** -----------------------------------------------------------
C *** Write the postamble to PK file.
      CALL GRWARN('Writing out the postamble and for the '
     2          //'PK file...')
C ***
C *** The opcode for the PK postamble is 245 base10.
      BYTOUT=245
      CALL GRTX11(LUN(1),BYTOUT)
      NPKBYT=NPKBYT+1
C *** Now we need enough no-operation codes to finish filling this block.
C *** So, we need to get to a multiple of 512.
C *** The preamble required 33 bytes. We have written NPKBYT bytes
C *** of character information thus far (includes the preamble
C *** and postamble opcode).  The postamble requires 1 byte plus enough
C *** bytes to finish filling the 512 byte record block on a Vax.
C *** We need to have NPKBYT a multiple of 512 after we are finished.
C *** We will finish filling the block with no-op's (that is, no-operation
C *** opcodes).  Note: All the PK format requires is a multiple of 4 (not
C *** 512).  I chose 512 just to finish filling the current record and block
C *** on the Vax.
      DO 100, I= 1, 512
         IF(MOD(NPKBYT,512).EQ.0) GOTO 120
         NPKBYT=NPKBYT+1
         BYTOUT=246
         CALL GRTX11(LUN(1),BYTOUT)
100   CONTINUE 
120   CONTINUE
C *** Now we are ready to close the PK file.
      CALL GRWARN('Closing the current PK file...')
C *** *VMS
      CLOSE(UNIT=LUN(1),ERR=130,DISP='KEEP')
C *** *UNIX
C ***      CLOSE(UNIT=LUN(1),ERR=130)
C
      GOTO 140
C *** ----------
130   CONTINUE
      CALL GRWARN('ERROR CLOSING PK FILE IN ROUTINE GRTX03')
      CALL GRQUIT('EXITING BACK TO OPERATING SYSTEM. GRTX03')
      STOP
C *** -------------------------------------------------------
140   CONTINUE
C *** Write the whole TFM file.
C ***
C *** The number of character which have been stored in the PK Font 
C *** is given by CURCHA-1.  NC=0 is for the first character (ascii
C *** code BC. So, NC= (CURCHA-1) -1.
      NC=CURCHA-2
C *** Routine GRTX10 writes the TFM file.
      CALL GRWARN('Writing out the TeX Font Metric (TFM) '
     2          //' file...')
      CALL GRTX10 (NC, LUN(2),CHINFO,WIDTH,HEIGHT,BC)
C *** Now we are ready to close the TFM file.
      CALL GRWARN('Closing the current TFM file...')
C 
C *** *VMS
       CLOSE(UNIT=LUN(2),ERR=145,DISP='KEEP')
C *** *UNIX
C ***       CLOSE(UNIT=LUN(2),ERR=145)
C
      GOTO 146
C *** ------------
145   CONTINUE
      CALL GRWARN('ERROR CLOSING THE TFM FILE.')
      CALL GRQUIT('EXITING BACK TO OPERATING SYSTEM FROM GRTX03')
      STOP
C *** ------------
146   CONTINUE
      DO 150, JTMP2=LEN(PKFILE),2,-1
         IF(PKFILE(JTMP2:JTMP2).NE.' ') GOTO 151
150   CONTINUE
151   CONTINUE
C ***    PORTABILITY NOTE: Might want to use   JTMP1=ICHAR('A')+CURCHA-1
C ***    or something equivalent if on an EBCDIC machine... ?
C ***    I think (but I'm not sure) that TeX, etcetera, use ASCII internally.
C ***    I coded this as VaX specific.
      JTMP1=BC+CURCHA-2
C        IF(ICHAR('A').NE.65) CALL GRWARN('Next message is not correct.'
C    2     //'it assumes that the ASCII value of A was 65base10.')
C ---------------------------
C *** *UNIX  impossible string concatenation bug workaround. Also works
C ***        under *VMS .
      CHTMPS=PKFILE
      CALL GRWARN('Finished the PK Font    '''//CHTMPS(1:JTMP2)
     2        //'''   with letter  '''//CHAR(JTMP1)//''' . ')
C -------------------------
C
C ***
C *** Now we need to check if we are to open a new PK Font.
      IF(LNEWFL.EQ..TRUE.) THEN
C ***    We need to open a new PK Font.
C ***
C ***    We need to determine the new file names for the next font
C ***    because we are out of space on the current font.
         WRITE(UNIT=MSG,FMT='(I5)') PKOUT
C ***    We will used J to keep track of the length of MSG for the
C ***    two file names below.
         DO 200, J=5,1,-1
           IF(MSG(1:1).EQ.' ') THEN
              MSG(1:1)=MSG(2:2)
              MSG(2:2)=MSG(3:3)
              MSG(3:3)=MSG(4:4)
              MSG(4:4)=MSG(5:5)
              MSG(5:5)=' '
           ELSE
              GOTO 201
           ENDIF
200      CONTINUE
201      CONTINUE
       
C ***
         ILENGT=LEN(PKFILE)
         DO 400, I=ILENGT,1,-1
            IF(PKFILE(I:I).EQ.'.') GOTO 401
400      CONTINUE
401      CONTINUE
         IF(I.GT.0) THEN 
            PKFILE=PKFILE(1:I-1)//'_'//MSG(1:J)//PKFILE(I:ILENGT)
         ELSE
             CALL GRWARN('PROGRAMMING ERROR IN PKFILE FILE NAME '
     2                //'IN ROUTINE GRTX03. ERROR WAS MADE '
     3                //'BY AUTHOR OF TXDRIVER ROUTINE.')
             CALL GRWARN('TRY ANOTHER NAME FOR YOUR FILE NAME.')
             CALL GRQUIT('EXITING BACK TO OPERATING SYSTEM FROM '
     2               //'ROUTINE GRTX03.')
             STOP
         ENDIF
C ***
         ILENGT=LEN(TFMFIL)
         DO 600, I=ILENGT,1,-1
            IF(TFMFIL(I:I).EQ.'.') GOTO 601
600      CONTINUE
601      CONTINUE
         IF(I.GT.0)THEN 
            TFMFIL=TFMFIL(1:I-1)//'_'//MSG(1:J)//TFMFIL(I:ILENGT)
         ELSE
             CALL GRWARN('PROGRAMMING ERROR IN TFMFILE FILE NAME '
     2                //'IN ROUTINE GRTX03. ERROR WAS MADE '
     3                //'BY AUTHOR OF TXDRIVER ROUTINE.')
             CALL GRWARN('TRY ANOTHER NAME FOR YOUR FILE NAME.')
             CALL GRQUIT('EXITING BACK TO OPERATING SYSTEM FROM '
     2               //'ROUTINE GRTX03.')
             STOP
         ENDIF
C ***
C ***    Finished with Variable J now.  Can set it's value to
C ***    anything.
C ***   
C ***    Open the PK file first.
         CALL GRWARN('Opening a new PK file...')
C     *VMS         We will write out 512 bytes at a time. RMS will take 
C                  care of us when we read the file back in for DVIing it
C                  If you have problems, change ACCESS='DIRECT' to
C                  ACCESS='SEQUENTIAL' and add RECORDTYPE=FIXED and
C                  modify write statements in GRTX11 and GRTX12 to
C                  be writes to sequential files.  Also, consider
C                  using the rewind statement if you use sequential files. 
         OPEN(UNIT=LUN(1),FILE=PKFILE,ACCESS='DIRECT',
     2     FORM='UNFORMATTED',STATUS='NEW',IOSTAT=IER,
     3     DISP='DELETE',RECL=128)
C
C ***      *UNIX    Want to open up a file to put "bytes on a disk --
C ***               with NO segmented record information... 512 bytes
C ***               will be written out at a time.  128*4=512 
C ***         OPEN(UNIT=LUN(1),FILE=PKFILE,ACCESS='DIRECT',
C ***     2     FORM='UNFORMATTED',STATUS='NEW',IOSTAT=IER,
C ***     3     RECL=128)
C                                       Check for an error and cleanup if
C                                       one occurred.
         IF (IER .NE. 0) THEN
           CALL GRWARN ('Cannot open output PK file for new '
     1                 //'TeX PK Font.')
           CALL GRQUIT('Failed to open next Tex PK file.')
         ENDIF
C
C ***                                   Initialize some indirect 
C ***                                   file pointer information.
      CALL GRTX14
C ***
C ***    Open the TFM file second.
      CALL GRWARN('Opening a new TFM file...') 
C     *VMS         We will write out 512 bytes at a time. RMS will take 
C                  care of us when we read the file back in for DVIing it
C                  If you have problems, change ACCESS='DIRECT' to
C                  ACCESS='SEQUENTIAL' and add RECORDTYPE=FIXED and
C                  modify write statements in GRTX11 and GRTX12 to
C                  be writes to sequential files.  Also, consider using
C                  the rewind statement if you use sequential files. 
      OPEN(UNIT=LUN(2),FILE=TFMFIL,ACCESS='DIRECT',
     2     FORM='UNFORMATTED',STATUS='NEW',IOSTAT=IER,
     3     DISP='DELETE',RECL=128)
C
C ***      *UNIX    Want to open up a file to put "bytes on a disk --
C ***               with NO segmented record information... 512 bytes
C ***               will be written out at a time.  128*4=512 
C ***      OPEN(UNIT=LUN(2),FILE=TFMFIL,ACCESS='DIRECT',
C ***     2     FORM='UNFORMATTED',STATUS='NEW',IOSTAT=IER,
C ***     3     RECL=128)
C                                       Check for an error and cleanup if
C                                       one occurred.
         IF (IER .NE. 0) THEN
           CALL GRWARN ('Cannot open output TFM file for new '
     1                 //'TeX PK Font.')
           CALL GRQUIT('Failed to open next Tex TFM file.')
         ENDIF
C ***                                   Initialize some indirect 
C ***                                   file pointer information.
      CALL GRTX15
C ***
C ***
C
C ***    
C ***    We need to write the preamble to the PK file.
         CALL GRTX04 (RESOLX,RESOLY,NDEV,DEVICE,LUN,NPKBYT)
      ENDIF
C *** Finished.  We can return now.
C-----------------------------------------------------------------------
      RETURN
      END
C<FF>
C *GRTX04 -- PGPLOT Write the preamble for PK file.
C
      SUBROUTINE GRTX04 (RESOLX,RESOLY,NDEV,DEVICE,
     2                   LUN,NPKBYT)
C-----------------------------------------------------------------------
C *** GRTX04  
      IMPLICIT NONE
      INTEGER BYTOUT
      INTEGER VM1,VM2,VM3,VM4,VP0,VP1,VP2,VP3,NPKBYT
      INTEGER LUN(2),NDEV,DEVICE
      REAL RVPPP,RHPPP,RESOLX(NDEV),RESOLY(NDEV)
      DOUBLE PRECISION VALUE
C *** Write the preamble opcode.
      BYTOUT=247
      CALL GRTX11(LUN(1),BYTOUT)
C *** Write out the identification byte of the file.
      BYTOUT=89
      CALL GRTX11(LUN(1),BYTOUT)
C *** Write out the comment of where this file came from.
C *** The string will be "PGPLOT PK Font",which has ASCII Hex values of
C *** "P"=50,"G"=47,"P"=50,"L"=4C,"O"=4F,"T"=54," "=20,
C *** "P"=50,"K"=4B," "=20,"F"=46,"o"=6f,"n"=6E,"t"=74
C *** This requires 14 bytes.
      BYTOUT=14
      CALL GRTX11(LUN(1),BYTOUT)
C *** Now the string...
      BYTOUT =  5*16 +  0
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT =  4*16 +  7
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT =  5*16 +  0
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT =  4*16 + 12
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT =  4*16 + 15
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT =  5*16 +  4
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT =  2*16 +  0
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT =  5*16 +  0
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT =  4*16 + 11
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT =  2*16 +  0
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT =  4*16 +  6
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT =  6*16 + 15
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT =  6*16 + 14
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT =  7*16 +  4
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C ***
C *** Now write out the design size of the file in 1/20 points (a Fix_word).
C *** This is to be in 4 bytes.  The implied decimal is between byte
C *** 19 and 20 (0 is the first byte).  This is encoded as coefficients
C *** of the power of 16.  See PKtoPX.Web, or other WEB files for 
C *** the documentation of this. 
C *** The design size is 100.0 Tex Points, which is 06400000 as a Fix_word,
C *** 100.0base10=6*16+4 base10=64.0base16 =06400000 Fix_word.  100.0 TeX
C *** points is approximately 1.3837 inches. (This will allow output 
C *** characters from 0.0864813 inches to 22.1382 inches in size.)
C *** This value should be changed if a different range is desired.
      BYTOUT=6
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT=4*16
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT=0
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT=0
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Now, write out the 4 byte checksum, which must be the same in the
C *** TFM file and the PK file.  I chose my birthdate 09 28 1963 as the
C *** Hex value.
      BYTOUT =  0*16 +  9
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT =  2*16 +  8
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT =  1*16 +  9
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT =  6*16 +  3
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Now, write out the 4 byte horizontal ratio of pixels per TeX point,
C *** (this is a measure of the dots per inch).  The variable RESOLX(DEVICE)
C *** contains the dots per inch value.  There are horizontally:
C *** RESOLX(DEVICE) {pixels/inch}, 2.54 {cm./inch}, 
C *** 7227.0/254.0 {TeX points/cm.}. So the base10 value of pixels/TeX point is:
      RHPPP=RESOLX(DEVICE)/2.54*254.0/7227
C *** Now, I must convert this into its base 16 value to place the value
C *** multiplied by 2**16 into the 4 bytes.
      VALUE=RHPPP
      VP3=INT(VALUE/(16.0**3))
      VALUE=VALUE-VP3*16.0**3
      VP2=INT(VALUE/(16.0**2))
      VALUE=VALUE-VP2*16.0**2
      VP1=INT(VALUE/(16.0**1))
      VALUE=VALUE-VP1*16.0**1
      VP0=INT(VALUE)
      VALUE=VALUE-VP0
      VM1=INT(VALUE/(16.0**(-1)))
      VALUE=VALUE-VM1*16.0**(-1)
      VM2=INT(VALUE/(16.0**(-2)))
      VALUE=VALUE-VM2*16.0**(-2)
      VM3=INT(VALUE/(16.0**(-3)))
      VALUE=VALUE-VM3*16.0**(-3)
      VM4=INT(VALUE/(16.0**(-4)))
C ***
      BYTOUT = VP3*16 + VP2
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT = VP1*16 + VP0
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT = VM1*16 + VM2
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT = VM3*16 + VM4
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Now, write out the 4 byte vertical ratio of pixels per TeX point,
C *** (this is a measure of the dots per inch).  The variable RESOLY(DEVICE)
C *** contains the dots per inch value.  There are vertically:
C *** RESOLY(DEVICE) {pixels/inch}, 2.54 {cm./inch}, 
C *** 7227.0/254.0 {TeX points/cm.}. So the base10 value of pixels/TeX point is:
      RVPPP=RESOLY(DEVICE)/2.54*254.0/7227
C *** Now, I must convert this into its base 16 value to place the value
C *** multiplied by 2**16 into the 4 bytes.
