1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
|
# pgvector
Open-source vector similarity search for Postgres
Store your vectors with the rest of your data. Supports:
- exact and approximate nearest neighbor search
- single-precision, half-precision, binary, and sparse vectors
- L2 distance, inner product, cosine distance, L1 distance, Hamming distance, and Jaccard distance
- any [language](#languages) with a Postgres client
Plus [ACID](https://en.wikipedia.org/wiki/ACID) compliance, point-in-time recovery, JOINs, and all of the other [great features](https://www.postgresql.org/about/) of Postgres
[](https://github.com/pgvector/pgvector/actions)
## Installation
### Linux and Mac
Compile and install the extension (supports Postgres 13+)
```sh
cd /tmp
git clone --branch v0.8.1 https://github.com/pgvector/pgvector.git
cd pgvector
make
make install # may need sudo
```
See the [installation notes](#installation-notes---linux-and-mac) if you run into issues
You can also install it with [Docker](#docker), [Homebrew](#homebrew), [PGXN](#pgxn), [APT](#apt), [Yum](#yum), [pkg](#pkg), or [conda-forge](#conda-forge), and it comes preinstalled with [Postgres.app](#postgresapp) and many [hosted providers](#hosted-postgres). There are also instructions for [GitHub Actions](https://github.com/pgvector/setup-pgvector).
### Windows
Ensure [C++ support in Visual Studio](https://learn.microsoft.com/en-us/cpp/build/building-on-the-command-line?view=msvc-170#download-and-install-the-tools) is installed and run `x64 Native Tools Command Prompt for VS [version]` as administrator. Then use `nmake` to build:
```cmd
set "PGROOT=C:\Program Files\PostgreSQL\17"
cd %TEMP%
git clone --branch v0.8.1 https://github.com/pgvector/pgvector.git
cd pgvector
nmake /F Makefile.win
nmake /F Makefile.win install
```
See the [installation notes](#installation-notes---windows) if you run into issues
You can also install it with [Docker](#docker) or [conda-forge](#conda-forge).
## Getting Started
Enable the extension (do this once in each database where you want to use it)
```tsql
CREATE EXTENSION vector;
```
Create a vector column with 3 dimensions
```sql
CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3));
```
Insert vectors
```sql
INSERT INTO items (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');
```
Get the nearest neighbors by L2 distance
```sql
SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;
```
Also supports inner product (`<#>`), cosine distance (`<=>`), and L1 distance (`<+>`)
Note: `<#>` returns the negative inner product since Postgres only supports `ASC` order index scans on operators
## Storing
Create a new table with a vector column
```sql
CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3));
```
Or add a vector column to an existing table
```sql
ALTER TABLE items ADD COLUMN embedding vector(3);
```
Also supports [half-precision](#half-precision-vectors), [binary](#binary-vectors), and [sparse](#sparse-vectors) vectors
Insert vectors
```sql
INSERT INTO items (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');
```
Or load vectors in bulk using `COPY` ([example](https://github.com/pgvector/pgvector-python/blob/master/examples/loading/example.py))
```sql
COPY items (embedding) FROM STDIN WITH (FORMAT BINARY);
```
Upsert vectors
```sql
INSERT INTO items (id, embedding) VALUES (1, '[1,2,3]'), (2, '[4,5,6]')
ON CONFLICT (id) DO UPDATE SET embedding = EXCLUDED.embedding;
```
Update vectors
```sql
UPDATE items SET embedding = '[1,2,3]' WHERE id = 1;
```
Delete vectors
```sql
DELETE FROM items WHERE id = 1;
```
## Querying
Get the nearest neighbors to a vector
```sql
SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;
```
Supported distance functions are:
- `<->` - L2 distance
- `<#>` - (negative) inner product
- `<=>` - cosine distance
- `<+>` - L1 distance
- `<~>` - Hamming distance (binary vectors)
- `<%>` - Jaccard distance (binary vectors)
Get the nearest neighbors to a row
```sql
SELECT * FROM items WHERE id != 1 ORDER BY embedding <-> (SELECT embedding FROM items WHERE id = 1) LIMIT 5;
```
Get rows within a certain distance
```sql
SELECT * FROM items WHERE embedding <-> '[3,1,2]' < 5;
```
Note: Combine with `ORDER BY` and `LIMIT` to use an index
#### Distances
Get the distance
```sql
SELECT embedding <-> '[3,1,2]' AS distance FROM items;
```
For inner product, multiply by -1 (since `<#>` returns the negative inner product)
```tsql
SELECT (embedding <#> '[3,1,2]') * -1 AS inner_product FROM items;
```
For cosine similarity, use 1 - cosine distance
```sql
SELECT 1 - (embedding <=> '[3,1,2]') AS cosine_similarity FROM items;
```
#### Aggregates
Average vectors
```sql
SELECT AVG(embedding) FROM items;
```
Average groups of vectors
```sql
SELECT category_id, AVG(embedding) FROM items GROUP BY category_id;
```
## Indexing
By default, pgvector performs exact nearest neighbor search, which provides perfect recall.
