File: pgr_dagShortestPath.hpp

package info (click to toggle)
pgrouting 3.4.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 16,520 kB
  • sloc: sql: 38,763; cpp: 21,049; ansic: 13,171; perl: 1,781; sh: 804; xml: 182; makefile: 48
file content (363 lines) | stat: -rw-r--r-- 11,378 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/*PGR-GNU*****************************************************************

Copyright (c) 2015 pgRouting developers
Mail: project@pgrouting.org

Copyright (c) 2018 Sourabh Garg
sourabh.garg.mat@gmail.com

------

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

 ********************************************************************PGR-GNU*/

#ifndef INCLUDE_DAGSHORTESTPATH_PGR_DAGSHORTESTPATH_HPP_
#define INCLUDE_DAGSHORTESTPATH_PGR_DAGSHORTESTPATH_HPP_
#pragma once

#include <deque>
#include <set>
#include <vector>
#include <algorithm>
#include <sstream>
#include <functional>
#include <limits>
#include <map>

#include <boost/config.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/dag_shortest_paths.hpp>

#include "cpp_common/basePath_SSEC.hpp"
#include "cpp_common/pgr_base_graph.hpp"
#include "cpp_common/interruption.h"

#include "c_types/ii_t_rt.h"

template < class G >
class Pgr_dag {
 public:
     typedef typename G::V V;
     typedef typename G::E E;


     //! Dijkstra 1 to 1
     Path dag(
             G &graph,
             int64_t start_vertex,
             int64_t end_vertex,
             bool only_cost = false) {
         clear();

         // adjust predecessors and distances vectors
         predecessors.resize(graph.num_vertices());
         distances.resize(
                 graph.num_vertices(),
                 std::numeric_limits<double>::infinity());


         if (!graph.has_vertex(start_vertex)
                 || !graph.has_vertex(end_vertex)) {
             return Path(start_vertex, end_vertex);
         }

         // get the graphs source and target
         auto v_source(graph.get_V(start_vertex));
         auto v_target(graph.get_V(end_vertex));

         // perform the algorithm
         dag_1_to_1(graph, v_source, v_target);

         // get the results
         return Path(
                 graph,
                 v_source, v_target,
                 predecessors, distances,
                 only_cost, true);
     }


     //! Dijkstra 1 to many
     std::deque<Path> dag(
             G &graph,
             int64_t start_vertex,
             const std::vector< int64_t > &end_vertex,
             bool only_cost) {
         // adjust predecessors and distances vectors
         clear();
         size_t n_goals = (std::numeric_limits<size_t>::max)();
         predecessors.resize(graph.num_vertices());
         distances.resize(
                 graph.num_vertices(),
                 std::numeric_limits<double>::infinity());


         // get the graphs source and target
         if (!graph.has_vertex(start_vertex))
             return std::deque<Path>();
         auto v_source(graph.get_V(start_vertex));

         std::set< V > s_v_targets;
         for (const auto &vertex : end_vertex) {
             if (graph.has_vertex(vertex)) {
                 s_v_targets.insert(graph.get_V(vertex));
             }
         }

         std::vector< V > v_targets(s_v_targets.begin(), s_v_targets.end());
         // perform the algorithm
         dag_1_to_many(graph, v_source, v_targets, n_goals);

         std::deque< Path > paths;
         // get the results // route id are the targets
         paths = get_paths(graph, v_source, v_targets, only_cost);

         std::stable_sort(paths.begin(), paths.end(),
                 [](const Path &e1, const Path &e2)->bool {
                 return e1.end_id() < e2.end_id();
                 });

         return paths;
     }

     // preparation for many to 1
     std::deque<Path> dag(
             G &graph,
             const std::vector < int64_t > &start_vertex,
             int64_t end_vertex,
             bool only_cost) {
         std::deque<Path> paths;

         for (const auto &start : start_vertex) {
             paths.push_back(
                     dag(graph, start, end_vertex, only_cost));
         }

         std::stable_sort(paths.begin(), paths.end(),
                 [](const Path &e1, const Path &e2)->bool {
                 return e1.start_id() < e2.start_id();
                 });
         return paths;
     }


     // preparation for many to many
     std::deque<Path> dag(
             G &graph,
             const std::vector< int64_t > &start_vertex,
             const std::vector< int64_t > &end_vertex,
             bool only_cost) {
         // a call to 1 to many is faster for each of the sources
         std::deque<Path> paths;

         for (const auto &start : start_vertex) {
             auto r_paths = dag(
                     graph,
                     start, end_vertex,
                     only_cost);
             paths.insert(paths.begin(), r_paths.begin(), r_paths.end());
         }

         std::sort(paths.begin(), paths.end(),
                 [](const Path &e1, const Path &e2)->bool {
                 return e1.end_id() < e2.end_id();
                 });
         std::stable_sort(paths.begin(), paths.end(),
                 [](const Path &e1, const Path &e2)->bool {
                 return e1.start_id() < e2.start_id();
                 });
         return paths;
     }