      VALUE=RVPPP
      VP3=INT(VALUE/(16.0**3))
      VALUE=VALUE-VP3*16.0**3
      VP2=INT(VALUE/(16.0**2))
      VALUE=VALUE-VP2*16.0**2
      VP1=INT(VALUE/(16.0**1))
      VALUE=VALUE-VP1*16.0**1
      VP0=INT(VALUE)
      VALUE=VALUE-VP0
      VM1=INT(VALUE/(16.0**(-1)))
      VALUE=VALUE-VM1*16.0**(-1)
      VM2=INT(VALUE/(16.0**(-2)))
      VALUE=VALUE-VM2*16.0**(-2)
      VM3=INT(VALUE/(16.0**(-3)))
      VALUE=VALUE-VM3*16.0**(-3)
      VM4=INT(VALUE/(16.0**(-4)))
C ***
      BYTOUT = VP3*16 + VP2
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT = VP1*16 + VP0
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT = VM1*16 + VM2
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT = VM3*16 + VM4
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** There were 33 bytes written to the Preamble for the PK Font.
      NPKBYT=33
C ***
C *** And that finishes the Preamble for the PK font.
C-----------------------------------------------------------------------
      RETURN
      END
C<FF>
C *GRTX05 -- PGPLOT Calculate RUN CODE count for PK Font character.
C
      SUBROUTINE GRTX05( BITMAP, IBXDIM, IBYDIM,
     2                   IRUNCD, IRCDIM, IRPEAT,
     3                   IRPDIM, LIBLAK, IXBXLL,
     4                   IYBXLL, IXBXUR, IYBXUR,
     5                   LTX05E,IRCIND,IRPIND)
C-----------------------------------------------------------------------
C ***
C *** --------------------------------------------------------------
C *** This routine is used to produce RUN CODE for the character
C *** contained in the 2-dimensional byte array BITMAP.
C *** The algorithm is described in PKtoPX.WEB.  The PK Font format
C *** was written by Tomas Rokicki in August of 1985. Rokicki was a
C *** former Texas A&M student.  TeX uses this  PK font 
C *** format for technical typesetting.  To get the documentation,
C *** WEAVE the PKTOPX.WEB file. TeX the resulting PKTOPX.TEX file.
C *** Then run the DVI translator to produce the binary file for
C *** printing out to your desired printer.
C ***
C *** BITMAP is a BYTE input array of size IBXDIM x IBYDIM.
C *** IRUNCD is an integer output array of size IRCDIM which will
C *** contain the RUN CODE for the character. 
C *** IRPEAT is an integer output array of size IRPDIM which is used 
C *** to index the Repeat Counts within the IRUNCD array.
C *** The logical variable LTX05E is used to indicate whether this is
C *** the first or second invokation of the routine GRTX05.
C *** The first invokation calculates the minimum bounding box of the
C *** graphics character.
C *** IRCIND and IRPEAT are used in the first invokation of routine GRTX05
C *** to return the dimensions of IRUNCD and IRPEAT needed to 
C *** store the RUN CODE counts.
C *** On the second invokation of routine GRTX05, IRCIND and IRPIND are
C *** just used for indexing into the IRUNCD and IRPEAT arrays for
C *** storing RUN CODE information.
C ***
C ***
C *** ---------------------------------------------------------------
C ***
      IMPLICIT NONE
      INTEGER IBXDIM,IBYDIM,IRCDIM,IRPDIM,
     2        IRUNCD(IRCDIM), IRPEAT(IRPDIM), IRCIND, IRPIND,
     3        ICOL, IROW, ITMPRO, ITMPCO, IRPCNT, IRCSUM,
     4        IXBXLL, IYBXLL, IXBXUR, IYBXUR, I, J, K
      INTEGER WHITE,IPERCR,IPERCL,IXBBLL,IXBBUR
      BYTE BITMAP(0:IBXDIM-1,0:IBYDIM-1),SOLBLK,SOLWHT
      LOGICAL LSOLID,LBLACK,LIBLAK,LTX05E
      CHARACTER*3 MSG
C *** PORTABILITY NOTES:
C *** Note: {Vax byte variables are from -128 to 127.  
C *** ??Parameter statement might need to be modified for SOLBLK=255
C *** base10=FFbase16.
C *** Assumption is that SOLBLK will be converted correctly by the compiler
C *** to the signed quantity on the vax.  I definitely want the 
C *** result to be all ones in the bit positions. The parameter SOLWHT
C *** is to have all zeros in the bit positions.}
C ***      PARAMETER (WHITE=0, SOLBLK='FF'X,SOLWHT='00'X)
      WHITE=0
      SOLBLK='FF'X
      SOLWHT='00'X
C ***
C ***
C *** IRCIND is an integer used as an index into the IRUNCD array.
C *** IRPIND is an integer used as an index into the IRPEAT array.
C *** ICOL is an integer used to keep up with the current X (column) position 
C *** within the BITMAP array.
C *** IROW is an integer used to keep up with the current Y (row) position
C *** within the BITMAP array.
C *** ITMPRO is an integer used to keep up with the temporary X (column) 
C *** position within the BITMAP array.
C *** ITMPCO is an integer used to keep up with the temporary Y (row)
C *** position within the BITMAP array.
C *** IRPCNT is an integer used to keep up with the Repeat Count of the
C *** consecutive rows within the BITMAP array (that is, identical 
C *** consecutive rows).
C *** IRCSUM is an integer used to keep up a running sum of the number of
C *** consecutive pixels which are of the same color
C *** (only black and white colors are allowed --- no shades).
C *** IXBXLL is an integer used to contain the Lower Left X coordinate
C *** of the minimum bounding box of the character (so that all black
C *** pixels are just contained within the box).
C *** IYBXLL is an integer used to contain the Lower Left Y coordinate
C *** of the minimum bounding box of the character (so that all black
C *** pixels are just contained within the box).
C *** IXBXUR is an integer used to contain the Upper Right X coordinate
C *** of the minimum bounding box of the character (so that all black
C *** pixels are just contained within the box).
C *** IYBXUR is an integer used to contain the Upper Right Y coordinate
C *** of the minimum bounding box of the character (so that all black
C *** pixels are just contained within the box).
C *** I,J, K are temporary variables used for counting and DO Loop indices.
C *** LSOLID is a logical variable used to denote that the row in
C *** question is a Solid color (either solid white, or solid black).
C *** I used LSOLID as an aid in debugging. It is not very useful otherwise.
C *** LBLACK is a logical variable used to contain the current pixel color
C *** (.TRUE. represents black, while .FALSE. represents white).
C *** LIBLAK is a logical variable used to contain the first pixel color
C *** of the miniumum bounded box, which is needed later in an upper routine.
C ***
C *** ---------------------------------------------------------------
C *** ---------------------------------------------------------------
C ***
C ***
C ***
C ***
C ***
C ***
      IF(LTX05E.EQ..FALSE.) THEN
         CALL GRWARN('There will be 3 passes (scans) over the '
     2            //'graphics character...')
C ***    Find the minimum bounding box for the character. 
C ***    PGPLOT assumes that lower left corner of character is (0,0).
C ***    IXBXLL,IXBXUR,IYBXLL,IYBXUR  are in PGPLOT coordinates
C ***    in which (0,0) is lower left.
         CALL GRWARN('Starting scan number 1 --- Finding the minimal '
     2             //'bounding box around the graphics character.')
C ***    Initialize the last written percentage of the image remaining to be 
C ***    scanned to be 100%.
         IPERCL=100
C ***    Set up initial bounds for box to be outisde the bitmap area...
C ***    loop below will override these.
         IXBBUR=-1
         IXBXUR=-1
         IYBXUR=-1
         IXBBLL=(IBXDIM-1) + 1
         IXBXLL=(IBXDIM*8-1) + 1
         IYBXLL=(IBYDIM-1) + 1
         CALL GRWARN('Percentage of image scan remaining:')
         CALL GRWARN('      100% scan remaining ')
         DO 100, J=IBYDIM-1,0,-1
           DO 90, I=0, IBXDIM-1      
C ***      Write out a message about what percentage of the image remains
C ***      to be processed.
           IPERCR=INT(FLOAT(J)/FLOAT(IBYDIM-1)*100.0)
           IF (IPERCR.LT.(IPERCL-15)) THEN
              IPERCL=IPERCR
              WRITE(UNIT=MSG,FMT='(I3)') IPERCL
              CALL GRWARN('     '//MSG(1:3)//'% scan remaining ')
           ENDIF
C ***   
C ***   
           IF(BITMAP(I,J).NE.SOLWHT) THEN
C ***          We have a black pixel somewhere in that byte.
               IF(I.LE.IXBBLL) THEN 
                  IXBBLL = I
                  DO 50, K= IXBBLL*8,IXBBLL*8+7
                  IF(((BITMAP(K/8,J).AND.2**(7-MOD(K,8))).NE.WHITE)
     2              .AND.(K.LE.IXBXLL)) IXBXLL=K
50                CONTINUE 
               ENDIF
               IF(I.GE.IXBBUR) THEN
                  IXBBUR = I
                  DO 80, K=IXBBUR*8,IXBBUR*8+7
                  IF(((BITMAP(K/8,J).AND.2**(7-MOD(K,8))).NE.WHITE)
     2              .AND.(K.GE.IXBXUR)) IXBXUR=K
80                CONTINUE 
               ENDIF
               IF(J.LE.IYBXLL) IYBXLL = J
               IF(J.GE.IYBXUR) IYBXUR = J
             ENDIF
90         CONTINUE
100      CONTINUE
C ***   
C ***    Minimum bounding box has been found to be Lower_Left=(IXBXLL,IYBXLL)
C ***    Upper_Right=(IXBXUR,IYBXUR).  So, 0<=IXBXLL<=IXBXUR<=(IBXDIM-1)*8
C ***    and 0<=IYBXLL<=IYBXUR<=(IBYDIM-1).
C ***   
C ***    Add error checking...
         IF(IXBXUR.EQ.-1)  CALL GRQUIT('ERROR FINDING MINIMAL BOUNDING'
     2              //'BOX AROUND CHARACHTER.  THE IMAGE WAS OF SOLID'
     3              //'COLOR WHITE.   ROUTINE GRTX05.')
         IF(IYBXUR.EQ.-1)  CALL GRQUIT('ERROR FINDING MINIMAL BOUNDING'
     2              //'BOX AROUND CHARACHTER.  THE IMAGE WAS OF SOLID'
     3              //'COLOR WHITE.   ROUTINE GRTX05.')
         IF(IXBXLL.EQ.(IBXDIM*8-1) + 1)  CALL GRQUIT('ERROR FINDING '
     2              //'MINIMAL BOUNDING BOX AROUND CHARACHTER. '
     3              //'THE IMAGE WAS OF SOLID COLOR WHITE. '
     4              //'ROUTINE GRTX05.')
         IF(IYBXLL.EQ.(IBYDIM-1) + 1)  CALL GRQUIT('ERROR FINDING '
     2              //'MINIMAL BOUNDING BOX AROUND CHARACHTER. '
     3              //'THE IMAGE WAS OF SOLID COLOR WHITE. '
     4              //'ROUTINE GRTX05.')
         IF(IXBXLL.GT.IXBXUR) CALL GRQUIT('ERROR IN MINIMAL BOUNDING '
     2             //'BOX CALCULATIONS.  Lower row bounds exceeds '
     3             //'upper row bounds.  Routine GRTX05.')
         IF(IYBXLL.GT.IYBXUR) CALL GRQUIT('ERROR IN MINIMAL BOUNDING '
     2             //'BOX CALCULATIONS.  Lower column bounds exceeds '
     3             //'upper column bounds.  Routine GRTX05.')
         IF(IXBXLL.EQ.IXBXUR) CALL GRWARN('Lower bounds = Upper bounds '
     2             //'for minimal bounding box of character. '
     3             //' Routine GRTX05.')
         IF(IYBXLL.EQ.IYBXUR) CALL GRWARN('Lower bounds = Upper bounds '
     2             //'for minimal bounding box of character. '
     3             //' Routine GRTX05.')
      ENDIF
C *** ------------------------------------------------------------------
C *** ------------------------------------------------------------------
C *** 
      IF(LTX05E.EQ..FALSE.) THEN
         CALL GRWARN ('Minimal bounding box completed.')
         CALL GRWARN ('Starting scan number 2 -- determining '
     2         //'the amount of virtual memory needed for '
     3         //'RUN CODING the graphics character.')
      ELSE
         CALL GRWARN ('Starting scan number 3 -- calculating '
     2         //'and storing RUN CODE counts for  later encoding.')
C ***    Initialize the first repeat count index to be zero in case there
C ***    are not repeated non-solid rows in the graphics character.
C ***    Note:  IRPEAT must be dimensioned at least 1 in the calling routine.
         IRPEAT(1)=0
      ENDIF
C ***
C *** Set up the arrays to be indexed into their first element
      IRCIND=1
      IRPIND=1
C *** Set up the current position as the Upper Left corner of the
C *** minimum bounding box.
      ICOL=IXBXLL
      IROW=IYBXUR
C *** Set up the temporary position as the current position.
      ITMPRO=IROW
      ITMPCO=ICOL
C *** Initialize the Repeat count as 0 and the Run Code sum as 0.
      IRPCNT=0
      IRCSUM=0
C *** Set up the logical variables as all .FALSE.
      LSOLID=.FALSE.
      LBLACK=.FALSE.
      LIBLAK=.FALSE.
C *** Initialize the last written percentage of the image remaining to be 
C *** scanned to be 100%.
      IPERCL=100
C ***
C ***
C *** -----------------------------------------------------------------
C ***
C *** Determine what the color the initial pixel value is.
      IF((BITMAP(ICOL/8,IROW).AND.2**(7-MOD(ICOL,8))).NE.WHITE)THEN
        LBLACK=.TRUE.
        LIBLAK=.TRUE.
      ELSE
        LBLACK=.FALSE.
        LIBLAK=.FALSE.
      ENDIF 
      CALL GRWARN('Percentage of image scan remaining:')
      CALL GRWARN('     100% remaining ')
C ***
C ***
C *** ------------------------------------------------------------------
C *** BEGINNING_OF_ROW:
C ***
2000  CONTINUE
C ***
C ***
C ***
C ***   Write out a message about what percentage of the image remains
C ***   to be processed.
        IPERCR=INT(FLOAT(IROW-IYBXLL+1)/FLOAT(IYBXUR-IYBXLL+1)*100.0)
        IF (IPERCR.LT.(IPERCL-15)) THEN
           IPERCL=IPERCR
           WRITE(UNIT=MSG,FMT='(I3)') IPERCL
           CALL GRWARN('     '//MSG(1:3)//'% remaining ')
        ENDIF
C ***
C ***
C *** Let us check and see if the row is a solid of the current color.
C *** We will check the "leftover" bits on the left and right of the
C *** character first, then if they pass, we will check the bytes in between.
C *** Initialize LSOLID=.FALSE. so that "jump_out" to label 6000 will
C *** be correct if we do not have a solid row.
      LSOLID=.FALSE.
      ITMPRO=IROW
      ITMPCO=IXBXLL-1
2200  ITMPCO=ITMPCO+1
C *** If we are on an a byte boundary, we have finished checking the
C *** left "leftover" bits. Go check the right "leftover" bits.
      IF(MOD(ITMPCO,8).EQ.0) GOTO 2210
C *** See if the current pixel is the correct color for solid color row.
      IF(LBLACK.EQ..TRUE.) THEN
          IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2    .NE.WHITE) THEN
            GOTO 2200
          ELSE
            GOTO 6000
          ENDIF
      ELSE
          IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2    .EQ.WHITE) THEN
            GOTO 2200
          ELSE
            GOTO 6000
          ENDIF
      ENDIF
C ***
C ***
C ***
2210  CONTINUE
C ***
C *** Checking the right "leftover" bits now for solid color row.
      J=IROW
      I=IXBXUR+1
2220  I=I-1
C *** If we are on an a byte boundary, we have finished checking the
C *** right "leftover" bits. Go check the bytes in between.
      IF(MOD(I,8).EQ.7) GOTO 2240
C *** See if the current pixel is the correct color for solid color row.