You can add an index to use approximate nearest neighbor search, which trades some recall for speed. Unlike typical indexes, you will see different results for queries after adding an approximate index.
Supported index types are:
- [HNSW](#hnsw)
- [IVFFlat](#ivfflat)
## HNSW
An HNSW index creates a multilayer graph. It has better query performance than IVFFlat (in terms of speed-recall tradeoff), but has slower build times and uses more memory. Also, an index can be created without any data in the table since there isn’t a training step like IVFFlat.
Add an index for each distance function you want to use.
L2 distance
```sql
CREATE INDEX ON items USING hnsw (embedding vector_l2_ops);
```
Note: Use `halfvec_l2_ops` for `halfvec` and `sparsevec_l2_ops` for `sparsevec` (and similar with the other distance functions)
Inner product
```sql
CREATE INDEX ON items USING hnsw (embedding vector_ip_ops);
```
Cosine distance
```sql
CREATE INDEX ON items USING hnsw (embedding vector_cosine_ops);
```
L1 distance
```sql
CREATE INDEX ON items USING hnsw (embedding vector_l1_ops);
```
Hamming distance
```sql
CREATE INDEX ON items USING hnsw (embedding bit_hamming_ops);
```
Jaccard distance
```sql
CREATE INDEX ON items USING hnsw (embedding bit_jaccard_ops);
```
Supported types are:
- `vector` - up to 2,000 dimensions
- `halfvec` - up to 4,000 dimensions
- `bit` - up to 64,000 dimensions
- `sparsevec` - up to 1,000 non-zero elements
### Index Options
Specify HNSW parameters
- `m` - the max number of connections per layer (16 by default)
- `ef_construction` - the size of the dynamic candidate list for constructing the graph (64 by default)
```sql
CREATE INDEX ON items USING hnsw (embedding vector_l2_ops) WITH (m = 16, ef_construction = 64);
```
A higher value of `ef_construction` provides better recall at the cost of index build time / insert speed.
### Query Options
Specify the size of the dynamic candidate list for search (40 by default)
```sql
SET hnsw.ef_search = 100;
```
A higher value provides better recall at the cost of speed.
Use `SET LOCAL` inside a transaction to set it for a single query
```sql
BEGIN;
SET LOCAL hnsw.ef_search = 100;
SELECT ...
COMMIT;
```
### Index Build Time
Indexes build significantly faster when the graph fits into `maintenance_work_mem`
```sql
SET maintenance_work_mem = '8GB';
```
A notice is shown when the graph no longer fits
```text
NOTICE: hnsw graph no longer fits into maintenance_work_mem after 100000 tuples
DETAIL: Building will take significantly more time.
HINT: Increase maintenance_work_mem to speed up builds.
```
Note: Do not set `maintenance_work_mem` so high that it exhausts the memory on the server
Like other index types, it’s faster to create an index after loading your initial data
You can also speed up index creation by increasing the number of parallel workers (2 by default)
```sql
SET max_parallel_maintenance_workers = 7; -- plus leader
```
For a large number of workers, you may need to increase `max_parallel_workers` (8 by default)
The [index options](#index-options) also have a significant impact on build time (use the defaults unless seeing low recall)
### Indexing Progress
Check [indexing progress](https://www.postgresql.org/docs/current/progress-reporting.html#CREATE-INDEX-PROGRESS-REPORTING)
```sql
SELECT phase, round(100.0 * blocks_done / nullif(blocks_total, 0), 1) AS "%" FROM pg_stat_progress_create_index;
```
The phases for HNSW are:
1. `initializing`
2. `loading tuples`
## IVFFlat
An IVFFlat index divides vectors into lists, and then searches a subset of those lists that are closest to the query vector. It has faster build times and uses less memory than HNSW, but has lower query performance (in terms of speed-recall tradeoff).
