1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
|
* This program demonstrates animation and 3D geometry in PGPLOT. It
* requires a fast, interactive display, e.g., /XWIN. Do not
* specify a hardcopy device. The speed of the animation is limited by
* the cpu speed of the host computer.
*
* Thanks to Dr Martin Weisser:
* Date: Sun, 18 May 1997 16:14:01 CET
* From: weisser@chclu.chemie.uni-konstanz.de
PROGRAM PGDEM17
C-----------------------------------------------------------------------
C Demonstration program for PGPLOT.
C-----------------------------------------------------------------------
INTEGER PGOPEN
C
WRITE (*,*) 'PGPLOT: Demonstration of animation and 3D geometry'
WRITE (*,*) 'Select a fast, interactive device, e.g., /XWINDOW'
IF (PGOPEN('?') .LE. 0) STOP
CALL POLY3D
CALL PGCLOS
C-----------------------------------------------------------------------
END
SUBROUTINE POLY3D
C
INTEGER NFRAMS
C
INTEGER NTOT, NLIN, IPOS, IFIRST
REAL T, T1, T2, T3, PI, W, W1, TET, TET1, ROT, ROT1
C
PARAMETER (NTOT=34)
PARAMETER (T=1.618)
PARAMETER (T1=1.0+T)
PARAMETER (T2=-T)
PARAMETER (T3=-T1)
PARAMETER (W=0.60*T)
PARAMETER (W1=-W)
PARAMETER (TET=0.37)
PARAMETER (TET1=-TET)
PARAMETER (ROT=0.13)
PARAMETER (ROT1=-ROT)
PARAMETER (NLIN=49)
C
INTEGER I, J, L, III, ILINE, NTOTM6
INTEGER ICDFOR, ICCFOR, ICTFOR, ICLFOR
INTEGER ICDBCK, ICCBCK, ICTBCK, ICLBCK
INTEGER ITYPE(NTOT), IARRAY(NLIN), JARRAY(NLIN), LITYPE(NLIN)
REAL RQ, ZZ
REAL THAXI1, PHAXI1, ALFA1, THAXI2, PHAXI2, ALFA2
REAL THAXI3, PHAXI3, ALFA3, THAXI4, PHAXI4, ALFA4
REAL XOFF, YOFF, ZOFF
REAL XARRAY(NTOT), YARRAY(NTOT), ZARRAY(NTOT), DISTAN(NLIN)
REAL POLYS(3,NTOT), X(2), Y(2), C(3), CROT(3), RPOL(3,3)
PARAMETER (PI=3.14159265359)
C
C Cartesian coordinates of the polygons
C
DATA POLYS/ T, T, T, T, T,T2,
D T,T2, T, T,T2,T2,
D T2, T, T, T2, T,T2,
D T2,T2, T, T2,T2,T2,
D T1,1.0,0.0, T1,-1.0,0.0,
D T3,1.0,0.0, T3,-1.0,0.0,
D 0.0,T1,1.0, 0.0,T1,-1.0,
D 0.0,T3,1.0, 0.0,T3,-1.0,
D 1.0,0.0,T1, -1.0,0.0,T1,
D 1.0,0.0,T3, -1.0,0.0,T3,
C W, W, W, W, W, W1,
C W, W1, W, W, W1, W1,
C W1, W, W, W1, W1, W,
C W1, W, W1, W1, W1, W1,
T TET, TET, TET, TET1, TET1, TET,
T TET1, TET, TET1, TET, TET1, TET1,
L ROT, 0.0, 0.0, ROT1, 0.0, 0.0/
C
DATA ITYPE/1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
C 2,2,2,2,2,2,2,2,
T 3,3,3,3,
L 4,4/
C
C Initialize the plot (no labels).
C
CALL PGENV(-3.2,3.2,-3.2,3.2,1,-2)
C
C Switch from page to page without typing return.
C
CALL PGASK(.FALSE.)