      IF(LBLACK.EQ..TRUE.) THEN
          IF((BITMAP(I/8,J).AND.2**(7-MOD(I,8)))
     2    .NE.WHITE) THEN
            GOTO 2220
          ELSE       
            GOTO 6000
          ENDIF
      ELSE
          IF((BITMAP(I/8,J).AND.2**(7-MOD(I,8)))
     2    .EQ.WHITE) THEN
            GOTO 2220
          ELSE
            GOTO 6000
          ENDIF
      ENDIF
C ***
C ***
C ***
C ***
C ***
2240  CONTINUE
C ***
C *** Both the left and right "leftover" bits checked out to be solid 
C *** color of the current color type.  Now need to check the
C *** bytes in between to see if they are also solid color of the 
C *** current type.
      DO 2250, K=ITMPCO,I,8
        IF(LBLACK.EQ..TRUE.) THEN
            IF(BITMAP(K/8,J).NE.SOLBLK) GOTO 6000
        ELSE
            IF(BITMAP(K/8,J).NE.SOLWHT) GOTO 6000
        ENDIF
2250  CONTINUE
C ***
C *** We have a row which is of solid color.
      LSOLID=.TRUE.
C ***
C ***
C ***
C ***
C ***
C *** ---------------------------------------------------------------
C ***
C ***
C *** Calculate the # of consecutive rows which are repeats of the current
C *** row.  Set IRPCNT=#repeated_consecutive_rows.
C ***
      IRPCNT=0
2400  J=IROW-IRPCNT-1
C *** Need to make sure that we do not go out of the bounding box.
      IF(J.LT.IYBXLL) GOTO 8000
C *** Do a loop comparing the bytes across two rows.  Since the bits
C *** outside of the minimum bounding box are white (0), we do not
C *** have to worry about them -- they will compare okay.
C *** There are 8 bits to a byte, so there are 8 pixels to a byte.
C *** We can step by 8 pixels to do our check.
      DO 2420, I=IXBXLL, IXBXUR, 8
         IF(BITMAP(I/8,IROW).NE.BITMAP(I/8,J)) GOTO 2450
2420  CONTINUE
C *** We have found another repeated consecutive row.
      IRPCNT=IRPCNT+1
C *** Go back and check if the next row down is also a repeated row.
      GOTO 2400
C ***
C ***
C ***
C ***
2450  CONTINUE
C *** We have found all of the consecutive repeated rows.
C ***
C *** ------------------------------------------------------------------
C ***
C *** Need to determine whether a transition occurs at the first 
C *** pixel of the first non-repeated solid row.
      ITMPRO=IROW-IRPCNT-1
      ITMPCO=IXBXLL
        IF(LBLACK.EQ..TRUE.) THEN
            IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2      .NE.WHITE) GOTO 2800
        ELSE
            IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2      .EQ.WHITE) GOTO 2800
        ENDIF
C ***
C *** ----------------------------------------------------------------
C *** 
2500  CONTINUE
C ***
C ***
C *** We now have a solid (possibly repeated) row for which the
C *** first non-solid row has a transition at the first pixel of
C *** the minimum bounded box.
C ***
C *** Get the sum of the solid row pixels including the repeated solid
C *** row pixels.
      IRCSUM=IRCSUM+(IXBXUR-IXBXLL+1)*(1+IRPCNT)
C ***
C *** Store this sum for later Encoding.
      IF(LTX05E.EQ..TRUE.) IRUNCD(IRCIND)=IRCSUM
      IRCIND=IRCIND+1
C ***
C *** Update the current position.
      IROW=IROW-IRPCNT-1
      ICOL=IXBXLL
C ***
C *** Change current  color.
      LBLACK=.NOT.LBLACK
C *** 
C *** Reset the counters.
      IRCSUM=0
      IRPCNT=0
C ***
C *** We are now at the beginning of a new row.  GOTO BEGINING_OF_ROW.
      GOTO 2000
C ***
C *** -----------------------------------------------------------------
C ***
2800  CONTINUE
C ***
C ***
C *** We have a solid (possibly with repeat solid rows), which
C *** does not have a transition at the first non-solid row
C *** first pixel of the minimum bounding box.
C ***
C *** Get the sum of the pixels for the solid and solid repeated rows.
      IRCSUM=IRCSUM+(IXBXUR-IXBXLL+1)*(1+IRPCNT)
C ***
C *** Update the position to the beginning of the first non-solid row.
      IROW=IROW-IRPCNT-1
      ICOL=IXBXLL
C *** Find the transition point, (ITMPRO,ITMPCO).
      ITMPRO=IROW
      DO 2810, ITMPCO=IXBXLL+1,IXBXUR
        IF(LBLACK.EQ..TRUE.) THEN
            IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2      .EQ.WHITE) GOTO 2820
        ELSE
            IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2      .NE.WHITE) GOTO 2820
        ENDIF
2810  CONTINUE
C ***
2820  CONTINUE
C *** We now have ITMPRO, ITMPCO where the transition occurs.
C *** Add the number of pixels on the current row until the transition
C *** occurs to the previous calculated value for the solid (possibly
C *** repeated) rows.
      IRCSUM=IRCSUM+(ITMPCO-ICOL)
C *** Store this run code sum.
      IF(LTX05E.EQ..TRUE.) IRUNCD(IRCIND)=IRCSUM
      IRCIND=IRCIND+1
C *** Update the current position to be the point of transition.
      IROW=ITMPRO
      ICOL=ITMPCO
C *** Change the current color.
      LBLACK=.NOT.LBLACK
C *** Reset the counters.
      IRPCNT=0
      IRCSUM=0
C ***
C ***
C *** --------------------------------------------------------------
C ***
3000  CONTINUE
C ***
C *** MIDDLE_REPEAT:
C ***
C ***   We are now in the middle of a new row. There may or may not
C ***   be repeated consecutive rows below the current one.
C ***   Also, the remaining part of the current row may be solid.
C ***
C *** ---------------------------------------------------------------
C ***
C ***   Write out a message about what percentage of the image remains
C ***   to be processed.
        IPERCR=INT(FLOAT(IROW-IYBXLL+1)/FLOAT(IYBXUR-IYBXLL+1)*100.0)
        IF (IPERCR.LT.(IPERCL-15)) THEN
           IPERCL=IPERCR
           WRITE(UNIT=MSG,FMT='(I3)') IPERCL
           CALL GRWARN('     '//MSG(1:3)//'% remaining ')
        ENDIF
C ***
C ***
C *** ---------------------------------------------------------------
C ***
C *** Calculate the # of consecutive rows which are repeats of the current
C *** row.  Set IRPCNT=#repeated_consecutive_rows.
C ***
      IRPCNT=0
3100  J=IROW-IRPCNT-1
C *** Need to make sure that we do not go out of the bounding box.
      IF(J.LT.IYBXLL) GOTO 3200
C *** Do a loop comparing the bytes across two rows.  Since the bits
C *** outside of the minimum bounding box are white (0), we do not
C *** have to worry about them -- they will compare okay.
C *** There are 8 bits to a byte, so there are 8 pixels to a byte.
C *** We can step by 8 pixels to do our check.
      DO 3120, I=IXBXLL, IXBXUR, 8
         IF(BITMAP(I/8,IROW).NE.BITMAP(I/8,J)) GOTO 3150
3120  CONTINUE
C *** We have found another repeated consecutive row.
      IRPCNT=IRPCNT+1
C *** Go back and check if the next row down is also a repeated row.
      GOTO 3100
C ***
C ***
C ***
C ***
3150  CONTINUE
C *** We have found all of the consecutive repeated rows.
C ***
C *** ------------------------------------------------------------------
C ***
3200  CONTINUE
C ***
      IF(IRPCNT.GT.0) THEN
C ***    Store the repeat count for later Encoding.
         IF(LTX05E.EQ..TRUE.) IRPEAT(IRPIND)=IRCIND
         IF(LTX05E.EQ..TRUE.) IRUNCD(IRCIND)=IRPCNT
         IRPIND=IRPIND+1
         IRCIND=IRCIND+1
C ***    Update the current position to be the the row of the last
C ***    repeat count, and remain in the same column.
         IROW=IROW-IRPCNT
      ENDIF
C ***
C ***
C *** --------------------------------------------------------------------
C ***
4000  CONTINUE
C ***
C ***    MIDDLE_NO_REPEAT:
C ***
C ***
C ***   We are now located in the middle of a row, for which there
C ***   are definitely not any repeated rows immediately below.
C ***   There may, however, be that the remainder of the row is solid.
C ***
C ***
C ***  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C ***  Check for a transition on the current row.
C ***
C *** Find the transition point, (ITMPRO,ITMPCO).
      ITMPRO=IROW
      DO 4110, ITMPCO=ICOL,IXBXUR
        IF(LBLACK.EQ..TRUE.) THEN
            IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2      .EQ.WHITE) GOTO 4120
        ELSE
            IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2      .NE.WHITE) GOTO 4120
        ENDIF
4110  CONTINUE
C *** We did not have a transition on the current row.
C *** Goto NO_TRANS_CURRENT_ROW.
      GOTO 4500
C ***
4120  CONTINUE
C *** We did have a transition on the current row.
C ***
C *** Calculate the sum of pixels up to the transition.
      IRCSUM=IRCSUM+(ITMPCO-ICOL)
C *** Store out the resulting pixel RUN CODE sum count.
      IF(LTX05E.EQ..TRUE.) IRUNCD(IRCIND)=IRCSUM
      IRCIND=IRCIND+1
C *** Update the current position to be the point of transition.
      IROW=ITMPRO
      ICOL=ITMPCO
C *** Change the current color.
      LBLACK=.NOT.LBLACK
C *** Reset the counters.
      IRPCNT=0
      IRCSUM=0
C ***
C *** We are still in the middle of a row, for which there is no
C *** repeat count, and for which the remainder of the row may
C *** be of solid color.  GOTO MIDDLE_NO_REPEAT.
      GOTO 4000
C ***
C *** - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C ***
4500  CONTINUE
C ***
C ***
C ***  We are now in the middle of a row for which
C *** there are no repeat counts, but the remainder of the row
C *** is of solid color.
C *** 
C *** Need check if we are on the last row of the minimal bounding
C *** box for the character.
      IF(IROW.EQ.IYBXLL) GOTO 8100
C ***
C *** Need to check for a transition at the first pixel of the
C *** next row of the minimal bounding box of the character.
        ITMPRO=IROW-1
        ITMPCO=IXBXLL
        IF(LBLACK.EQ..TRUE.) THEN
            IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2      .NE.WHITE) GOTO 4700
        ELSE
            IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2      .EQ.WHITE) GOTO 4700
        ENDIF
C ***
C *** - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C *** 
C *** We are on the middle of a row for which there are no
C *** repeated rows immediately following, and for which the
C *** remainder of the row is of solid color and for which
C *** the first pixel on the next row of the minimal bounding
C *** box of the character changes color (a transition occurs).
C ***
C *** Need to calculate the remaining pixels out to the end of the
C *** current row.
      IRCSUM=IRCSUM+(IXBXUR-ICOL+1)
C *** Store this for later Encoding.
      IF(LTX05E.EQ..TRUE.) IRUNCD(IRCIND)=IRCSUM
      IRCIND=IRCIND+1
C *** Update the current position to be the first pixel on the next line.
      ICOL=IXBXLL
      IROW=IROW-1
C *** Change colors.
      LBLACK=.NOT.LBLACK
C *** Reset the counters.
      IRCSUM=0
      IRPCNT=0
C ***
C *** We are now at the beginning of a new row.
C *** GOTO BEGINNING_OF_ROW.
      GOTO 2000
C ***
C *** - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
C ***
4700  CONTINUE
C ***
C *** We are now in the middle of a row for which there are definitely
C *** no repeated rows immediately following, and for which the 
C *** remainder of the row is of solid color, and for which the first
C *** pixel of the next row of the minimal bounding box for the 
C *** character does not change color (no transition).
C ***
C *** Add up the pixels remaining on the end of the current row.
      IRCSUM=IRCSUM+(IXBXUR-ICOL+1)
C *** Update the current position to be the first pixel on the 
C *** next row.
      IROW=IROW-1
      ICOL=IXBXLL
C ***
C *** 
C *** ----------------------------------------------------------
C ***
C *** Need to check and see if the current row is of solid color
C *** or not.
C *** We will check the "leftover" bits on the left and right of the
C *** character first, then if they pass, we will check the bytes in between.
C *** Initialize LSOLID=.FALSE. so that "jump_out" to label 5000 will
C *** be correct if we do not have a solid row.
      LSOLID=.FALSE.
      ITMPRO=IROW
      ITMPCO=IXBXLL-1
4705  ITMPCO=ITMPCO+1
C *** If we are on an a byte boundary, we have finished checking the
C *** left "leftover" bits. Go check the right "leftover" bits.
      IF(MOD(ITMPCO,8).EQ.0) GOTO 4710
C *** See if the current pixel is the correct color for solid color row.
      IF(LBLACK.EQ..TRUE.) THEN
          IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2    .NE.WHITE) THEN
            GOTO 4705
          ELSE
            GOTO 5000
          ENDIF
      ELSE
          IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2    .EQ.WHITE) THEN
            GOTO 4705
          ELSE
            GOTO 5000
          ENDIF
      ENDIF
C ***
C ***
C ***
4710  CONTINUE
C ***
C *** Checking the right "leftover" bits now for solid color row.
      J=IROW
      I=IXBXUR+1
4720  I=I-1
C *** If we are on an a byte boundary, we have finished checking the
C *** right "leftover" bits. Go check the bytes in between.
      IF(MOD(I,8).EQ.7) GOTO 4740
C *** See if the current pixel is the correct color for solid color row.
      IF(LBLACK.EQ..TRUE.) THEN
          IF((BITMAP(I/8,J).AND.2**(7-MOD(I,8)))
     2    .NE.WHITE) THEN
            GOTO 4720
          ELSE       
            GOTO 5000
          ENDIF
      ELSE
          IF((BITMAP(I/8,J).AND.2**(7-MOD(I,8)))
     2    .EQ.WHITE) THEN
            GOTO 4720
          ELSE
            GOTO 5000
          ENDIF
      ENDIF
C ***
C ***
C ***
C ***
C ***
4740  CONTINUE
C ***
C *** Both the left and right "leftover" bits checked out to be solid 
C *** color of the current color type.  Now need to check the
C *** bytes in between to see if they are also solid color of the 
C *** current type.  If it is not solid, we will go to the label 
C *** 5000 for processing, otherwise we will continue processing
C *** below.
      DO 4750, K=ITMPCO,I,8
        IF(LBLACK.EQ..TRUE.) THEN
            IF(BITMAP(K/8,J).NE.SOLBLK) GOTO 5000
        ELSE
            IF(BITMAP(K/8,J).NE.SOLWHT) GOTO 5000
        ENDIF
4750  CONTINUE
C ***
C *** We have a row which is of solid color.
      LSOLID=.TRUE.
C ***
C ***
C ***
C ***
C ***
C *** ---------------------------------------------------------------
C ***
C ***
C *** Calculate the # of consecutive rows which are repeats of the current
C *** row.  Set IRPCNT=#repeated_consecutive_rows.
C ***
      IRPCNT=0
4800  J=IROW-IRPCNT-1
C *** Need to make sure that we do not go out of the bounding box.
      IF(J.LT.IYBXLL) GOTO 8200
C *** Do a loop comparing the bytes across two rows.  Since the bits
C *** outside of the minimum bounding box are white (0), we do not
C *** have to worry about them -- they will compare okay.
C *** There are 8 bits to a byte, so there are 8 pixels to a byte.
