1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
/***********************************************************************
* pc_patch_dimensional.c
*
* Pointclound patch handling. Create, get and set values from the
* dimensional PCPATCH structure.
*
* PgSQL Pointcloud is free and open source software provided
* by the Government of Canada
* Copyright (c) 2013 Natural Resources Canada
*
***********************************************************************/
#include "pc_api_internal.h"
#include <assert.h>
#include <math.h>
/*
typedef struct
{
int type;
int8_t readonly;
const PCSCHEMA *schema;
uint32_t npoints;
double xmin, xmax, ymin, ymax;
PCSTATS *stats;
PCBYTES *bytes;
} PCPATCH_DIMENSIONAL;
*/
PCPATCH_DIMENSIONAL *
pc_patch_dimensional_clone(const PCPATCH_DIMENSIONAL *patch)
{
PCPATCH_DIMENSIONAL *pdl = pcalloc(sizeof(PCPATCH_DIMENSIONAL));
memcpy(pdl, patch, sizeof(PCPATCH_DIMENSIONAL));
pdl->bytes = pcalloc(patch->schema->ndims * sizeof(PCBYTES));
pdl->npoints = 0;
pdl->stats = NULL;
return pdl;
}
size_t pc_patch_dimensional_serialized_size(const PCPATCH_DIMENSIONAL *patch)
{
PCPATCH_DIMENSIONAL *p = (PCPATCH_DIMENSIONAL *)patch;
int i;
size_t size = 0;
for (i = 0; i < p->schema->ndims; i++)
{
size += pc_bytes_serialized_size(&(p->bytes[i]));
}
return size;
}
char *pc_patch_dimensional_to_string(const PCPATCH_DIMENSIONAL *pa)
{
PCPATCH_UNCOMPRESSED *patch = pc_patch_uncompressed_from_dimensional(pa);
char *str = pc_patch_uncompressed_to_string(patch);
pc_patch_free((PCPATCH *)patch);
return str;
}
PCPATCH_DIMENSIONAL *
pc_patch_dimensional_from_uncompressed(const PCPATCH_UNCOMPRESSED *pa)
{
PCPATCH_DIMENSIONAL *pdl;
const PCSCHEMA *schema;
int i, j, ndims, npoints;
assert(pa);
npoints = pa->npoints;
schema = pa->schema;
ndims = schema->ndims;
/* Cannot handle empty patches */
if (npoints == 0)
return NULL;
/* Initialize dimensional */
pdl = pcalloc(sizeof(PCPATCH_DIMENSIONAL));
pdl->type = PC_DIMENSIONAL;
pdl->readonly = PC_FALSE;
pdl->schema = schema;
pdl->npoints = npoints;
pdl->bounds = pa->bounds;
pdl->stats = pc_stats_clone(pa->stats);
pdl->bytes = pcalloc(ndims * sizeof(PCBYTES));
for (i = 0; i < ndims; i++)
{
PCDIMENSION *dim = pc_schema_get_dimension(schema, i);
pdl->bytes[i] = pc_bytes_make(dim, npoints);
for (j = 0; j < npoints; j++)
{
uint8_t *to = pdl->bytes[i].bytes + dim->size * j;
uint8_t *from = pa->data + schema->size * j + dim->byteoffset;
memcpy(to, from, dim->size);
}
}
return pdl;
}
PCPATCH_DIMENSIONAL *
pc_patch_dimensional_compress(const PCPATCH_DIMENSIONAL *pdl,
PCDIMSTATS *pds_in)
{
int i;
int ndims;
PCPATCH_DIMENSIONAL *pdl_compressed;
PCDIMSTATS *pds = pds_in;
assert(pdl);
assert(pdl->schema);
ndims = pdl->schema->ndims;
if (!pds)
pds = pc_dimstats_make(pdl->schema);