C
C Rotation axis of the polygons
C
THAXI1 = PI/4.0
PHAXI1 = PI/4.5
ALFA1 = 0.0
THAXI2 = PI/6.0
PHAXI2 = 0.0
ALFA2 = 0.02
THAXI3 = PI/2.0
PHAXI3 = -PI/3.0
ALFA3 = 0.0
THAXI4 = -0.03
PHAXI4 = PI/7.0
ALFA4 = 0.9
C
XOFF=0.0
YOFF=0.0
ZOFF=0.0
NTOTM6=NTOT-6
C
C Colors
C
ICDFOR = 3
ICDBCK = 10
C
ICCFOR = 8
ICCBCK = 2
C
ICTFOR = 5
ICTBCK = 4
C
ICLFOR = 1
ICLBCK = 7
C
IPOS=1
C
WRITE(*,*)' Rotation with increasing velocity'
C
NFRAMS=3500
C
DO 12 I=1,NTOT
XARRAY(I) = POLYS(1,I)
YARRAY(I) = POLYS(2,I)
ZARRAY(I) = POLYS(3,I)
12 CONTINUE
C
DO 30 L=1,NFRAMS
C
CALL PGBBUF
CALL PGERAS
C
CALL SORTPP(NTOT,ITYPE,ZARRAY,YARRAY,XARRAY)
C
IFIRST=0
DO 13 I=1,NTOT
IF((ZARRAY(I).GE.0.0).AND.(IFIRST.EQ.0)) THEN
IFIRST = 1
IPOS = I
END IF
13 CONTINUE
C
IF(L.EQ.2800) CALL OFFSET (XOFF,YOFF,ZOFF)
IF (MOD(L,500).EQ.0) THEN
CALL CHNAX(THAXI3,PHAXI3,THAXI2,PHAXI2,THAXI1,PHAXI1)
END IF
C
DO 33 I=1,IPOS-1
IF (ITYPE(I).EQ.1) THEN
CALL PGSCI(ICDBCK)
CALL PGSLW(18)
ELSE IF (ITYPE(I).EQ.2) THEN
CALL PGSCI(ICCBCK)
CALL PGSLW(17)
ELSE IF (ITYPE(I).EQ.3) THEN
CALL PGSCI(ICTBCK)
CALL PGSLW(15)
ELSE
CALL PGSCI(ICLBCK)
CALL PGSLW(14)
END IF
ZZ = ZARRAY(I)
CALL PGPT(1,XARRAY(I)+0.2*ZZ,YARRAY(I)+0.3*ZZ,9)
33 CONTINUE
C
DO 44 I=IPOS,NTOT
IF (ITYPE(I).EQ.1) THEN
CALL PGSCI(ICDFOR)
CALL PGSLW(18)
ELSE IF (ITYPE(I).EQ.2) THEN
CALL PGSCI(ICCFOR)
CALL PGSLW(17)
ELSE IF (ITYPE(I).EQ.3) THEN
CALL PGSCI(ICTFOR)
CALL PGSLW(15)
ELSE
CALL PGSCI(ICLFOR)
CALL PGSLW(14)
END IF
ZZ = ZARRAY(I)
CALL PGPT(1,XARRAY(I)+0.2*ZZ,YARRAY(I)+0.3*ZZ,9)
44 CONTINUE
C
ILINE=0
C
DO 2000 I=2,NTOT
DO 1000 J=1,I-1
IF (ITYPE(I).EQ.ITYPE(J)) THEN
RQ = 0.0
RQ = RQ + ( (XARRAY(I)-XARRAY(J))**2+
# (YARRAY(I)-YARRAY(J))**2+
# (ZARRAY(I)-ZARRAY(J))**2 )
C
IF ( ((RQ-0.0676) .LT.0.001).OR.
# ((RQ-1.095199).LT.0.001).OR.
# ((RQ-3.769809).LT.0.001).OR.
# ((RQ-4.000000).LT.0.001) ) THEN
ILINE = ILINE + 1
DISTAN(ILINE) = ZARRAY(I)+ZARRAY(J)
IF(DISTAN(ILINE).LT.0.0) THEN
LITYPE(ILINE) = -ITYPE(I)
ELSE
LITYPE(ILINE) = ITYPE(I)
END IF
IARRAY(ILINE) = I
JARRAY(ILINE) = J
END IF
END IF
1000 CONTINUE
2000 CONTINUE
C
CALL SORTLI(ILINE,DISTAN,IARRAY,JARRAY,LITYPE)
C
DO 3000 III=1,ILINE
I=IARRAY(III)
J=JARRAY(III)
ZZ = ZARRAY(I)
X(1) = XARRAY(I)+0.2*ZZ
Y(1) = YARRAY(I)+0.3*ZZ
ZZ = ZARRAY(J)