C *** We can step by 8 pixels to do our check.
      DO 4820, I=IXBXLL, IXBXUR, 8
         IF(BITMAP(I/8,IROW).NE.BITMAP(I/8,J)) GOTO 4850
4820  CONTINUE
C *** We have found another repeated consecutive row.
      IRPCNT=IRPCNT+1
C *** Go back and check if the next row down is also a repeated row.
      GOTO 4800
C ***
C ***
C ***
C ***
4850  CONTINUE
C *** We have found all of the consecutive repeated rows.
C ***
C *** ------------------------------------------------------------------
C *** Add up the sum of pixels on the (possibly repeated) solid rows
C *** and add this result to any earlier sum (for the row which
C *** had the last part of it solid).
      IRCSUM=IRCSUM+ (IXBXUR-IXBXLL+1)*(IRPCNT+1)
C *** Update the cursor position to be the first pixel on the next 
C *** non-solid row below.
      IROW=IROW-IRPCNT-1
      ICOL=IXBXLL
C *** ------------------------------------------------------------------
C ***
C *** Need to determine whether a transition occurs at the first 
C *** pixel of the first non-repeated solid row. If a transition does
C *** not occur, goto label 4900, otherwise continue below.
      ITMPRO=IROW
      ITMPCO=IXBXLL
        IF(LBLACK.EQ..TRUE.) THEN
            IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2      .NE.WHITE) GOTO 4900
        ELSE
            IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2      .EQ.WHITE) GOTO 4900
        ENDIF
C ***
C *** ----------------------------------------------------------------
C *** 
C *** There is a transition at the first pixel of the minimum bounding
C *** box for this first non-solid row.
C ***
C *** Write out the RUN CODE sum count for later Encoding.
      IF(LTX05E.EQ..TRUE.) IRUNCD(IRCIND)=IRCSUM
      IRCIND=IRCIND+1
C *** Change color.
      LBLACK=.NOT.LBLACK
C *** Reset counters.
      IRPCNT=0
      IRCSUM=0
C ***
C *** We are now on the beginning of a new row.
C *** GOTO BEGINNING_OR_ROW.  
      GOTO 2000
C ***
C *** ------------------------------------------------------------------------
C ***
4900  CONTINUE
C ***
C *** There is not a transition at the first pixel of the minimum bounding
C *** box for this first non-solid row.  We are located at this first pixel
C *** of this non-solid row.
C *** Find the location of the transition on this current row.
C *** Find the transition point, (ITMPRO,ITMPCO).
      ITMPRO=IROW
      DO 4910, ITMPCO=IXBXLL+1,IXBXUR
        IF(LBLACK.EQ..TRUE.) THEN
            IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2      .EQ.WHITE) GOTO 4920
        ELSE
            IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2      .NE.WHITE) GOTO 4920
        ENDIF
4910  CONTINUE
C ***
4920  CONTINUE
C *** We now have ITMPRO, ITMPCO where the transition occurs.
C *** Calculate the sum of the pixels up to the transition on this row,
C *** and add this result to the earlier sum of solid (possibly repeated)
C *** rows and the row which had the remaining end pixels to be of solid
C *** color.
      IRCSUM=IRCSUM+(ITMPCO-IXBXLL)
C *** Write out this RUN CODE sum count for later Encoding.
      IF(LTX05E.EQ..TRUE.) IRUNCD(IRCIND)=IRCSUM
      IRCIND=IRCIND+1
C *** Update position to the transition location.
C *** IROW=ITMPRO  We are still on the same row.
      ICOL=ITMPCO
C *** Change colors.
      LBLACK=.NOT.LBLACK
C *** Reset counters.
      IRPCNT=0
      IRCSUM=0
C ***
C *** We are now in the middle of a row, which may have possible repeats
C *** and which may have the remainder of the row being a solid color
C *** of the current type.  GOTO MIDDLE_REPEAT.
      GOTO 3000
C ***
C *** -------------------------------------------------------------------
C ***
5000  CONTINUE
C ***
C ***   We are on a row, for which the previous row had the remaining
C ***   pixels on that row to be of solid color.  We did not have 
C ***   a transition at the first pixel of this row, and this row
C ***   is not of solid color.  We are located at the first pixel
C ***   on this non-solid row.
C ***
C *** Locate the transition on this current row.
C *** Find the transition point, (ITMPRO,ITMPCO).
      ITMPRO=IROW
      DO 5010, ITMPCO=IXBXLL+1,IXBXUR
        IF(LBLACK.EQ..TRUE.) THEN
            IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2      .EQ.WHITE) GOTO 5020
        ELSE
            IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2      .NE.WHITE) GOTO 5020
        ENDIF
5010  CONTINUE
C ***
5020  CONTINUE
C *** We now have ITMPRO, ITMPCO where the transition occurs.
C *** Add up the sum of the pixels up to the transition with the
C *** earlier sum for the previous row which had the pixels at the end
C *** to be of solid color.
      IRCSUM=IRCSUM + (ITMPCO-IXBXLL)
C *** Store this RUN CODE sum count for later Encoding.
      IF(LTX05E.EQ..TRUE.) IRUNCD(IRCIND)=IRCSUM
      IRCIND=IRCIND+1
C *** Update the current position to be the point of transition.
C *** IROW=ITMPRO   It is on the same row.
      ICOL=ITMPCO
C *** Change colors.
      LBLACK=.NOT.LBLACK
C *** Reset counters.
      IRCSUM=0
      IRPCNT=0
C ***
C *** We are now in the middle of a row, for which there may be
C *** possible repeats, and for which the remainder of this row
C *** may be of solid color.  GOTO MIDDLE_REPEAT.
      GOTO 3000
C ***
C *** --------------------------------------------------------------------
C ***
6000  CONTINUE
C ***
C ***  NOT SOLID BEGINNING_OF_ROW PROCESSING CONTINUED
C ***
C *** 
C *** ---------------------------------------------------------------
C ***
C ***
C *** Calculate the # of consecutive rows which are repeats of the current
C *** row.  Set IRPCNT=#repeated_consecutive_rows.
C ***
      IRPCNT=0
6100  J=IROW-IRPCNT-1
C *** Need to make sure that we do not go out of the bounding box.
      IF(J.LT.IYBXLL) GOTO 6200
C *** Do a loop comparing the bytes across two rows.  Since the bits
C *** outside of the minimum bounding box are white (0), we do not
C *** have to worry about them -- they will compare okay.
C *** There are 8 bits to a byte, so there are 8 pixels to a byte.
C *** We can step by 8 pixels to do our check.
      DO 6120, I=IXBXLL, IXBXUR, 8
         IF(BITMAP(I/8,IROW).NE.BITMAP(I/8,J)) GOTO 6150
6120  CONTINUE
C *** We have found another repeated consecutive row.
      IRPCNT=IRPCNT+1
C *** Go back and check if the next row down is also a repeated row.
      GOTO 6100
C ***
C ***
C ***
C ***
6150  CONTINUE
C *** We have found all of the consecutive repeated rows.
C ***
C *** ------------------------------------------------------------------
6200  CONTINUE
C ***
      IF(IRPCNT.GT.0) THEN
C ***    Store the repeat count for later Encoding
C ***    and update the current position to be the last repeated row,
C ***    and reset the repeat counter.
         IF(LTX05E.EQ..TRUE.) IRPEAT(IRPIND)=IRCIND
         IF(LTX05E.EQ..TRUE.) IRUNCD(IRCIND)=IRPCNT
         IRPIND=IRPIND+1
         IRCIND=IRCIND+1
         IROW=IROW-IRPCNT
         IRPCNT=0
      ENDIF
C ***
C *** Locate the transition on this current row.
C *** Find the transition point, (ITMPRO,ITMPCO).
      ITMPRO=IROW
      DO 6210, ITMPCO=IXBXLL+1,IXBXUR
        IF(LBLACK.EQ..TRUE.) THEN
            IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2      .EQ.WHITE) GOTO 6220
        ELSE
            IF((BITMAP(ITMPCO/8,ITMPRO).AND.2**(7-MOD(ITMPCO,8)))
     2      .NE.WHITE) GOTO 6220
        ENDIF
6210  CONTINUE
C ***
6220  CONTINUE
C *** We now have ITMPRO, ITMPCO where the transition occurs.
C *** Add up the sum of the pixels up to the transition.
      IRCSUM=IRCSUM + (ITMPCO-IXBXLL)
C *** Store this RUN CODE sum count for later Encoding.
      IF(LTX05E.EQ..TRUE.) IRUNCD(IRCIND)=IRCSUM
      IRCIND=IRCIND+1
C *** Update the current position to be the point of transition.
C *** IROW=ITMPRO   It is on the same row.
      ICOL=ITMPCO
C *** Change colors.
      LBLACK=.NOT.LBLACK
C *** Reset counters.
      IRCSUM=0
      IRPCNT=0
C ***
C ***  We are now in the middle of a row for which there are
C ***  no repeated rows immediately following, and for which the
C ***  remainder of the row may be of solid color.
C ***  GOTO MIDDLE_NO_REPEAT.
       GOTO 4000
C ***
C *** -----------------------------------------------------------------
C ***
8000  CONTINUE 
C ***
C ***  LAST ROW OF CHARACTER PROCESSING for BEGINNING_OF_ROW SOLID last row.
C ***
C ***  Add up the pixels of all of the solid (possibly repeated) rows
C ***  immediately above this last row which is solid.
       IRCSUM=IRCSUM+(IXBXUR-IXBXLL+1)*(IRPCNT+1)
C ***  Store this RUN CODE sum count for later Encoding.
       IF(LTX05E.EQ..TRUE.) IRUNCD(IRCIND)=IRCSUM
       IRCIND=IRCIND+1
C ***  Update position, change color, reset counters, and exit.
       IROW=IROW-IRPCNT-1
       ICOL=IXBXLL
       ITMPRO=IROW
       ITMPCO=ICOL
       LBLACK=.NOT.LBLACK
       IRCSUM=0
       IRPCNT=0
       GOTO 9000
C ***
C *** ----------------------------------------------------------------------
C ***
8100  CONTINUE
C ***
C ***
C ***
C *** LAST ROW OF CHARACTER PROCESSING for a row which has the last pixels
C *** on the row of solid color, but the whole row is not solid.
C ***
C *** Sum up the pixels remaining on this row.
      IRCSUM=IRCSUM+(IXBXUR-ICOL+1)
C *** Store this RUN CODE sum count for later Encoding.
      IF(LTX05E.EQ..TRUE.) IRUNCD(IRCIND)=IRCSUM
      IRCIND=IRCIND+1
C *** Update position, change color, reset counters, and exit.
      IROW=IROW-1
      ICOL=IXBXLL
      ITMPRO=IROW
      ITMPCO=ICOL
      LBLACK=.NOT.LBLACK
      IRPCNT=0
      IRCSUM=0
      GOTO 9000
C ***
C *** ------------------------------------------------------------------
C ***
8200  CONTINUE 
C ***
C ***
C ***  LAST ROW OF CHARACTER PROCESSING for a row which is solid
C ***  and may have had repeated solid rows above it and which
C ***  definitely had a row above it for which the last pixels on 
C ***  the end of the row were of solid color of the current color.
C ***
C *** Add up all of the pixels on the solid and solid repeated rows
C *** and add the earlier pixel count for the partially solid row.
      IRCSUM=IRCSUM + (IXBXUR-IXBXLL+1)*(IRPCNT+1) 
C *** Store this RUN CODE sum count for later Encoding.
      IF(LTX05E.EQ..TRUE.) IRUNCD(IRCIND)=IRCSUM
      IRCIND=IRCIND+1
C *** Update the position, change color, reset counters, and exit.
      IROW=IROW-IRPCNT-1
      ICOL=IXBXLL
      ITMPRO=IROW
      ITMPCO=ICOL
      LBLACK=.NOT.LBLACK
      IRPCNT=0
      IRCSUM=0
      GOTO 9000
C ***
C *** --------------------------------------------------------------------
C *** -------------------------------------------------------------------
C ***
9000  CONTINUE
C ***
C ***
C *** Finished. Exiting.
C ***
C ***
C ***
C *** 
C------------------------------------------------------------------------
      RETURN
      END
C<FF>
C *GRTX06 -- PGPLOT Calculate optimal value of dyn_f.
C
      SUBROUTINE GRTX06 (IRUNCD,IRCDIM,IBOXDX,IBOXDY,IDYNF,
     2                   IRPEAT,IRPDIM,BITMAP,IBXDIM,IBYDIM)
C-----------------------------------------------------------------
C ***
C *** -------------------------------------------------------------
C *** This routine is used to find the optimal value of dyn_f
C *** for encoding the RUN CODE for the current PK Font character.
C *** Documentation for the algorithm is found in the files PKtoPX.WEB,
C *** PXtoPK.WEB, PKtype.WEB, and GFtoPK.WEB.  To obtain this 
C *** documentation, WEAVE the WEB file, then TeX the output, then
C *** use a dvi-translator the translate the DVI file into a binary
C *** file suitable for output to your specific printer.
C *** The PK format was designed by Tomas Rokicki in August, 1985.
C *** Rokicki was a former Texas A&M Univerisity student.
C ***
C *** IRUNCD is an integer input array of dimension IRCDIM which contains
C *** the RUN CODE for the current character.
C *** IRCDIM is an integer input giving the dimension of the IRUNCD array.
C *** IBOXDX is an integer input giving the X-direction size of the minimum
C *** bounding box of the character.
C *** IBOXDY is an integer input giving the Y-direction size of the minimum
C *** bounding box of the character.
C *** IDYNF is an integer output array of dimension 15 giving the
C *** calculated value of dyn_f=(0,13) and the BITMAP encoding (14)
C *** upon return from this routine. 
C *** BITMAP is a byte array of size IBXDIM x IBYDIM containing the
C *** Bitmap of the character.
C *** IBXDIM is an integer giving the X-dimension of the array BITMAP.
C *** IBYDIM is an integer giving the Y-dimension of the array BITMAP.
C *** IRPIND is an integer used to index into the IRPEAT array.
C *** IRPEAT is an integer array of size IRPDIM which contains indexes
C *** into the IRUNCD array pointing to Repeat codes in the RUN CODE
C *** for the character.
C *** IRPDIM is an integer giving the dimension of the array IRPEAT.
C *** I, J  are temporary integer variables used for counting and
C *** for DO-loop indices.
C ***
C *** ----------------------------------------------------------------
C ***
C ***
C ***
C ***
      IMPLICIT NONE
      INTEGER IRCDIM, IRPDIM, IBXDIM, IBYDIM, IBOXDX, I, J
      INTEGER IBOXDY, IRUNCD(IRCDIM), IRPEAT(IRPDIM), IRPIND
      BYTE BITMAP(0:IBXDIM-1,0:IBYDIM-1)
      INTEGER IDYNF(0:14),IVALUE(0:13,3)
C ***
C *** --------------------------------------------------------------
C *** Store data values used for comparisons below.
      DO 50, I=0,13
C ***   One nybble values are
C ***   values from 1 to dyn_f.  IVALUE(I,1) contains dyn_f=I.
        IVALUE(I,1)=I
C ***   Two nybble values are
C ***   values from dyn_f+1 to (13-dynf)*16+dynf .
        IVALUE(I,2)=(13-I)*16+I
C ***   Three nybble and larger #nybbles are
C ***   values from (13-dyn_f)*16+dyn_f up.
        IVALUE(I,3)=16-((13-I)*16+I+1)
50    CONTINUE
C ***
C *** --------------------------------------------------------------
C ***
C *** Initialize the IDYNF array to zero (will be used to keep running
C *** sums.