Three keys to achieving good recall are:
1. Create the index *after* the table has some data
2. Choose an appropriate number of lists - a good place to start is `rows / 1000` for up to 1M rows and `sqrt(rows)` for over 1M rows
3. When querying, specify an appropriate number of [probes](#query-options) (higher is better for recall, lower is better for speed) - a good place to start is `sqrt(lists)`
Add an index for each distance function you want to use.
L2 distance
```sql
CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100);
```
Note: Use `halfvec_l2_ops` for `halfvec` (and similar with the other distance functions)
Inner product
```sql
CREATE INDEX ON items USING ivfflat (embedding vector_ip_ops) WITH (lists = 100);
```
Cosine distance
```sql
CREATE INDEX ON items USING ivfflat (embedding vector_cosine_ops) WITH (lists = 100);
```
Hamming distance
```sql
CREATE INDEX ON items USING ivfflat (embedding bit_hamming_ops) WITH (lists = 100);
```
Supported types are:
- `vector` - up to 2,000 dimensions
- `halfvec` - up to 4,000 dimensions
- `bit` - up to 64,000 dimensions
### Query Options
Specify the number of probes (1 by default)
```sql
SET ivfflat.probes = 10;
```
A higher value provides better recall at the cost of speed, and it can be set to the number of lists for exact nearest neighbor search (at which point the planner won’t use the index)
Use `SET LOCAL` inside a transaction to set it for a single query
```sql
BEGIN;
SET LOCAL ivfflat.probes = 10;
SELECT ...
COMMIT;
```
### Index Build Time
Speed up index creation on large tables by increasing the number of parallel workers (2 by default)
```sql
SET max_parallel_maintenance_workers = 7; -- plus leader
```
For a large number of workers, you may also need to increase `max_parallel_workers` (8 by default)
### Indexing Progress
Check [indexing progress](https://www.postgresql.org/docs/current/progress-reporting.html#CREATE-INDEX-PROGRESS-REPORTING)
```sql
SELECT phase, round(100.0 * tuples_done / nullif(tuples_total, 0), 1) AS "%" FROM pg_stat_progress_create_index;
```
The phases for IVFFlat are:
1. `initializing`
2. `performing k-means`
3. `assigning tuples`
4. `loading tuples`
Note: `%` is only populated during the `loading tuples` phase
## Filtering
There are a few ways to index nearest neighbor queries with a `WHERE` clause.
```sql
SELECT * FROM items WHERE category_id = 123 ORDER BY embedding <-> '[3,1,2]' LIMIT 5;
```
A good place to start is creating an index on the filter column. This can provide fast, exact nearest neighbor search in many cases. Postgres has a number of [index types](https://www.postgresql.org/docs/current/indexes-types.html) for this: B-tree (default), hash, GiST, SP-GiST, GIN, and BRIN.
```sql
CREATE INDEX ON items (category_id);
```
For multiple columns, consider a [multicolumn index](https://www.postgresql.org/docs/current/indexes-multicolumn.html).
```sql
CREATE INDEX ON items (location_id, category_id);
```
Exact indexes work well for conditions that match a low percentage of rows. Otherwise, [approximate indexes](#indexing) can work better.
```sql
CREATE INDEX ON items USING hnsw (embedding vector_l2_ops);
```
With approximate indexes, filtering is applied *after* the index is scanned. If a condition matches 10% of rows, with HNSW and the default `hnsw.ef_search` of 40, only 4 rows will match on average. For more rows, increase `hnsw.ef_search`.
```sql
SET hnsw.ef_search = 200;
```
Starting with 0.8.0, you can enable [iterative index scans](#iterative-index-scans), which will automatically scan more of the index when needed.
```sql
SET hnsw.iterative_scan = strict_order;
```
If filtering by only a few distinct values, consider [partial indexing](https://www.postgresql.org/docs/current/indexes-partial.html).
```sql
CREATE INDEX ON items USING hnsw (embedding vector_l2_ops) WHERE (category_id = 123);
```
If filtering by many different values, consider [partitioning](https://www.postgresql.org/docs/current/ddl-partitioning.html).
```sql
CREATE TABLE items (embedding vector(3), category_id int) PARTITION BY LIST(category_id);
```
## Iterative Index Scans
With approximate indexes, queries with filtering can return less results since filtering is applied *after* the index is scanned. Starting with 0.8.0, you can enable iterative index scans, which will automatically scan more of the index until enough results are found (or it reaches `hnsw.max_scan_tuples` or `ivfflat.max_probes`).