X(2) = XARRAY(J)+0.2*ZZ
Y(2) = YARRAY(J)+0.3*ZZ
IF (LITYPE(III).GT.0) THEN
IF(LITYPE(III).EQ.1) THEN
CALL PGSLW(10)
CALL PGSCI(ICDFOR)
ELSE IF (LITYPE(III).EQ.2) THEN
CALL PGSLW(8)
CALL PGSCI(ICCFOR)
ELSE IF (LITYPE(III).EQ.3) THEN
CALL PGSLW(6)
CALL PGSCI(ICTFOR)
ELSE
CALL PGSLW(4)
CALL PGSCI(ICLFOR)
END IF
ELSE
IF(LITYPE(III).EQ.-1) THEN
CALL PGSLW(7)
CALL PGSCI(ICDBCK)
ELSE IF (LITYPE(III).EQ.-2) THEN
CALL PGSLW(4)
CALL PGSCI(ICCBCK)
ELSE IF (LITYPE(III).EQ.-3) THEN
CALL PGSLW(3)
CALL PGSCI(ICTBCK)
ELSE
CALL PGSLW(2)
CALL PGSCI(ICLBCK)
END IF
END IF
CALL PGLINE(2,X,Y)
3000 CONTINUE
C
DO 45 I=NTOTM6,NTOT
IF (ITYPE(I).EQ.1) THEN
CALL PGSCI(ICDFOR)
CALL PGSLW(19)
ZZ = ZARRAY(I)
CALL PGPT(1,XARRAY(I)+0.2*ZZ,YARRAY(I)+0.3*ZZ,9)
END IF
45 CONTINUE
C
DO 4000 III=1,NTOT
IF (ITYPE(III).EQ.1) THEN
CALL POLMAT(RPOL,THAXI1,PHAXI1,ALFA1)
ELSE IF (ITYPE(III).EQ.2) THEN
CALL POLMAT(RPOL,THAXI2,PHAXI2,ALFA2)
ELSE IF (ITYPE(III).EQ.3) THEN
CALL POLMAT(RPOL,THAXI3,PHAXI3,ALFA3)
ELSE
CALL POLMAT(RPOL,THAXI4,PHAXI4,ALFA4)
END IF
C(1)=XARRAY(III)
C(2)=YARRAY(III)
C(3)=ZARRAY(III)
CALL MMULT (C,RPOL,CROT)
XARRAY(III)=CROT(1)+XOFF
YARRAY(III)=CROT(2)+YOFF
ZARRAY(III)=CROT(3)+ZOFF
4000 CONTINUE
C
ALFA1 = ALFA1+1.5E-5*(1.0+2.0*L/4000.)
ALFA2 = ALFA2-2.0E-5*(1.0+4.0*L/4000.)
ALFA3 = ALFA3-4.0E-5*(1.0+3.0*L/4000.)
C
CALL PGEBUF
C
30 CONTINUE
C
C-----------------------------------------------------------------------
END
SUBROUTINE MMULT (VECTOR,RMATRX,ROTVEC)
C
C Matrix multiplication
C
REAL VECTOR(3)
REAL ROTVEC(3)
REAL RMATRX(3,3)
C
ROTVEC(1)=RMATRX(1,1)*VECTOR(1)+RMATRX(1,2)*VECTOR(2)+
# RMATRX(1,3)*VECTOR(3)
ROTVEC(2)=RMATRX(2,1)*VECTOR(1)+RMATRX(2,2)*VECTOR(2)+
# RMATRX(2,3)*VECTOR(3)
ROTVEC(3)=RMATRX(3,1)*VECTOR(1)+RMATRX(3,2)*VECTOR(2)+
# RMATRX(3,3)*VECTOR(3)
C
RETURN
END
SUBROUTINE POLMAT(RPOL,THAXI,PHAXI,ALFA)
C
REAL THAXI,PHAXI,ALFA
REAL RPOL(3,3)
REAL SINT,SINTQ,SINP,SINPQ,SINA
REAL COST,COSTQ,COSP,COSPQ,COSA,EMCOSA
C
SINT = SIN(THAXI)
COST = COS(THAXI)
SINP = SIN(PHAXI)
COSP = COS(PHAXI)
SINA = SIN(ALFA)
COSA = COS(ALFA)
EMCOSA = 1.0-COSA
C
SINTQ = SINT*SINT
COSTQ = COST*COST
SINPQ = SINP*SINP
COSPQ = COSP*COSP
C
RPOL(1,1) = COSA+COSPQ*SINTQ*EMCOSA
RPOL(2,1) = COST*SINA+SINP*COSP*SINTQ*EMCOSA