      DO 60, I=0,14
         IDYNF(I)=0
60    CONTINUE
C ***
C ***
C ***
C *** ----------------------------------------------------------------
C ***
C *** First, calculate the length required for the bitmap packing.
C *** In bitmap packing, the minimal bounded box pixels are all
C *** concatenated into one long string by concatenating rows, then
C *** the bitmap string is packed 8 bits into a byte, each pixel
C *** representing one bit in a byte.
C ***
C *** Note: 7/8=0 in integer arithmetic is used to round up the
C *** extra bits over a byte at the end of the bitmapping up to
C *** an even byte boundary.  Also, there are 2 nybbles per byte.
C *** So, IDYNF(14) will be the count in nybbles require for compressed
C *** raw bitmapping.
      IDYNF(14)= (IBOXDX*IBOXDY+7)/8*2
C ***
C ***
C *** -----------------------------------------------------------------
C *** 
C *** Now calculate the length required for ENCODing the minimum bounded
C *** box RUN CODE for different values of dyn_f=[0,13].
C ***
      DO 3000, J=0,13
C *** Calculate the length required for dyn_f=J ENCODing.
      IRPIND=1
      DO 1000, I=1,IRCDIM
C ***    Check and see if the current RUN CODE value is a repeat code.
         IF(IRPIND.LE.IRPDIM) THEN
           IF(I.EQ.IRPEAT(IRPIND)) THEN
C ***        It is a repeat value.
C ***        Increment the Repeat Code index to point to the next repeat value.
             IRPIND=IRPIND+1.
C ***        We use the nybble value 14 to signify a repeat count value > 1,
C ***        and use the nybble value 15 to signify a repeat count value = 1,
C ***        then follows immediately the packed number representation
C ***        of the repeat value.  For the signaling nybble (14, or 15),
C ***        we require 1 nybble.
             IDYNF(J)=IDYNF(J)+1
C ***        If the repeat count is 1, then only the nybble value 15 is
C ***        required.  We do not have to encode the packed number also.
             IF(IRUNCD(I).EQ.1) GOTO 1000
C ***
C ***        Now, we will calculate the number of nybbles required for the
C ***        packed number representation of the repeat count value below
C ***        (where all packed number representation nybble requirements
C ***        are determined --- repeat counts, white counts, or black counts).
           ENDIF
         ENDIF
C ***
C ***     Calculate the number of nybbles required for the packed number
C ***     representation.
C ***
C ***     First, check for the one nybble packed number representation of
C ***     the value.
          IF(IRUNCD(I).LE.IVALUE(J,1)) THEN
C ***        Note: The special case J=0 will not occur. A value of
C ***        zero for IRUNCD(I) signifies the end of the RUN CODE array
C ***        and was checked for above.
             IDYNF(J)=IDYNF(J)+1
             GOTO 1000
          ENDIF
C ***
C ***     Second, check for the two nybble packed number representation of
C ***     the value.
          IF(IRUNCD(I).LE.IVALUE(J,2)) THEN
C ***        Note: J=13 will have been caught in the 1 nybble case above
C ***        so we do not have to worry about that special case.
             IDYNF(J)=IDYNF(J)+2
             GOTO 1000
          ENDIF
C ***
C ***     Lastly, calculate the number of nybbles required for the
C ***     large (3 or more) nybble representation of the value.
          IDYNF(J)=IDYNF(J)+(INT((LOG(
     2             FLOAT(IRUNCD(I)+IVALUE(J,3)))
     2             /LOG(16.0) + 1 ))*2 -1)
C ***
1000  CONTINUE
2000  CONTINUE
3000  CONTINUE       
C ***
C ***
C *** -------------------------------------------------------------
C *** Finished.  Return with the results.
C ***
      RETURN
      END
C<FF>
C *GRTX07 -- PGPLOT Compress the raw bitmap and DUMP encode.
C
      SUBROUTINE GRTX07 (BITMAP,IBXDIM,IBYDIM,BENCOD,IBEDIM,
     2                   IXBXLL,IYBXLL,IXBXUR,IYBXUR)
C-------------------------------------------------------------------
C ***
C ***
C *** ----------------------------------------------------------------
C *** This routine is used to encode the BITMAP into a PK Font
C *** by concatenating all of the rows inside of the character
C *** into a single row, and storing each pixel as a 1-to-1 mapping
C *** into the output array bits.  One pixel is one bit in one of
C *** the output array bytes.
C ***
C *** BITMAP is the byte input array of dimension IBXDIM x IBYDIM
C *** containing the input PK Font character.
C *** IBXDIM is an integer providing the X-dimension of the BITMAP array.
C *** IBYDIM is an integer providing the Y-dimension of the BITMAP array.
C *** BENCOD is the integer array of dimension IBEDIM, which upon output
C *** will contain the ENCODEd BITMAP.
C *** IBEDIM is an integer providing the dimension of BENCOD.
C *** IXBXLL is an integer specifying the X-coordinate in pixel units
C *** of the lower left corner of the minimum bounding box of the 
C *** PK Font character.
C *** IYBXLL is an integer specifying the Y-coordinate in pixel units
C *** of the lower left corner of the minimum bounding box of the 
C *** PK Font character.
C *** IXBXUR is an integer specifying the X-coordinate in pixel units
C *** of the upper right corner of the minimum bounding box of the 
C *** PK Font character.
C *** IYBXUR is an integer specifying the Y-coordinate in pixel units
C *** of the  upper right of the minimum bounding box of the 
C *** PK Font character.
C *** IBEIND is an integer variable, which upon output will contain
C *** the number of bytes used of the array BECOD. IBEIND is used
c *** as an index into the IBEIND array.
C *** I, J are temporary integer variables used for counting and
C *** and for DO-loop indices.
C ***
C ***
C *** ----------------------------------------------------------------
C ***
      IMPLICIT NONE
      INTEGER IBXDIM, IBYDIM, IBEDIM, IXBXLL, IYBXLL
      INTEGER IXBXUR, IYBXUR, IBEIND, I, J
      BYTE BITMAP(0:IBXDIM-1,0:IBYDIM-1)
      INTEGER BENCOD(0:IBEDIM-1)
C ***
C ***
C *** ----------------------------------------------------------------
C ***
C ***
C ***      Initialize the variables.
C ***  
      IBEIND=0 
      DO 100, I=0, IBEDIM-1
         BENCOD(I)=0
100   CONTINUE     
C ***
C ***
C *** ----------------------------------------------------------------
C ***
C ***
C ***   Do the encoding by "ORing" the current output byte (BENCOD(IBEIND/8))
C ***   with the value of the current input pixel (the IF statement) -- will 
C ***   be the value 0 or non-zero --  and then multiplying the 
C ***   value of the current pixel with the current output bit
C ***   position (assignment statement) -- which will be 2**7,...,2*0 according
C ***   to where you are within the current output byte}.
C ***   Note: it has been assumed that the bits are arranged from
C ***   left to right inside a byte as bit 7 (2**7), bit 6 (2**6),
C ***   ..., bit 1 (2**1), bit 0 (2**0), and that we traverse the
C ***   bitmap from left to right in increasing byte order ----
C ***   If this is not true, then this routine must be modified. 
C ***   I used BENCOD as an integer and '+' to implement the ".OR."ing.
        DO 300, J=IYBXUR, IYBXLL, -1
          DO 200, I=IXBXLL, IXBXUR
            IF((BITMAP(I/8,J).AND.(2**(7-MOD(I,8)))).NE.0)THEN
              BENCOD(IBEIND/8)=BENCOD(IBEIND/8) + 
     2        (2**(7-MOD(IBEIND,8)))
            ENDIF
            IBEIND=IBEIND+1
200      CONTINUE
300    CONTINUE
C ***
C ***
C ***
C ***
C *** -------------------------------------------------------------------
C *** Note: We do not have to worry about finishing packing the last
C *** byte, since we zeroed out the array initially.  The last byte will
C *** have zeros as the last bits.
C ***
C *** ------------------------------------------------------------------
C ***
C *** Now, we let's do a sanity check to make sure that I did not have
C *** a programming error which went out of bounds on the BENCOD array.
C ***
      IF(IBEIND.GT.IBEDIM*8) THEN
         CALL GRWARN('Exceeded the array dimension bounds of'
     2     //' the array BENCOD.')
         CALL GRWARN('This routine was calculating the '
     2     //'ENCODEing of the BITMAP.')
         CALL GRWARN('This should never happen. This is a' 
     2     //' programming error in this routine.')
      ENDIF
C ***
C ***
C *** ----------------------------------------------------------------
C ***
C *** Finished.  Let's return.
C ***
C ***
      RETURN
      END
C<FF>
C *GRTX08 -- PGPLOT ENCODE the RUN CODE count using optimal dyn_f.
C
      SUBROUTINE GRTX08(IRUNCD,IRCDIM,IDYNF,IRPEAT,IRPDIM,
     2                   BENCOD,IBEDIM)
C-----------------------------------------------------------------
C ***
C *** -------------------------------------------------------------
C *** This routine is used to encode the current PK Font character
C *** using the optimal dyn_f value which was calculated earlier.
C *** Documentation for the algorithm is found in the files PKtoPX.WEB,
C *** PXtoPK.WEB, PKtype.WEB, and GFtoPK.WEB.  To obtain this 
C *** documentation, WEAVE the WEB file, then TeX the output, then
C *** use a dvi-translator the translate the DVI file into a binary
C *** file suitable for output to your specific printer.
C *** The PK format was designed by Tomas Rokicki in August, 1985.
C *** Rokicki was a former Texas A&M Univerisity student.
C ***
C *** IRUNCD is an integer input array of dimension IRCDIM which contains
C *** the RUN CODE for the current character.
C *** IRCDIM is an integer input giving the dimension of the IRUNCD array.
C *** IDYNF is an integer containing the optimal value of dyn_f which 
C *** was calculated earlier. dynf=[0,13].
C *** IRPIND is an integer used to index into the IRPEAT array.
C *** IRPEAT is an integer array of size IRPDIM which contains indexes
C *** into the IRUNCD array pointing to Repeat codes in the RUN CODE
C *** for the character.
C *** IRPDIM is an integer giving the dimension of the array IRPEAT.
C *** BENCOD is an integer array of dimension IBEDIM which upon output
C *** is to contain the ENCODEd value of the RUN CODE for the current
C *** PK Font character.
C *** IBEDIM is an integer giving the dimension of the array BENCOD.
C *** IBEIND is an integer used to index into the array BENCOD
C *** by indexing using  IBEIND/2.
C *** ITMPL is used as a temporary integer variable for the number of
C *** nybbles required in part of the Large Packed number representation 
C *** calcluations.
C *** ITMP1 is a temporary integer variable used in calculations
C *** for the Large Packed number representation, and the 2 nybble
C *** representation of the ENCODEd RUN CODE for the current Font character.
C *** ITMP2 is a temporary integer variable used in calculations
C *** for the Large Packed number representation, and the 2 nybble
C *** representation of the ENCODEd RUN CODE for the current Font character. 
C *** I, K are temporary integer variables used for counting and
C *** do-loop indices.
C *** ----------------------------------------------------------------
C ***
C ***
C ***
C ***
      IMPLICIT NONE
      INTEGER IRCDIM, IRPDIM, IBEDIM, IDYNF, I, K
      INTEGER IRUNCD(IRCDIM), IRPEAT(IRPDIM), IRPIND, IBEIND
      INTEGER ITMPL, ITMP1, ITMP2, I1NYBL, I2NYBL, ILNYBL
      INTEGER BENCOD(0:IBEDIM-1)
C ***
C *** --------------------------------------------------------------
C *** Calculate data values used for comparisons below.
C ***   One nybble values are
C ***   values from 1 to dyn_f.  I1NYBL contains dyn_f=IDYNF.
        I1NYBL=IDYNF
C ***   Two nybble values are
C ***   values from dyn_f+1 to (13-dynf)*16+dynf .
        I2NYBL=(13-IDYNF)*16+IDYNF
C ***   Three nybble and larger #nybbles are
C ***   values from (13-dyn_f)*16+dyn_f up.
        ILNYBL=16-((13-IDYNF)*16+IDYNF+1)
C ***
C *** --------------------------------------------------------------
C ***
C *** Initialize the BENCOD array to zero.
      DO 60, I=0,IBEDIM-1
         BENCOD(I)=0
60    CONTINUE
C ***
C ***
C ***
C *** ----------------------------------------------------------------
C *** 
C *** Now calculate the ENCODEd RUN CODE for the minimum bounded
C *** box using the optimal value dyn_f.
C ***
      IBEIND=0
      IRPIND=1
      DO 1000, I=1,IRCDIM
        IF(IRPIND.LE.IRPDIM) THEN
C ***      Check and see if the current RUN CODE value is a repeat code.
           IF(I.EQ.IRPEAT(IRPIND)) THEN
C ***        It is a repeat value.
C ***        Increment the Repeat Code index to point to the next repeat value.
             IRPIND=IRPIND+1.
C ***        We use the nybble value 14 to signify a repeat count value > 1,
C ***        and use the nybble value 15 to signify a repeat count value = 1,
C ***        then follows immediately the packed number representation
C ***        of the repeat value.  For the signaling nybble (14, or 15),
C ***        we require 1 nybble.
C ***        If the repeat count is 1, then only the nybble value 15 is
C ***        required.  We do not have to encode the packed number also.
             IF(IRUNCD(I).EQ.1) THEN
               BENCOD(IBEIND/2)=BENCOD(IBEIND/2) + 
     2              (15*16*MOD(IBEIND+1,2) + 15*MOD(IBEIND,2))
               IBEIND=IBEIND+1
               GOTO 1000
             ELSE
C ***          However, if the repeat count was greater than 1, we have
C ***          to encode the nybble value 14 and then follow with the
C ***          packed number representation of the Repeat Count.
               BENCOD(IBEIND/2)=BENCOD(IBEIND/2) + 
     2              (14*16*MOD(IBEIND+1,2) + 14*MOD(IBEIND,2))
               IBEIND=IBEIND+1
             ENDIF
C ***
C ***        Now, we will calculate the packed number representation
C ***        of the repeat count value below (where all packed number
C ***        representations are determined --- repeat counts,
C ***        white pixel counts, or black pixel counts).
           ENDIF
         ENDIF
C ***
C ***     Calculate the number of nybbles required for the packed number
C ***     representation and ENCODE the RUN CODE in packed format.
C ***
C ***     First, check for the one nybble packed number representation of
C ***     the value.
          IF(IRUNCD(I).LE.I1NYBL) THEN
C ***        Note: The special case J=0 will not occur. A value of
C ***        zero for IRUNCD(I) signifies the end of the RUN CODE array
C ***        and was checked for above.
               BENCOD(IBEIND/2)=BENCOD(IBEIND/2) +
     2              (IRUNCD(I)*16*MOD(IBEIND+1,2) 
     3               + IRUNCD(I)*MOD(IBEIND,2))
               IBEIND=IBEIND+1
             GOTO 1000
          ENDIF
C ***
C ***     Second, check for the two nybble packed number representation of
C ***     the value.
          IF(IRUNCD(I).LE.I2NYBL) THEN
C ***        Note: J=13 will have been caught in the 1 nybble case above
C ***        so we do not have to worry about that special case.