/* Still sampling, update stats */
if (pds->total_points < PCDIMSTATS_MIN_SAMPLE)
pc_dimstats_update(pds, pdl);
pdl_compressed = pcalloc(sizeof(PCPATCH_DIMENSIONAL));
memcpy(pdl_compressed, pdl, sizeof(PCPATCH_DIMENSIONAL));
pdl_compressed->bytes = pcalloc(ndims * sizeof(PCBYTES));
pdl_compressed->stats = pc_stats_clone(pdl->stats);
/* Compress each dimension as dictated by stats */
for (i = 0; i < ndims; i++)
{
pdl_compressed->bytes[i] =
pc_bytes_encode(pdl->bytes[i], pds->stats[i].recommended_compression);
}
if (pds != pds_in)
pc_dimstats_free(pds);
return pdl_compressed;
}
PCPATCH_DIMENSIONAL *
pc_patch_dimensional_decompress(const PCPATCH_DIMENSIONAL *pdl)
{
int i;
int ndims = pdl->schema->ndims;
PCPATCH_DIMENSIONAL *pdl_decompressed;
assert(pdl);
assert(pdl->schema);
pdl_decompressed = pcalloc(sizeof(PCPATCH_DIMENSIONAL));
memcpy(pdl_decompressed, pdl, sizeof(PCPATCH_DIMENSIONAL));
pdl_decompressed->bytes = pcalloc(ndims * sizeof(PCBYTES));
pdl_decompressed->stats = pc_stats_clone(pdl->stats);
/* Compress each dimension as dictated by stats */
for (i = 0; i < ndims; i++)
{
pdl_decompressed->bytes[i] = pc_bytes_decode(pdl->bytes[i]);
}
return pdl_decompressed;
}
void pc_patch_dimensional_free(PCPATCH_DIMENSIONAL *pdl)
{
int i;
assert(pdl);
assert(pdl->schema);
pc_patch_free_stats((PCPATCH *)pdl);
if (pdl->bytes)
{
for (i = 0; i < pdl->schema->ndims; i++)
pc_bytes_free(pdl->bytes[i]);
pcfree(pdl->bytes);
}
pcfree(pdl);
}
int pc_patch_dimensional_compute_extent(PCPATCH_DIMENSIONAL *pdl)
{
double xmin, xmax, ymin, ymax, xavg, yavg;
int rv;
PCBYTES *pcb;
assert(pdl);
assert(pdl->schema);
assert(pdl->schema->xdim);
assert(pdl->schema->ydim);
/* Get x extremes */
pcb = &(pdl->bytes[pdl->schema->xdim->position]);
rv = pc_bytes_minmax(pcb, &xmin, &xmax, &xavg);
if (PC_FAILURE == rv)
return PC_FAILURE;
xmin = pc_value_scale_offset(xmin, pdl->schema->xdim);
xmax = pc_value_scale_offset(xmax, pdl->schema->xdim);
pdl->bounds.xmin = xmin;
pdl->bounds.xmax = xmax;
/* Get y extremes */
pcb = &(pdl->bytes[pdl->schema->ydim->position]);
rv = pc_bytes_minmax(pcb, &ymin, &ymax, &yavg);
if (PC_FAILURE == rv)
return PC_FAILURE;
ymin = pc_value_scale_offset(ymin, pdl->schema->ydim);
ymax = pc_value_scale_offset(ymax, pdl->schema->ydim);
pdl->bounds.ymin = ymin;
pdl->bounds.ymax = ymax;
return PC_SUCCESS;
}
uint8_t *pc_patch_dimensional_to_wkb(const PCPATCH_DIMENSIONAL *patch,
size_t *wkbsize)
{
/*
byte: endianness (1 = NDR, 0 = XDR)
uint32: pcid (key to POINTCLOUD_SCHEMAS)
uint32: compression (0 = no compression, 1 = dimensional, 2 = lazperf)
uint32: npoints
dimensions[]: pcbytes (interpret relative to pcid and compressions)
*/
int ndims = patch->schema->ndims;
int i;
uint8_t *buf;
char endian = machine_endian();
/* endian + pcid + compression + npoints + datasize */