     // preparation for parallel arrays
     std::deque<Path> dag(
             G &graph,
             const std::vector<II_t_rt> &combinations,
             bool only_cost) {
         std::deque<Path> paths;

         // group targets per distinct source
         std::map< int64_t, std::vector<int64_t> > vertex_map;
         for (const II_t_rt &comb : combinations) {
             std::map< int64_t, std::vector<int64_t> >::iterator it = vertex_map.find(comb.d1.source);
             if (it != vertex_map.end()) {
                 it->second.push_back(comb.d2.target);
             } else {
                 std::vector<int64_t > targets{comb.d2.target};
                 vertex_map[comb.d1.source] = targets;
             }
         }

         for (const auto &start_ends : vertex_map) {
             auto result_paths = dag(
                     graph,
                     start_ends.first,
                     start_ends.second,
                     only_cost);
             paths.insert(
                     paths.end(),
                     std::make_move_iterator(result_paths.begin()),
                     std::make_move_iterator(result_paths.end()));
         }

         return paths;
     }

     //@}

 private:
     //! Call to Dijkstra  1 source to 1 target
     bool dag_1_to_1(
                 G &graph,
                 V source,
                 V target) {
         /* abort in case of an interruption occurs (e.g. the query is being cancelled) */
         CHECK_FOR_INTERRUPTS();
         try {
             boost::dag_shortest_paths(graph.graph, source,
                     boost::predecessor_map(&predecessors[0])
                     .weight_map(get(&G::G_T_E::cost, graph.graph))
                     .distance_map(&distances[0])
                     .visitor(dijkstra_one_goal_visitor(target)));
         } catch(found_goals &) {
             return true;
         } catch (boost::exception const& ex) {
             (void)ex;
             throw;
         } catch (std::exception &e) {
             (void)e;
             throw;
         } catch (...) {
             throw;
         }
         return true;
     }

     //! Dijkstra  1 source to many targets
     bool dag_1_to_many(
             G &graph,
             V source,
             const std::vector< V > &targets,
             size_t n_goals = (std::numeric_limits<size_t>::max)()) {
         /* abort in case of an interruption occurs (e.g. the query is being cancelled) */
         CHECK_FOR_INTERRUPTS();
         try {
             boost::dag_shortest_paths(graph.graph, source,
                     boost::predecessor_map(&predecessors[0])
                     .weight_map(get(&G::G_T_E::cost, graph.graph))
                     .distance_map(&distances[0])
                     .distance_inf(std::numeric_limits<double>::infinity())
                     .visitor(dijkstra_many_goal_visitor(targets, n_goals)));
         } catch(found_goals &) {
             return true;
         } catch (boost::exception const& ex) {
             (void)ex;
             throw;
         } catch (std::exception &e) {
             (void)e;
             throw;
         } catch (...) {
             throw;
         }
         return true;
     }


     void clear() {
         predecessors.clear();
         distances.clear();
         nodesInDistance.clear();
     }




     // used when multiple goals
     std::deque<Path> get_paths(
             const G &graph,
             V source,
             std::vector< V > &targets,
             bool only_cost) const {
         std::deque<Path> paths;
         for (const auto target : targets) {
             paths.push_back(Path(
                         graph,
                         source, target,
                         predecessors, distances,
                         only_cost, true));
         }
         return paths;
     }



     //! @name members
     //@{
     struct found_goals{};  //!< exception for termination
     std::vector< V > predecessors;
     std::vector< double > distances;
     std::deque< V > nodesInDistance;
     std::ostringstream log;
     //@}


     //! @name Stopping classes
     //@{
     //! class for stopping when 1 target is found

     class dijkstra_one_goal_visitor : public boost::default_dijkstra_visitor {
      public:
          explicit dijkstra_one_goal_visitor(V goal) : m_goal(goal) {}
          template <class B_G>
              void examine_vertex(V &u, B_G &) {
                  if (u == m_goal) throw found_goals();
              }
      private:
          V m_goal;
     };

     //! class for stopping when all targets are found
     class dijkstra_many_goal_visitor : public boost::default_dijkstra_visitor {
      public:
          explicit dijkstra_many_goal_visitor(
                  const std::vector< V > &goals,
                  size_t n_goals) :
              m_goals(goals.begin(), goals.end()),
              m_n_goals(n_goals)   {}
          template <class B_G>
              void examine_vertex(V u, B_G &) {
                  auto s_it = m_goals.find(u);
                  if (s_it == m_goals.end()) return;

                  // found one more goal
                  m_goals.erase(s_it);

                  // all goals found
                  if (m_goals.size() == 0) throw found_goals();

                  // number of requested goals found
                  --m_n_goals;
                  if (m_n_goals == 0) throw found_goals();
              }

      private:
          std::set< V > m_goals;
          size_t m_n_goals;
     };
};

#endif  // INCLUDE_DAGSHORTESTPATH_PGR_DAGSHORTESTPATH_HPP_