             ITMP1=INT((IRUNCD(I)-1-IDYNF)/16) + 1 + IDYNF
             ITMP2=IRUNCD(I)-(ITMP1-IDYNF-1)*16 - IDYNF - 1
             BENCOD(IBEIND/2)=BENCOD(IBEIND/2) +
     2                         (ITMP1*16*MOD(IBEIND+1,2) 
     3                          + ITMP1*MOD(IBEIND,2))
             IBEIND=IBEIND+1
             BENCOD(IBEIND/2)=BENCOD(IBEIND/2) +
     2                         (ITMP2*16*MOD(IBEIND+1,2) 
     3                          + ITMP2*MOD(IBEIND,2))
             IBEIND=IBEIND+1
             GOTO 1000
          ENDIF
C ***
C ***     Lastly, calculate the number of nybbles required to be zero
C ***     for the large (3 or more) nybble representation of the value.
C ***     Then encode that value as a large packed number.
          ITMPL=INT(LOG(FLOAT(IRUNCD(I)+ILNYBL))/LOG(16.0)+1)-1
          DO 500, K=1,ITMPL
C ***          Place ITMPL zeroed nybbles into the BENCOD array.
               IBEIND=IBEIND+1
500       CONTINUE
C ***     Now, pack the value as a large packed number into array BENCOD.
C ***     Values greater than -ILNYBL=((13-dyn_f)*16+dyn_f)) are
C ***     large run counts.
          ITMP1=IRUNCD(I) + ILNYBL
          DO 600, K=1,ITMPL+1
             ITMP2=INT(ITMP1/(16**(ITMPL-K+1)))
             BENCOD(IBEIND/2)=BENCOD(IBEIND/2) + 
     2                         (ITMP2*16*MOD(IBEIND+1,2) 
     3                          + ITMP2*MOD(IBEIND,2))
             IBEIND=IBEIND+1
             ITMP1=ITMP1-ITMP2*16**(ITMPL-K+1)
600       CONTINUE
C ***
C ***  ----------------------------------------------------------------
C ***                                         
1000  CONTINUE
2000  CONTINUE
C *** Note: We do not need to finish packing the last nybble of a byte
C *** because the byte was zeroed out at the start of this routine.
C *** Let us now perform a sanity check to make sure that we did not
C *** go out of bounds on the array BENCOD (if we did, it is a programming
C *** error --- this should not ever happen).
      IF(IBEIND-1.GE.IBEDIM*2) THEN
        CALL GRWARN ('Exceeded array dimensions in the TeX PK'
     2  //' Font RUN CODE ENCODEr routine.')
        CALL GRWARN ('Byte Array BENCOD bounds was exceeded.'
     2  //'  This is a programming error in that routine.') 
        CALL GRWARN ('That should never occur.')
      ENDIF
C ***
C ***
C ***
C ***
C *** -------------------------------------------------------------
C *** Finished.  Return with the results.
C ***
      RETURN
      END
C<FF>
C *GRTX09 -- PGPLOT Write out the current PK Font character to PK file.
C
      SUBROUTINE GRTX09 (IBEDIM,BC,NC,XMAX,RESOLX,NDEV,DEVICE,
     2                   IXBXLL,IXBXUR,IYBXLL,IYBXUR,IDYNFO,
     3                  LIBLAK,NPKBYT,LUN,BENCOD,HEIGHT,
     4                  WIDTH,YMAX,RESOLY)
C-----------------------------------------------------------------------
C ***
C *** 
      IMPLICIT NONE
      INTEGER IBEDIM,BC,NC,NDEV,DEVICE,NPKBYT,LUN(2)
      INTEGER IXBXLL,IXBXUR,IYBXLL,IYBXUR,IDYNFO,FLAG
      INTEGER DM,DX,DY,W,H,HOFF,VOFF,PL(3),CC,I,ITMPVL
      INTEGER ITMPV1,ITMPV2,ITMPV3,ITMPV4,ITMP32,ITMP16
      DOUBLE PRECISION TFM,TFMW,TFMH,TMPVAR
      REAL XMAX,RESOLX(NDEV),YMAX,RESOLY(NDEV)
      LOGICAL LIBLAK
      INTEGER BENCOD(IBEDIM),HEIGHT(0:15,4),WIDTH(0:15,4)
      INTEGER BYTOUT
C ***
C-------------------------------------------------------------------------
C *** First, we need to calculate the Character Preamble paramaters
C *** for the PK file for the short, short extended, and long formats.
C *** The packet lengths are:
      PL(1)=8+IBEDIM
      PL(2)=13+IBEDIM
      PL(3)=28+IBEDIM
C *** The Character code is:
      CC=BC+NC
C *** The width values are:
      W=IXBXUR-IXBXLL+1
C *** The height values are:
      H=IYBXUR-IYBXLL+1
C *** The TFM value will be computed from:
C      TFM=XMAX/RESOLX(DEVICE)/1.3837
      TFM=W/RESOLX(DEVICE)/1.3837
C *** {We will also calculate the char_info width and height table 
C ***  values for the character here, WIDTH, HEIGHT in design size units}.
      TFMW=W/RESOLX(DEVICE)/1.3837
C      TFMW=XMAX/RESOLX(DEVICE)/1.3837
      TFMH=H/RESOLY(DEVICE)/1.3837
C      TFMH=YMAX/RESOLY(DEVICE)/1.3837
C *** The DX ( or DM) values are:
C      DM=XMAX
      DM=W
      DX=DM*65536
C *** The DY values are 0.
      DY=0
C *** The horizontal offset values are:
C      HOFF=-IXBXLL
      HOFF=0
C *** The vertical offset values are:
C      VOFF=IYBXUR
      VOFF=H
C ***
C ***
C *** ------------------------------------------------------------------
C ***
C *** Now, we will determine which format of the preamble will be used --
C *** the long, the short, or the short extended.
C ***
C ***
C *** We will use the short form if possible.  SHORT_FORM: label 500.
      IF( (PL(1).LT.1024) .AND. (CC.LT.256) .AND. 
     2    (TFM.LT.16) .AND. (DM.LT.256) .AND. (W.LT.256)
     3    .AND. (H.LT.256) .AND. (HOFF.GT.-129)
     4    .AND. (HOFF.LT.128) .AND. (VOFF.GT.-129) 
     5    .AND. (VOFF.LT.128))  GOTO 500
C ***
C ***
C *** The short form was not possible.  We will try to use the 
C *** short extended form.  SHORT_EXT: label 2000.
      IF( (PL(2).LT.196608) .AND. (CC.LT.256) .AND. 
     2    (TFM.LT.16) .AND. (DM.LT.65536) .AND. (W.LT.65536)
     3    .AND. (H.LT.65536) .AND. (HOFF.GT.-32769) 
     4    .AND. (HOFF.LT.32768) .AND. (VOFF.GT.-32769) 
     5    .AND. (VOFF.LT.32768))  GOTO 2000
C ***
C ***
C *** The short form, and the short extended forms were not possible.
C *** The Long form had better work!. LONG_FORM: label 3500.
      IF( (PL(3).LT.2.147836*10**9) .AND.
     2   (CC.LT.2.147836*10**9) .AND. 
     3    (TFM.LT.2048) .AND. (DM.LT.32768) .AND.
     4    (W.LT.2.147836*10**9) .AND. (H.LT.2.147836*10**9)
     5    .AND. (HOFF.GT.-2.147836*10**9)
     6    .AND. (HOFF.LT.2.147836*10**9) .AND.
     7    (VOFF.GT.-2.147836*10**9) 
     8    .AND. (VOFF.LT.2.147836*10**9))  GOTO 3500
C ***
C *** ---------------------------------------------------------------
C *** This file can not be output to a PK file.  There is something wrong.
C ***
      CALL GRWARN ('The PK file cannot be output to.')
      CALL GRQUIT ('Character Preamble Format for the '
     2           //'character is too large.')
C ***
C -----------------------------------------------------------------------
C ***
C ***
C ***
C ***
C ***
C ***
C ***
C ***
C ***
C ***
C --------------------------------------------------------------------------
500   CONTINUE
C ***
C *** SHORT_FORMAT:
C ***
C ***
C *** -----------------
C *** First, we write out the Flag (1 byte).
      FLAG=0
      FLAG=FLAG+IDYNFO*16
      IF((LIBLAK.EQ..TRUE.) .AND. (IDYNFO.LT.14)) 
     2    FLAG=FLAG + 2**3
      ITMPVL=INT(PL(1)/256.0)
      FLAG=FLAG+ITMPVL
      BYTOUT=FLAG
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Second, we write out the Packet_Length (1 byte).
      BYTOUT=PL(1)-ITMPVL*256
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Third, we write out the Character_Code (1 byte).
      BYTOUT=CC
      CALL GRTX11(LUN(1),BYTOUT)
C *** 
C *** Fourth, we write out the TFM_width (3 bytes).
      TMPVAR=TFM
      ITMPVL=INT(TMPVAR/16.0**(-1))
      BYTOUT=ITMPVL
      CALL GRTX11(LUN(1),BYTOUT)
      TMPVAR=TMPVAR-ITMPVL*16.0**(-1)
      ITMPVL=INT(TMPVAR/16.0**(-3))
      BYTOUT=ITMPVL
      CALL GRTX11(LUN(1),BYTOUT)
      TMPVAR=TMPVAR-ITMPVL*16.0**(-3)
      ITMPVL=INT(TMPVAR/16.0**(-5))
      BYTOUT=ITMPVL
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Fifth, we write out the horizontal escapement (DM is 1 byte).
      BYTOUT=DM
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Sixth, we write out the Width of the bitmap (1 byte).
      BYTOUT=W
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Seventh, we write out the Height of the bitmap (1 byte).
      BYTOUT=H
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Eighth, we write out the Horizontal offset (signed 1 byte)
C *** Since it is signed, we must take care of this.
      IF (HOFF.LT.0) THEN
         BYTOUT=HOFF+256
      ELSE
         BYTOUT=HOFF
      ENDIF
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C ***         
C *** Ninth, we write out the Vertical offset (signed 1 byte)
C *** Since it is signed, we must take care of this.
      IF (VOFF.LT.0) THEN
         BYTOUT=VOFF+256
      ELSE
         BYTOUT=VOFF
      ENDIF
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** We just wrote out 11 bytes to the PK file.
      NPKBYT=NPKBYT+11
C *** Finished with the character Preamble, time to write out the character
C *** to the PK file.
C ***
C ***
C *** Write out the encoded character.
      GOTO 5000
C --------------------------------------------------------------------------
2000  CONTINUE
C ***
C *** SHORT_EXT:
C ***
C *** -----------------
C *** First, we write out the Flag (1 byte).
      FLAG=0
      FLAG=FLAG+IDYNFO*16
      IF((LIBLAK.EQ..TRUE.) .AND. (IDYNFO.LT.14)) 
     2    FLAG=FLAG + 2**3
      FLAG=FLAG+2**2
      ITMPVL=INT(PL(2)/65536.0)
      FLAG=FLAG+ITMPVL
      BYTOUT=FLAG
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Second, we write out the Packet_Length (2 byte).
      ITMPVL=PL(2)-ITMPVL*65536
      ITMPV2=INT(ITMPVL/256.0)
      BYTOUT=ITMPV2
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPV1=ITMPVL-ITMPV2*256
      BYTOUT=ITMPV1
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C ***      
C ***
C *** Third, we write out the Character_Code (1 byte).
      BYTOUT=CC
      CALL GRTX11(LUN(1),BYTOUT)
C *** 
C *** Fourth, we write out the TFM_width (3 bytes).
      TMPVAR=TFM
      ITMPVL=INT(TMPVAR/16.0**(-1))
      BYTOUT=ITMPVL
      CALL GRTX11(LUN(1),BYTOUT)
      TMPVAR=TMPVAR-ITMPVL*16.0**(-1)
      ITMPVL=INT(TMPVAR/16.0**(-3))
      BYTOUT=ITMPVL
      CALL GRTX11(LUN(1),BYTOUT)
      TMPVAR=TMPVAR-ITMPVL*16.0**(-3)
      ITMPVL=INT(TMPVAR/16.0**(-5))
      BYTOUT=ITMPVL
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C ***
C *** Fifth, we write out the horizontal escapement (DM is 2 byteS).
      ITMPV2=INT(DM/256.0)
      BYTOUT=ITMPV2
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPV1=DM-ITMPV2*256
      BYTOUT=ITMPV1
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Sixth, we write out the Width of the bitmap (2 bytes).
      ITMPV2=INT(W/256.0)
      BYTOUT=ITMPV2
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPV1=W-ITMPV2*256
      BYTOUT=ITMPV1
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Seventh, we write out the Height of the bitmap (2 bytes).
      ITMPV2=INT(H/256.0)
      BYTOUT=ITMPV2
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPV1=H-ITMPV2*256
      BYTOUT=ITMPV1
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Eighth, we write out the Horizontal offset (signed 2 bytes)
      IF (HOFF.LT.0) THEN
         ITMPVL=HOFF+65536
      ELSE
         ITMPVL=HOFF
      ENDIF
      ITMPV2=INT(ITMPVL/256.0)
      BYTOUT=ITMPV2
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPV1=ITMPVL-ITMPV2*256
      BYTOUT=ITMPV1
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C ***         
C *** Ninth, we write out the Vertical offset (signed 2 bytes).
      IF (VOFF.LT.0) THEN
         ITMPVL=VOFF+65536
      ELSE
         ITMPVL=VOFF
      ENDIF
         ITMPV2=INT(ITMPVL/256.0)
         BYTOUT=ITMPV2
         CALL GRTX11(LUN(1),BYTOUT)
         ITMPV1=ITMPVL-ITMPV2*256
         BYTOUT=ITMPV1
         CALL GRTX11(LUN(1),BYTOUT)
C ***
C ***
C *** We just wrote out 17 bytes to the PK file.
      NPKBYT=NPKBYT+17
C *** Finished with the character Preamble, time to write out the character
C *** to the PK file.
C ***
C ***
C ***
C ***
C *** Write out the encoded character.
      GOTO 5000
C --------------------------------------------------------------------------
3500  CONTINUE
C ***
C *** LONG_FORMAT:
C ***
C *** Note: All of these 4 byte quantites are "signed", but only
C ***      HOFF and VOFF can actually be negative.  We did a check
C ***      on all of the other variables at the start of this routine.
C ***      We only have to worry about HOFF and VOFF being signed quantities.
C *** -----------------
C *** First, we write out the Flag (1 byte).
      FLAG=0
      FLAG=FLAG+IDYNFO*16
      IF((LIBLAK.EQ..TRUE.) .AND. (IDYNFO.LT.14)) 
     2    FLAG=FLAG + 2**3
      FLAG=FLAG+7
      BYTOUT=FLAG
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Second, we write out the Packet_Length (4 bytes).
      ITMPVL=PL(3)
      ITMPV4=INT(ITMPVL/16777216.0)
      BYTOUT=ITMPV4
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPVL=ITMPVL-ITMPV4*16777216
      ITMPV3=INT(ITMPVL/65536.0)
      BYTOUT=ITMPV3
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPVL=ITMPVL-ITMPV3*65536
      ITMPV2=INT(ITMPVL/256.0)
      BYTOUT=ITMPV2
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPVL=ITMPVL-ITMPV2*256
      ITMPV1=ITMPVL
      BYTOUT=ITMPV1
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Third, we write out the Character_Code (1 byte).
      ITMPVL=CC
      ITMPV4=INT(ITMPVL/16777216.0)
      BYTOUT=ITMPV4
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPVL=ITMPVL-ITMPV4*16777216
      ITMPV3=INT(ITMPVL/65536.0)
      BYTOUT=ITMPV3
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPVL=ITMPVL-ITMPV3*65536
      ITMPV2=INT(ITMPVL/256.0)
      BYTOUT=ITMPV2
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPVL=ITMPVL-ITMPV2*256
      ITMPV1=ITMPVL
      BYTOUT=ITMPV1
      CALL GRTX11(LUN(1),BYTOUT)
C *** 
C *** Fourth, we write out the TFM_width (4 bytes).