Iterative scans can use strict or relaxed ordering.
Strict ensures results are in the exact order by distance
```sql
SET hnsw.iterative_scan = strict_order;
```
Relaxed allows results to be slightly out of order by distance, but provides better recall
```sql
SET hnsw.iterative_scan = relaxed_order;
# or
SET ivfflat.iterative_scan = relaxed_order;
```
With relaxed ordering, you can use a [materialized CTE](https://www.postgresql.org/docs/current/queries-with.html#QUERIES-WITH-CTE-MATERIALIZATION) to get strict ordering
```sql
WITH relaxed_results AS MATERIALIZED (
SELECT id, embedding <-> '[1,2,3]' AS distance FROM items WHERE category_id = 123 ORDER BY distance LIMIT 5
) SELECT * FROM relaxed_results ORDER BY distance + 0;
```
Note: `+ 0` is needed for Postgres 17+
For queries that filter by distance, use a materialized CTE and place the distance filter outside of it for best performance (due to the [current behavior](https://www.postgresql.org/message-id/flat/CAOdR5yGUoMQ6j7M5hNUXrySzaqZVGf_Ne%2B8fwZMRKTFxU1nbJg%40mail.gmail.com) of the Postgres executor)
```sql
WITH nearest_results AS MATERIALIZED (
SELECT id, embedding <-> '[1,2,3]' AS distance FROM items ORDER BY distance LIMIT 5
) SELECT * FROM nearest_results WHERE distance < 5 ORDER BY distance;
```
Note: Place any other filters inside the CTE
### Iterative Scan Options
Since scanning a large portion of an approximate index is expensive, there are options to control when a scan ends.
#### HNSW
Specify the max number of tuples to visit (20,000 by default)
```sql
SET hnsw.max_scan_tuples = 20000;
```
Note: This is approximate and does not affect the initial scan
Specify the max amount of memory to use, as a multiple of `work_mem` (1 by default)
```sql
SET hnsw.scan_mem_multiplier = 2;
```
Note: Try increasing this if increasing `hnsw.max_scan_tuples` does not improve recall
#### IVFFlat
Specify the max number of probes
```sql
SET ivfflat.max_probes = 100;
```
Note: If this is lower than `ivfflat.probes`, `ivfflat.probes` will be used
## Half-Precision Vectors
Use the `halfvec` type to store half-precision vectors
```sql
CREATE TABLE items (id bigserial PRIMARY KEY, embedding halfvec(3));
```
## Half-Precision Indexing
Index vectors at half precision for smaller indexes
```sql
CREATE INDEX ON items USING hnsw ((embedding::halfvec(3)) halfvec_l2_ops);
```
Get the nearest neighbors
```sql
SELECT * FROM items ORDER BY embedding::halfvec(3) <-> '[1,2,3]' LIMIT 5;
```
## Binary Vectors
Use the `bit` type to store binary vectors ([example](https://github.com/pgvector/pgvector-python/blob/master/examples/imagehash/example.py))
```sql
CREATE TABLE items (id bigserial PRIMARY KEY, embedding bit(3));
INSERT INTO items (embedding) VALUES ('000'), ('111');
```
Get the nearest neighbors by Hamming distance
```sql
SELECT * FROM items ORDER BY embedding <~> '101' LIMIT 5;
```
Also supports Jaccard distance (`<%>`)
## Binary Quantization
Use expression indexing for binary quantization
```sql
CREATE INDEX ON items USING hnsw ((binary_quantize(embedding)::bit(3)) bit_hamming_ops);
```
Get the nearest neighbors by Hamming distance
```sql
SELECT * FROM items ORDER BY binary_quantize(embedding)::bit(3) <~> binary_quantize('[1,-2,3]') LIMIT 5;
```
Re-rank by the original vectors for better recall
```sql
SELECT * FROM (
SELECT * FROM items ORDER BY binary_quantize(embedding)::bit(3) <~> binary_quantize('[1,-2,3]') LIMIT 20
) ORDER BY embedding <=> '[1,-2,3]' LIMIT 5;
```
## Sparse Vectors
Use the `sparsevec` type to store sparse vectors
```sql
CREATE TABLE items (id bigserial PRIMARY KEY, embedding sparsevec(5));
```
Insert vectors
```sql
INSERT INTO items (embedding) VALUES ('{1:1,3:2,5:3}/5'), ('{1:4,3:5,5:6}/5');
```
The format is `{index1:value1,index2:value2}/dimensions` and indices start at 1 like SQL arrays
Get the nearest neighbors by L2 distance
```sql
SELECT * FROM items ORDER BY embedding <-> '{1:3,3:1,5:2}/5' LIMIT 5;
```
## Hybrid Search
Use together with Postgres [full-text search](https://www.postgresql.org/docs/current/textsearch-intro.html) for hybrid search.