RPOL(3,1) = -SINP*SINT*SINA+SINT*COST*COSP*EMCOSA
RPOL(1,2) = -COST*SINA+SINP*COSP*SINTQ*EMCOSA
RPOL(2,2) = COSA+SINPQ*SINTQ*EMCOSA
RPOL(2,3) = -COSP*SINT*SINA+SINP*SINT*COST*EMCOSA
RPOL(1,3) = SINP*SINT*SINA+SINT*COST*COSP*EMCOSA
RPOL(3,2) = COSP*SINT*SINA+COST*SINT*SINP*EMCOSA
RPOL(3,3) = COSA+COSTQ*EMCOSA
C
RETURN
END
SUBROUTINE SORTPP(N,ITYPE,RA1,RA2,RA3)
C
REAL RA1, RA2, RA3, RRA1, RRA2, RRA3
INTEGER ITYPE(*), L, N, IR, I, J, IRRA1
DIMENSION RA1(*), RA2(*), RA3(*)
L=N/2+1
IR=N
10 CONTINUE
IF(L.GT.1)THEN
L=L-1
RRA1=RA1(L)
IRRA1=ITYPE(L)
RRA2=RA2(L)
RRA3=RA3(L)
ELSE
RRA1=RA1(IR)
IRRA1=ITYPE(IR)
RRA2=RA2(IR)
RRA3=RA3(IR)
RA1(IR)=RA1(1)
ITYPE(IR)=ITYPE(1)
RA2(IR)=RA2(1)
RA3(IR)=RA3(1)
IR=IR-1
IF(IR.EQ.1)THEN
RA1(1)=RRA1
ITYPE(1)=IRRA1
RA2(1)=RRA2
RA3(1)=RRA3
RETURN
ENDIF
ENDIF
I=L
J=L+L
20 IF(J.LE.IR)THEN
IF(J.LT.IR)THEN
IF(RA1(J).LT.RA1(J+1))J=J+1
ENDIF
IF(RRA1.LT.RA1(J))THEN
RA1(I)=RA1(J)
ITYPE(I)=ITYPE(J)
RA2(I)=RA2(J)
RA3(I)=RA3(J)
I=J
J=J+J
ELSE
J=IR+1
ENDIF
GO TO 20
ENDIF
RA1(I)=RRA1
ITYPE(I)=IRRA1
RA2(I)=RRA2
RA3(I)=RRA3
GO TO 10
END
C
SUBROUTINE SORTLI(N,RA1,IA1,IA2,IA3)
C
REAL RA1, RRA1
INTEGER L, N, IR, I, J, IRA1, IRA2, IRA3, IA1, IA2, IA3
DIMENSION RA1(*), IA1(*), IA2(*) , IA3(*)
L=N/2+1
IR=N
10 CONTINUE
IF(L.GT.1)THEN
L=L-1
RRA1=RA1(L)
IRA1=IA1(L)
IRA2=IA2(L)
IRA3=IA3(L)
ELSE
RRA1=RA1(IR)
IRA1=IA1(IR)
IRA2=IA2(IR)
IRA3=IA3(IR)
RA1(IR)=RA1(1)
IA1(IR)=IA1(1)
IA2(IR)=IA2(1)
IA3(IR)=IA3(1)
IR=IR-1
IF(IR.EQ.1)THEN
RA1(1)=RRA1
IA1(1)=IRA1
IA2(1)=IRA2
IA3(1)=IRA3
RETURN
ENDIF
ENDIF
I=L
J=L+L
20 IF(J.LE.IR)THEN
IF(J.LT.IR)THEN
IF(RA1(J).LT.RA1(J+1))J=J+1
ENDIF
IF(RRA1.LT.RA1(J))THEN
RA1(I)=RA1(J)
IA1(I)=IA1(J)
IA2(I)=IA2(J)
IA3(I)=IA3(J)
I=J
J=J+J
ELSE
J=IR+1
ENDIF
GO TO 20
ENDIF
RA1(I)=RRA1
IA1(I)=IRA1
IA2(I)=IRA2
IA3(I)=IRA3
GO TO 10
END
SUBROUTINE OFFSET (XOFF,YOFF,ZOFF)
C
REAL XOFF,YOFF,ZOFF
C
WRITE(*,*)' Rotation with shifting'
XOFF=-0.0002
YOFF=+0.0004
ZOFF=-0.0002
RETURN
END
SUBROUTINE CHNAX
# (THAXI3,PHAXI3,THAXI2,PHAXI2,THAXI1,PHAXI1)
C
REAL THAXI1,PHAXI1,PHAXI2,THAXI2,PHAXI3,THAXI3,PI
PARAMETER (PI=3.14159265359)
C
THAXI3 = THAXI3 - PI*0.32
PHAXI3 = PHAXI3 + PI*0.28
THAXI2 = THAXI2 + PI*0.18
PHAXI2 = PHAXI2 - PI*0.14
THAXI1 = THAXI1 - PI*0.12
PHAXI1 = PHAXI1 + PI*0.08
C
RETURN
END
|