      TMPVAR=TFM
      ITMPVL=INT(TMPVAR/16.0**1)
      BYTOUT=ITMPVL
      CALL GRTX11(LUN(1),BYTOUT)
      TMPVAR=TMPVAR-ITMPVL*16.0**1
      ITMPVL=INT(TMPVAR/16.0**(-1))
      BYTOUT=ITMPVL
      CALL GRTX11(LUN(1),BYTOUT)
      TMPVAR=TMPVAR-ITMPVL*16.0**(-1)
      ITMPVL=INT(TMPVAR/16.0**(-3))
      BYTOUT=ITMPVL
      CALL GRTX11(LUN(1),BYTOUT)
      TMPVAR=TMPVAR-ITMPVL*16.0**(-3)
      ITMPVL=INT(TMPVAR/16.0**(-5))
      BYTOUT=ITMPVL
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Fifth, we write out the horizontal escapement (DX is 4 bytes).
C ***
      ITMPVL=DX
      ITMPV4=INT(ITMPVL/16777216.0)
      BYTOUT=ITMPV4
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPVL=ITMPVL-ITMPV4*16777216
      ITMPV3=INT(ITMPVL/65536.0)
      BYTOUT=ITMPV3
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPVL=ITMPVL-ITMPV3*65536
      ITMPV2=INT(ITMPVL/256.0)
      BYTOUT=ITMPV2
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPVL=ITMPVL-ITMPV2*256
      ITMPV1=ITMPVL
      BYTOUT=ITMPV1
      CALL GRTX11(LUN(1),BYTOUT)
C *** Sixth, we write out the Vertical escapement (4 bytes). DY=0.
      DO 3600, I=1, 4
         BYTOUT=0
         CALL GRTX11(LUN(1),BYTOUT)
3600  CONTINUE
C *** Seventh, we write out the Width of the bitmap (4 bytes).
      ITMPVL=W
      ITMPV4=INT(ITMPVL/16777216.0)
      BYTOUT=ITMPV4
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPVL=ITMPVL-ITMPV4*16777216
      ITMPV3=INT(ITMPVL/65536.0)
      BYTOUT=ITMPV3
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPVL=ITMPVL-ITMPV3*65536
      ITMPV2=INT(ITMPVL/256.0)
      BYTOUT=ITMPV2
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPVL=ITMPVL-ITMPV2*256
      ITMPV1=ITMPVL
      BYTOUT=ITMPV1
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Eighth, we write out the Height of the bitmap (4 bytes).
      ITMPVL=H
      ITMPV4=INT(ITMPVL/16777216.0)
      BYTOUT=ITMPV4
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPVL=ITMPVL-ITMPV4*16777216
      ITMPV3=INT(ITMPVL/65536.0)
      BYTOUT=ITMPV3
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPVL=ITMPVL-ITMPV3*65536
      ITMPV2=INT(ITMPVL/256.0)
      BYTOUT=ITMPV2
      CALL GRTX11(LUN(1),BYTOUT)
      ITMPVL=ITMPVL-ITMPV2*256
      ITMPV1=ITMPVL
      BYTOUT=ITMPV1
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** Ninth, we write out the Horizontal offset (signed 4 bytes).
C *** This will be a negative quantity. But officially can be signed.
C *** The result is NOT just two's complement as in the case with 2 byte
C *** and 1 byte signed quantities.  The first two bytes take care of
C *** whether the quantity is signed or not, while the last two bytes
C *** are positive.
      ITMP32=HOFF
      ITMP16=INT(ITMP32/65536.0)
      IF(ITMP16.LT.0) ITMP16=ITMP16+65536
      ITMPV4=INT(ITMP16/256.0)
      ITMPV3=ITMP16-ITMPV4*256
      ITMP16=ITMP32-ITMP16*65536
      ITMPV2=INT(ITMP16/256.0)
      ITMPV1=ITMP16-ITMPV2*256
      BYTOUT=ITMPV4
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT=ITMPV3
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT=ITMPV2
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT=ITMPV1
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C ***         
C *** Tenth, we write out the Vertical offset (signed 4 bytes).
C *** This will be a positive quantity.  But officially can be signed.
C *** The result is NOT just two's complement as in the case with 2 byte
C *** and 1 byte signed quantities.  The first two bytes take care of
C *** whether the quantity is signed or not, while the last two bytes
C *** are positive.
      ITMP32=VOFF
      ITMP16=INT(ITMP32/65536.0)
      IF(ITMP16.LT.0) ITMP16=ITMP16+65536
      ITMPV4=INT(ITMP16/256.0)
      ITMPV3=ITMP16-ITMPV4*256
      ITMP16=ITMP32-ITMP16*65536
      ITMPV2=INT(ITMP16/256.0)
      ITMPV1=ITMP16-ITMPV2*256
      BYTOUT=ITMPV4
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT=ITMPV3
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT=ITMPV2
      CALL GRTX11(LUN(1),BYTOUT)
      BYTOUT=ITMPV1
      CALL GRTX11(LUN(1),BYTOUT)
C ***
C *** We just wrote out 37 bytes to the PK file.
      NPKBYT=NPKBYT+37
C *** Finished with the character Preamble, time to write out the character
C *** to the PK file.
C ***
C ***
C ***
C *** Write out the encoded character.
      GOTO 5000
C -------------------------------------------------------------------------
5000  CONTINUE
C ***
C *** CHAR_WRITE:
C ***
C ***
C ***
C *** Write out the encode character information to the PK file.
      DO 5100, I=1,IBEDIM
        CALL GRTX11(LUN(1),BENCOD(I))
5100  CONTINUE
C *** We just wrote out IBEDIM bytes to the PK file.
      NPKBYT=NPKBYT+IBEDIM
C ***
C *** We need to finish up some bookkeeping, and calculate the TFM file
C *** WIDTH and HEIGHT lookup values for this character.
C *** We calculate TFMW and TFMH at the start of this routine, we now
C *** just need to put them into a Fix_word representation (like the
C *** PK files TFM width calculation for the large format of character
C *** preamble.
C *** First do the TFM WIDTH value calculation and store it for 
C *** this character.
      TMPVAR=TFMW
      ITMPVL=INT(TMPVAR/16.0**1)
      WIDTH(NC+1,1)=ITMPVL
      TMPVAR=TMPVAR-ITMPVL*16.0**1
      ITMPVL=INT(TMPVAR/16.0**(-1))
      WIDTH(NC+1,2)=ITMPVL
      TMPVAR=TMPVAR-ITMPVL*16.0**(-1)
      ITMPVL=INT(TMPVAR/16.0**(-3))
      WIDTH(NC+1,3)=ITMPVL
      TMPVAR=TMPVAR-ITMPVL*16.0**(-3)
      ITMPVL=INT(TMPVAR/16.0**(-5))
      WIDTH(NC+1,4)=ITMPVL
C *** 
C *** Second, do the HEIGHT calculation and store it.
      TMPVAR=TFMH
      ITMPVL=INT(TMPVAR/16.0**1)
      HEIGHT(NC+1,1)=ITMPVL
      TMPVAR=TMPVAR-ITMPVL*16.0**1
      ITMPVL=INT(TMPVAR/16.0**(-1))
      HEIGHT(NC+1,2)=ITMPVL
      TMPVAR=TMPVAR-ITMPVL*16.0**(-1)
      ITMPVL=INT(TMPVAR/16.0**(-3))
      HEIGHT(NC+1,3)=ITMPVL
      TMPVAR=TMPVAR-ITMPVL*16.0**(-3)
      ITMPVL=INT(TMPVAR/16.0**(-5))
      HEIGHT(NC+1,4)=ITMPVL
C ***
C *** Finished.  Let's return and do the next character if there are
C *** any more.
C ------------------------------------------------------------------------
      RETURN
      END
C<FF>
C *GRTX10 -- PGPLOT Output the TFM file.
C
      SUBROUTINE GRTX10(NC,ITFMUN,CHINFO,WIDTH,HEIGHT,BC)
C *** -------------------------------------------------------------------
C *** We have limited the dimensions to support only 15 characters
C *** per Font.  ASCII codes "A" through a possible maximum of "O"
C *** are assumed.  TFM file limit of 16 different character
C *** HEIGHT table lookup values was the reason for this choice of
C *** limiting the Font to a maximum of 15 characters.  Each of the
C *** 15 characters will have exactly 1 entry in the character WIDTH
C *** and HEIGHT lookup tables for simplicity.
C ***
C----------------------------------------------------------------------
      IMPLICIT NONE
      INTEGER LF,BC,NC,I,J,ITFMUN
C ***     BC is the decimal value representing ASCII "A".
C ***     ECMAX is to be the 15th character after the starting
C ***     character (denoted by the value of BC).
      INTEGER BYTOUT, HEADER(0:16,4),CHINFO(BC:BC+14,4),
     2     WIDTH(0:15,4),HEIGHT(0:15,4)
C ***
C *** ===========================================================
C *** Have finished writing out the PK Font file.  Now, write out 
C *** the TFM (TeX Font Metric) File.  The TFM file should be
C *** "SEQUENTIAL, FIXED-LENGTH 512 BYTES, NO CARRIAGE_CONTROL"
C *** to match the other TFM files on the VAX.  
C *** TFM files require the most significant byte to appear in the 
C *** file before the less significant byte.  VMS RMS will take 
C *** care of the order of reading and writing the bits in a byte.
C *** So, as long as bytes are written out by this program in the 
C *** correct order, the bits will be okay. 
C ***
C ***
C *** Write out the total length of the TFM file in words (1 word=4 bytes).
C *** High byte, low byte integer as is required throught the TFM file.
C *** LF comes from 6 words (LF,LH,BC,EC,NW,NH,ND,NI,NL,NK,NE,NP values)
C *** plus 17 header words, plus NC+1 char_info words, plus 
C *** NC+2 width table words, plus NC+2 height table words, 
C *** plus 1 depth word, plus 1 italic word, plus 7 parameter words.
      LF=37+3*NC
      BYTOUT = INT(LF/256.0)
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = LF - INT(LF/256.0)*256
      CALL GRTX12(ITFMUN,BYTOUT)
C ***
C *** Write out the length of the header data in words (1 word=4 bytes).
C *** High byte, low byte integer format.
      BYTOUT=0
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT=17
      CALL GRTX12(ITFMUN,BYTOUT)
C ***
C *** Write out the ASCII value to be used for the first Font character.
C *** Value < 256 require by TFM file.  High byte, low byte integer format.
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = BC
      CALL GRTX12(ITFMUN,BYTOUT)
C ***
C *** Write out the ASCII value to be used for the last Font character.
C *** BC <= Value <= BC+14 = ECMAX required by program dimensions and 
C *** algorithm used.  TFM requires Value < 256.  
C *** High byte, low byte integer format.
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = BC + NC
      CALL GRTX12(ITFMUN,BYTOUT)
C ***
C *** Write out the number of words in the character WIDTH lookup table.
C *** (One for each character was used for simplicity. Maximum of 15 
C *** characters). High byte, low byte integer format.
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = NC + 2
      CALL GRTX12(ITFMUN,BYTOUT)
C ***
C *** Write out the number of words in the character HEIGHT lookup table.
C *** (One for each character was used for simplicity. Maximum of 15 
C *** characters). High byte, low byte integer format.
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = NC + 2
      CALL GRTX12(ITFMUN,BYTOUT)
C ***
C *** Write out the number of words in the character DEPTH lookup table.
C *** (Only the value 0).  Hight byte, low byte integer format.
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = 1
      CALL GRTX12(ITFMUN,BYTOUT)
C ***
C *** Write the number of words in the character ITALIC correction lookup
C *** table. (Only the value 0). High byte, low byte integer format.
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = 1
      CALL GRTX12(ITFMUN,BYTOUT)
C ***
C *** Write out the number of words in the character LIG/KERN lookup table.
C *** (No values. This table is ommitted). High byte, low byte integer format.
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
C ***
C *** Write out the number of words in the character KERN lookup table.
C *** (No values. This table is ommitted). High byte, low byte integer format.
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
C ***
C *** Write out the number of words in the extensible character lookup table.
C *** (No values. This table is ommitted). High byte, low byte integer format.
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
C ***
C *** Write out the number of Font PARAMater words. High byte, low byte
C *** integer format.
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = 7
      CALL GRTX12(ITFMUN,BYTOUT)
C ***
C ***
C *** ------------------------------------------------------------------
C *** 
C *** Write out the HEADER information of the TFM file.
C ***
C *** ------------------------------------------------------------------
C *** 
C *** Store the 32 bit check sum, HEADER[0], that TeX will copy into the
C *** DVI output file whenever it uses the font.  This same checksum
C *** should be in the FONT PK file as well. 
C *** I arbitrarily chose HEADER[0]=09281963  as the 32 bit Hex value.
C *** (my birthdate is easy to remember...).
      HEADER(0,1) = 9
      HEADER(0,2) = 2*16 + 8
      HEADER(0,3) = 1*16 + 9
      HEADER(0,4) = 6*16 + 3
C ***
C *** Store HEADER[1], a Fix_word containing the design size of the 
C *** Font in TeX point units. (7227 TeX points = 254 cm.).
C *** Note: This number must be at least 1.0.
C *** [Fix_word is a 32-bit representation of a binary fraction.
C *** Of the 32 bits in a Fix_word, exactly 12 are to the left of the
C *** binary point.  Thus, 2048-2**-20 >= Fixed_word >= -2048 ].
C *** I chosed 100.00 TeX points as the Font design size.  Since many of
C *** the fields in the TFM file must be expressed within 16 absolute
C *** design-size units in value, 100.0 TeX points approximately = 1.38 
C *** inches will allow up to approximately 22 inch output to be used.
C *** HEADER[1]=100.0base10=64.0base16 = 06400000 .
      HEADER(1,1) = 0*16 + 6
      HEADER(1,2) = 4*16 + 0
      HEADER(1,3) = 0
      HEADER(1,4) = 0
C ***
C *** Store HEADER[2]...HEADER[11].
C *** These 40 bytes identify the character coding scheme. The first byte
C *** gives the number of bytes that are used to contain the identifying
C *** string.  We will use 7 bytes to contain the string "GRAPHIC".
C *** ASCII codes in Hex are "G"=47,"R"=52","A"=41,"P"=50,"H"=48,
C *** "I"=49,"C"=43. So, in Hex, HEADER[2]=07475241, HEADER[3]=50484943,
C *** HEADER[4]=00000000, HEADER[5]=00000000, HEADER[6]=00000000,
C *** HEADER[7]=00000000, HEADER[8]=00000000, HEADER[9]=00000000,
C *** HEADER[10]=00000000, HEADER[11]=00000000.
C *** Storing thoses values, we have:
      HEADER(2,1) = 0*16 + 7
      HEADER(2,2) = 4*16 + 7
      HEADER(2,3) = 5*16 + 2
      HEADER(2,4) = 4*16 + 1
      HEADER(3,1) = 5*16 + 0
      HEADER(3,2) = 4*16 + 8
      HEADER(3,3) = 4*16 + 9
      HEADER(3,4) = 4*16 + 3
C *** Storing HEADER[4]...HEADER[11] = 00000000, we have:
      DO 20, J=1,4
        DO 10, I=4,11
          HEADER(I,J)=0
10      CONTINUE
20    CONTINUE
C ***
C *** Store HEADER[12]...HEADER[16]. 
C *** These 20 bytes contain the Font family name in BCPL format.