```sql
SELECT id, content FROM items, plainto_tsquery('hello search') query
WHERE textsearch @@ query ORDER BY ts_rank_cd(textsearch, query) DESC LIMIT 5;
```
You can use [Reciprocal Rank Fusion](https://github.com/pgvector/pgvector-python/blob/master/examples/hybrid_search/rrf.py) or a [cross-encoder](https://github.com/pgvector/pgvector-python/blob/master/examples/hybrid_search/cross_encoder.py) to combine results.
## Indexing Subvectors
Use expression indexing to index subvectors
```sql
CREATE INDEX ON items USING hnsw ((subvector(embedding, 1, 3)::vector(3)) vector_cosine_ops);
```
Get the nearest neighbors by cosine distance
```sql
SELECT * FROM items ORDER BY subvector(embedding, 1, 3)::vector(3) <=> subvector('[1,2,3,4,5]'::vector, 1, 3) LIMIT 5;
```
Re-rank by the full vectors for better recall
```sql
SELECT * FROM (
SELECT * FROM items ORDER BY subvector(embedding, 1, 3)::vector(3) <=> subvector('[1,2,3,4,5]'::vector, 1, 3) LIMIT 20
) ORDER BY embedding <=> '[1,2,3,4,5]' LIMIT 5;
```
## Performance
### Tuning
Use a tool like [PgTune](https://pgtune.leopard.in.ua/) to set initial values for Postgres server parameters. For instance, `shared_buffers` should typically be 25% of the server’s memory. You can find the config file with:
```sql
SHOW config_file;
```
And check individual settings with:
```sql
SHOW shared_buffers;
```
Be sure to restart Postgres for changes to take effect.
### Loading
Use `COPY` for bulk loading data ([example](https://github.com/pgvector/pgvector-python/blob/master/examples/loading/example.py)).
```sql
COPY items (embedding) FROM STDIN WITH (FORMAT BINARY);
```
Add any indexes *after* loading the initial data for best performance.
### Indexing
See index build time for [HNSW](#index-build-time) and [IVFFlat](#index-build-time-1).
In production environments, create indexes concurrently to avoid blocking writes.
```sql
CREATE INDEX CONCURRENTLY ...
```
### Querying
Use `EXPLAIN ANALYZE` to debug performance.
```sql
EXPLAIN ANALYZE SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;
```
#### Exact Search
To speed up queries without an index, increase `max_parallel_workers_per_gather`.
```sql
SET max_parallel_workers_per_gather = 4;
```
If vectors are normalized to length 1 (like [OpenAI embeddings](https://platform.openai.com/docs/guides/embeddings/which-distance-function-should-i-use)), use inner product for best performance.
```tsql
SELECT * FROM items ORDER BY embedding <#> '[3,1,2]' LIMIT 5;
```
#### Approximate Search
To speed up queries with an IVFFlat index, increase the number of inverted lists (at the expense of recall).
```sql
CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 1000);
```
### Vacuuming
Vacuuming can take a while for HNSW indexes. Speed it up by reindexing first.
```sql
REINDEX INDEX CONCURRENTLY index_name;
VACUUM table_name;
```
## Monitoring
Monitor performance with [pg_stat_statements](https://www.postgresql.org/docs/current/pgstatstatements.html) (be sure to add it to `shared_preload_libraries`).
```sql
CREATE EXTENSION pg_stat_statements;
```
Get the most time-consuming queries with:
```sql
SELECT query, calls, ROUND((total_plan_time + total_exec_time) / calls) AS avg_time_ms,
ROUND((total_plan_time + total_exec_time) / 60000) AS total_time_min
FROM pg_stat_statements ORDER BY total_plan_time + total_exec_time DESC LIMIT 20;
```
Monitor recall by comparing results from approximate search with exact search.
```sql
BEGIN;
SET LOCAL enable_indexscan = off; -- use exact search
SELECT ...
COMMIT;
```
## Scaling
Scale pgvector the same way you scale Postgres.