size_t size = 1 + 4 + 4 + 4 + pc_patch_dimensional_serialized_size(patch);
uint8_t *wkb = pcalloc(size);
uint32_t compression = patch->type;
uint32_t npoints = patch->npoints;
uint32_t pcid = patch->schema->pcid;
wkb[0] = endian; /* Write endian flag */
memcpy(wkb + 1, &pcid, 4); /* Write PCID */
memcpy(wkb + 5, &compression, 4); /* Write compression */
memcpy(wkb + 9, &npoints, 4); /* Write npoints */
buf = wkb + 13;
for (i = 0; i < ndims; i++)
{
size_t bsz;
PCBYTES *pcb = &(patch->bytes[i]);
// XXX printf("pcb->(size=%d, interp=%d, npoints=%d,
// compression=%d, readonly=%d)\n",pcb->size, pcb->interpretation,
// pcb->npoints, pcb->compression, pcb->readonly);
pc_bytes_serialize(pcb, buf, &bsz);
buf += bsz;
}
if (wkbsize)
*wkbsize = size;
return wkb;
}
PCPATCH *pc_patch_dimensional_from_wkb(const PCSCHEMA *schema,
const uint8_t *wkb, size_t wkbsize)
{
/*
byte: endianness (1 = NDR, 0 = XDR)
uint32: pcid (key to POINTCLOUD_SCHEMAS)
uint32: compression (0 = no compression, 1 = dimensional, 2 = lazperf)
uint32: npoints
dimensions[]: dims (interpret relative to pcid and compressions)
*/
static size_t hdrsz =
1 + 4 + 4 + 4; /* endian + pcid + compression + npoints */
PCPATCH_DIMENSIONAL *patch;
uint8_t swap_endian = (wkb[0] != machine_endian());
uint32_t npoints, ndims;
const uint8_t *buf;
int i;
if (wkb_get_compression(wkb) != PC_DIMENSIONAL)
{
pcerror("%s: call with wkb that is not dimensionally compressed", __func__);
return NULL;
}
npoints = wkb_get_npoints(wkb);
ndims = schema->ndims;
patch = pcalloc(sizeof(PCPATCH_DIMENSIONAL));
patch->type = PC_DIMENSIONAL;
patch->readonly = PC_FALSE;
patch->schema = schema;
patch->npoints = npoints;
patch->bytes = pcalloc(ndims * sizeof(PCBYTES));
patch->stats = NULL;
buf = wkb + hdrsz;
for (i = 0; i < ndims; i++)
{
PCBYTES *pcb = &(patch->bytes[i]);
PCDIMENSION *dim = schema->dims[i];
pc_bytes_deserialize(buf, dim, pcb, PC_FALSE /*readonly*/, swap_endian);
pcb->npoints = npoints;
buf += pc_bytes_serialized_size(pcb);
}
return (PCPATCH *)patch;
}
PCPATCH_DIMENSIONAL *pc_patch_dimensional_from_pointlist(const PCPOINTLIST *pdl)
{
PCPATCH_UNCOMPRESSED *patch = pc_patch_uncompressed_from_pointlist(pdl);
if (!patch)
return NULL;
PCPATCH_DIMENSIONAL *dimpatch = pc_patch_dimensional_from_uncompressed(patch);
pc_patch_free((PCPATCH *)patch);
return dimpatch;
}
/** get point n, 0-based, positive */
PCPOINT *pc_patch_dimensional_pointn(const PCPATCH_DIMENSIONAL *pdl, int n)
{
assert(pdl);
assert(pdl->schema);
int i;
int ndims = pdl->schema->ndims;
PCPOINT *pt = pc_point_make(pdl->schema);
uint8_t *buf = pt->data;
for (i = 0; i < ndims; i++)
{
PCDIMENSION *dim = pc_schema_get_dimension(pdl->schema, i);
pc_bytes_to_ptr(buf + dim->byteoffset, pdl->bytes[i], n);
}
return pt;
}
|