C *** This filed is know as the "Font identifier". I chose the 18 characters
C *** "PGPLOT BITMAP DATA" for the Font name.  ASCII values in HEX are:
C *** "P"=50,"G"=47,"P"=50,"L"=4C,"O"=4F,"T"=54," "=20,"B"=42,"I"=49,
C *** "T"=54,"M"=4D,"A"=41,"P"=50," "=20,"D"=44,"A"=41,"T"=54,"A"=41. 
C *** So, HEADER[12]=12504750, HEADER[13]=4C4F5420, HEADER[14]=4249544D,
C *** HEADER[15]=41502044, HEADER[16]=41544100.
C *** Storing these values, we have:
      HEADER(12,1) =  1*16 +  2
      HEADER(12,2) =  5*16 +  0
      HEADER(12,3) =  4*16 +  7
      HEADER(12,4) =  5*16 +  0
      HEADER(13,1) =  4*16 + 12
      HEADER(13,2) =  4*16 + 15
      HEADER(13,3) =  5*16 +  4
      HEADER(13,4) =  2*16 +  0
      HEADER(14,1) =  4*16 +  2
      HEADER(14,2) =  4*16 +  9
      HEADER(14,3) =  5*16 +  4
      HEADER(14,4) =  4*16 + 13
      HEADER(15,1) =  4*16 +  1
      HEADER(15,2) =  5*16 +  0
      HEADER(15,3) =  2*16 +  0
      HEADER(15,4) =  4*16 +  4
      HEADER(16,1) =  4*16 +  1
      HEADER(16,2) =  5*16 +  4
      HEADER(16,3) =  4*16 +  1
      HEADER(16,4) =  0
C *** Note: I'm not sure what HEADER[17] accomplishes. I have NOT used it.
C *** If it is to be used, then the Dimension of HEADER must be increased,
C *** and the value written to the TFM file describing the length of
C *** the HEADER array must be increased.
C ***
C *** Now write out the store HEADER array to the TFM file.
      DO 40, I = 0,16
        DO 30, J=1,4
          CALL GRTX12(ITFMUN,HEADER(I,J))
30      CONTINUE
40    CONTINUE
C ***
C ***
C *** Now write the previously stored char_info array, CHINFO, to the TFM file.
      DO 60, I =BC, BC+NC
        DO 50, J=1,4
          CALL GRTX12(ITFMUN,CHINFO(I,J))
50      CONTINUE
60    CONTINUE
C ***
C ***
C *** Now write the previously store character width lookup array, WIDTH,
C *** to the TFM file.
      DO 80, I = 0, NC+1
        DO 70, J=1,4
           CALL GRTX12(ITFMUN,WIDTH(I,J))
70      CONTINUE
80    CONTINUE
C ***
C ***
C *** Now write the previosly stored character height lookup array, HEIGHT,
C *** to the TFM file.
      DO 100, I= 0, NC+1
        DO 90, J=1,4
           CALL GRTX12(ITFMUN,HEIGHT(I,J))
90      CONTINUE
100   CONTINUE
C ***
C ***
C *** Now write the character depth lookup array. 
C *** Note: WIDTH[0]=HEIGHT[0]=DEPTH[0]=ITALIC[0]=0 is required by TFM
C *** file specifications.
      DO 110, I=1,4
        BYTOUT = 0
        CALL GRTX12(ITFMUN,BYTOUT)
110   CONTINUE
C ***
C *** Now write the character italic lookup array. 
C *** Note: WIDTH[0]=HEIGHT[0]=DEPTH[0]=ITALIC[0]=0 is required by TFM
C *** file specifications.
      DO 111, I=1,4
        BYTOUT = 0
        CALL GRTX12(ITFMUN,BYTOUT)
111   CONTINUE
C ***
C *** Character LIG/KERN lookup table would have normally been written out here.
C *** However, there are no entries in our table. I ommitted this table.
C ***
C ***
C *** Character KERN lookup table would have normally been written out here.
C *** However, there are no entries in our table. I ommitted this table.
C ***
C ***
C *** Extensible character lookup table would have normally been written out
C *** here. However, there are no entries in our table. I ommitted this table.
C ***
C ***
C *** Now, write out the character PARAM array of Fix_words.
C *** PARAM[1]=italic_slant = 00000000  (0.0) is the amount of italic slant.
C *** PARAM[2]=space = 00001000 (0.001 design-size units = 1.0 TeX points 
C ***                  which approximately=0.0138 inches) is the normal
C ***                  spacing between words in the text I arbitrarily chose.
C *** PARAM[3]=space_stretch = 00000000 (0.0) is the glue stretching
C ***                  between words of the text.
C *** PARAM[4]=space_shrink = 00000000 (0.0) is the glue shrinking 
C ***                  between words of the text.
C *** PARAM[5]=x_height = 00000000 (0.0) is the height of letters for
C ***                  which accents don't have to be raised.
C *** PARAM[6]=quad= 00001000 (0.001 design-size units = 1.0 TeX points
C ***                  which approximately=0.0138 inches) is the size
C ***                  I chose for one "em" in this Font. This was an 
C ***                  arbitrary choice. I do not believe this parameter
C ***                  will be used--- but just in case...
C *** PARAM[7]=extra_space = 00000000 (0.0) is the amount added to
C ***                  PARAM[2] at the ends of sentences.
C *** 
C *** Writing out these values for the PARAM array,
C *** for PARAM[1] we have:
      DO 120, I = 1,4
        BYTOUT = 0
        CALL GRTX12(ITFMUN,BYTOUT)
120   CONTINUE
C *** for PARAM[2] we have:
      BYTOUT = 0 
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = 1*16 + 0
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
C *** for PARAM[3] we have:
      DO 130, I = 1,4
        BYTOUT = 0
        CALL GRTX12(ITFMUN,BYTOUT)
130   CONTINUE
C *** for PARAM[4] we have:
      DO 140, I = 1,4
        BYTOUT = 0
        CALL GRTX12(ITFMUN,BYTOUT)
140   CONTINUE
C *** for PARAM[5] we have:
      DO 150, I = 1,4
        BYTOUT = 0
        CALL GRTX12(ITFMUN,BYTOUT)
150   CONTINUE
C *** for PARAM[6] we have:
      BYTOUT = 0 
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = 1*16 + 0
      CALL GRTX12(ITFMUN,BYTOUT)
      BYTOUT = 0
      CALL GRTX12(ITFMUN,BYTOUT)
C *** for PARAM[7] we have:
      DO 160, I = 1,4
        BYTOUT = 0
        CALL GRTX12(ITFMUN,BYTOUT)
160   CONTINUE
C ***
C ***
C ***
C *** ===================================================================
C *** Finish writing the 512 byte record block on the Vax with 0's.
C *** Note: TFM files do not require this...I just wanted to fill the
C *** record (and block) on out, and I chose 0 to do this.
      DO 500, I=LF*4+1,512
         BYTOUT=0
         CALL GRTX12(ITFMUN,BYTOUT)
500   CONTINUE
C ***
      RETURN
      END
C<FF>
C *GRTX11 -- PGPLOT  buffering of PK file byte writes until 512 bytes buffered.
C
      SUBROUTINE GRTX11 (ILUNIT,BYTOUT)
C *** ------------------------------------------------------------------
C ***  PK file writes...
C *** ----------------------------------------------------------------
C *** The purpose of this file is to provide buffering of the writes
C *** to the output PK file until 512 bytes can be written out together
C *** as one record.
C *** ILUNIT is the unit number of the output file.
C *** BYTOUT is the byte sent to be buffered up for the record write.
C *** This routine requires the SAVE statement. The variables
C *** BUFFER and IBFIND must retain their values upon successive 
C *** calls!.
C *** PORTABILITY NOTES:  
C *** This routine is system dependent. On a vax, a byte ranges from
C *** -128 to 127  in decimal representation (For a Vax byte, 
C *** -128base10 is FF in hex) (For a Vax byte, 127base10 is 7F in hex).
C *** So {[0,255]base10 integer } gets mapped to {[0,FF]base16 byte},
C *** which is interpreted as:
C ***  {[0,127]base10 integer } getting mapped to {[0,127]base10 byte}
C ***  while {[128,255]base10 integer} getting mapped 
C ***  to {[-128,-1]base10 byte}.
C ***  Also, you may have to change the write statement below.
C ***  in *UNIX we are after "bytes on the disk" without any record
C ***  attributes in the middle of the record.  Under *VMS I expect
C ***  RMS to take care of so that we get "bytes on the disk" appearance.
C ***  Routine GRTX12 also has this write statement that may need to
C ***  be modified.
C----------------------------------------------------------------------
C ***
      IMPLICIT NONE
      SAVE
      INTEGER ILUNIT, IBFIND, I, BYTOUT, CONVBY,IRECRD
      BYTE BUFFER(512)
C *** ------------------------------------------------------------
C *** Initialize some values to be set before the first time this
C *** routine is entered.  After the routine is entered, the values
C *** will be changed and will retain their new "changed" values
C *** upon successive calls to this routine.
C ***
      DATA BUFFER /512*0/
      DATA IBFIND /1/
      DATA IRECRD /1/
C ***
C *** ------------------------------------------------------------
C *** Convert the desired output value, BYTOUT, from its integer
C *** form to the Vax_specific_required_signed_output form for
C *** outputing a byte value, CONVBY. PORTABILITY NOTE:
C *** This will very likely be different on different machines.
C *** If the byte quantity is NOT signed on your machine, then
C *** you should change the line CONVBY=BYTOUT-256 to
C *** CONVBY=BYTOUT  below!!!!.          
C ***
      IF(BYTOUT.GT.127) THEN
         CONVBY=BYTOUT-256
      ELSE
         CONVBY=BYTOUT
      ENDIF
C ***
C *** Store the current byte that is to be output to the file.
      BUFFER(IBFIND)=CONVBY
      IF(MOD(IBFIND,512).EQ.0) THEN
C ***    We have buffered up 512 bytes. Time to write out a record
C ***    to the PK file and reset the buffer index IBFIND.
C ***    *VMS
C ***    If you have problems, you may want to try to change
C ***    this to a sequential write on the VAX. Routine GRTX12
C ***    also has a write statement like the one below.  
         WRITE(UNIT=ILUNIT,REC=IRECRD,ERR=1000) (BUFFER(I),I=1,512)
         IRECRD=IRECRD+1
         IBFIND=0
      ENDIF
C *** 
C *** Increment the buffer index to the next element of the buffer.
      IBFIND=IBFIND+1
C ***
C *** ---------------------------------------------------------------
C *** Return to the calling routine.
C ***
C-----------------------------------------------------------------------
      RETURN
1000  CONTINUE
      CALL GRWARN('ERROR writing to the PK Font file.')
      CALL GRQUIT('EXITING to operating system. Routine GRTX11.')
      STOP
C ***     -----------------------
      ENTRY GRTX14
C *** This part of GRTX11,GRTX14 is to reinitialze the file pointers
C *** to the beginning of a new file.
      DO 1500, I=1,512
         BUFFER(I)=0
1500  CONTINUE
      IBFIND=1
      IRECRD=1
      RETURN
      END
C<FF>
C *GRTX12 -- PGPLOT  buffering of TFM file byte writes until 512 bytes buffered.
C
      SUBROUTINE GRTX12 (ILUNIT,BYTOUT)
C *** ------------------------------------------------------------------
C ***  TFM file writes...
C *** ----------------------------------------------------------------
C *** The purpose of this file is to provide buffering of the writes
C *** to the output TFM file until 512 bytes can be written out together
C *** as one record.
C *** ILUNIT is the unit number of the output file.
C *** BYTOUT is the byte sent to be buffered up for the record write.
C *** This routine requires the SAVE statement. The variables
C *** BUFFER and IBFIND must retain their values upon successive 
C *** calls!.
C *** PORTABILITY NOTES:
C *** This routine is system dependent. On a vax, a byte ranges from
C *** -128 to 127  in decimal representation (For a Vax byte, 
C *** -128base10 is FF in hex) (For a Vax byte, 127base10 is 7F in hex).
C *** So {[0,255]base10 integer } gets mapped to {[0,FF]base16 byte},
C *** which is interpreted as:
C ***  {[0,127]base10 integer } getting mapped to {[0,127]base10 byte}
C ***  while {[128,255]base10 integer} getting mapped 
C ***  to {[-128,-1]base10 byte}.
C ***  Also, in *UNIX we want "bytes on the disk" with no interspersed
C ***  record information. Under *VMS I beileve that RMS will give us
C ***  the appearance of "bytes on the disk".  You may have to 
C ***  change this routine and routines GRTX11 in order to get
C ***  a stream of bytes on the disk without any record control information
C ***  interspersed in your file.
C----------------------------------------------------------------------
C ***
      IMPLICIT NONE
      SAVE
      INTEGER ILUNIT, IBFIND, I, BYTOUT, CONVBY,IRECRD
      BYTE BUFFER(512)
C *** ------------------------------------------------------------
C *** Initialize some values to be set before the first time this
C *** routine is entered.  After the routine is entered, the values
C *** will be changed and will retain their new "changed" values
C *** upon successive calls to this routine.
C ***
      DATA BUFFER /512*0/
      DATA IBFIND /1/
      DATA IRECRD /1/
C ***
C *** ------------------------------------------------------------
C *** Convert the desired output value, BYTOUT, from its integer
C *** form to the Vax_specific_required_signed_output form for
C *** outputing a byte value, CONVBY. PORTABILITY NOTE:
C *** This will very likely be different on different machines.
C *** If the byte quantity is NOT signed on your machine, then
C *** you should change the line CONVBY=BYTOUT-256 to
C *** CONVBY=BYTOUT  below!!!!.          
C ***
      IF(BYTOUT.GT.127) THEN
         CONVBY=BYTOUT-256
      ELSE
         CONVBY=BYTOUT
      ENDIF
C ***
C *** Store the current byte that is to be output to the file.
      BUFFER(IBFIND)=CONVBY
      IF(MOD(IBFIND,512).EQ.0) THEN
C ***    We have buffered up 512 bytes. Time to write out a record
C ***    to the TFM file and reset the buffer index IBFIND.
C ***    Under *VMS you may have to change this to a sequential
C ***    write.  It seems to work okay for our DVI driver as direct
C ***    access.  However, the original PK and TFM font files we have
C ***    look like sequential access.  This line also appears in
C ***    routine GRTX11.
         WRITE(UNIT=ILUNIT,REC=IRECRD,ERR=1000) (BUFFER(I),I=1,512)
         IRECRD=IRECRD+1
         IBFIND=0
      ENDIF
C *** 
C *** Increment the buffer index to the next element of the buffer.
      IBFIND=IBFIND+1
C ***
C *** ---------------------------------------------------------------
C *** Return to the calling routine.
C ***
C-----------------------------------------------------------------------
      RETURN
1000  CONTINUE
      CALL GRWARN('ERROR writing to the TFM Font file.')
      CALL GRQUIT('EXITING to operating system. Routine GRTX12.')
      STOP
C ***     -----------------------
      ENTRY GRTX15
C *** This part of GRTX12,GRTX15 is to reinitialze the file pointers
C *** to the beginning of a new file.
      DO 1500, I=1,512
         BUFFER(I)=0
1500  CONTINUE
      IBFIND=1
      IRECRD=1
      RETURN      
      END
C<FF>
C *GRTX13 -- TXDRIV routine to zero out the BITMAP array.
C
      SUBROUTINE GRTX13 ( ISIZE , BITMAP, BYTVAL)
C ***    called by "CALL GRTX13 (BX*BY, %VAL(BITMAP),'00'X)"
      IMPLICIT NONE
      INTEGER ISIZE, I
      BYTE BITMAP(ISIZE),BYTVAL
C     --------------------------
      DO 100, I=1, ISIZE
          BITMAP(I)=BYTVAL
100   CONTINUE
      RETURN
      END