Scale vertically by increasing memory, CPU, and storage on a single instance. Use existing tools to [tune parameters](#tuning) and [monitor performance](#monitoring).
Scale horizontally with [replicas](https://www.postgresql.org/docs/current/hot-standby.html), or use [Citus](https://github.com/citusdata/citus) or another approach for sharding ([example](https://github.com/pgvector/pgvector-python/blob/master/examples/citus/example.py)).
## Languages
Use pgvector from any language with a Postgres client. You can even generate and store vectors in one language and query them in another.
Language | Libraries / Examples
--- | ---
C | [pgvector-c](https://github.com/pgvector/pgvector-c)
C++ | [pgvector-cpp](https://github.com/pgvector/pgvector-cpp)
C#, F#, Visual Basic | [pgvector-dotnet](https://github.com/pgvector/pgvector-dotnet)
Crystal | [pgvector-crystal](https://github.com/pgvector/pgvector-crystal)
D | [pgvector-d](https://github.com/pgvector/pgvector-d)
Dart | [pgvector-dart](https://github.com/pgvector/pgvector-dart)
Elixir | [pgvector-elixir](https://github.com/pgvector/pgvector-elixir)
Erlang | [pgvector-erlang](https://github.com/pgvector/pgvector-erlang)
Fortran | [pgvector-fortran](https://github.com/pgvector/pgvector-fortran)
Gleam | [pgvector-gleam](https://github.com/pgvector/pgvector-gleam)
Go | [pgvector-go](https://github.com/pgvector/pgvector-go)
Haskell | [pgvector-haskell](https://github.com/pgvector/pgvector-haskell)
Java, Kotlin, Groovy, Scala | [pgvector-java](https://github.com/pgvector/pgvector-java)
JavaScript, TypeScript | [pgvector-node](https://github.com/pgvector/pgvector-node)
Julia | [Pgvector.jl](https://github.com/pgvector/Pgvector.jl)
Lisp | [pgvector-lisp](https://github.com/pgvector/pgvector-lisp)
Lua | [pgvector-lua](https://github.com/pgvector/pgvector-lua)
Nim | [pgvector-nim](https://github.com/pgvector/pgvector-nim)
OCaml | [pgvector-ocaml](https://github.com/pgvector/pgvector-ocaml)
Perl | [pgvector-perl](https://github.com/pgvector/pgvector-perl)
PHP | [pgvector-php](https://github.com/pgvector/pgvector-php)
Python | [pgvector-python](https://github.com/pgvector/pgvector-python)
R | [pgvector-r](https://github.com/pgvector/pgvector-r)
Raku | [pgvector-raku](https://github.com/pgvector/pgvector-raku)
Ruby | [pgvector-ruby](https://github.com/pgvector/pgvector-ruby), [Neighbor](https://github.com/ankane/neighbor)
Rust | [pgvector-rust](https://github.com/pgvector/pgvector-rust)
Swift | [pgvector-swift](https://github.com/pgvector/pgvector-swift)
Zig | [pgvector-zig](https://github.com/pgvector/pgvector-zig)
## Frequently Asked Questions
#### How many vectors can be stored in a single table?
A non-partitioned table has a limit of 32 TB by default in Postgres. A partitioned table can have thousands of partitions of that size.
#### Is replication supported?
Yes, pgvector uses the write-ahead log (WAL), which allows for replication and point-in-time recovery.
#### What if I want to index vectors with more than 2,000 dimensions?
You can use [half-precision indexing](#half-precision-indexing) to index up to 4,000 dimensions or [binary quantization](#binary-quantization) to index up to 64,000 dimensions. Another option is [dimensionality reduction](https://en.wikipedia.org/wiki/Dimensionality_reduction).
#### Can I store vectors with different dimensions in the same column?
You can use `vector` as the type (instead of `vector(n)`).
```sql
CREATE TABLE embeddings (model_id bigint, item_id bigint, embedding vector, PRIMARY KEY (model_id, item_id));
```
However, you can only create indexes on rows with the same number of dimensions (using [expression](https://www.postgresql.org/docs/current/indexes-expressional.html) and [partial](https://www.postgresql.org/docs/current/indexes-partial.html) indexing):
```sql
CREATE INDEX ON embeddings USING hnsw ((embedding::vector(3)) vector_l2_ops) WHERE (model_id = 123);
```
and query with:
```sql
SELECT * FROM embeddings WHERE model_id = 123 ORDER BY embedding::vector(3) <-> '[3,1,2]' LIMIT 5;
```
#### Can I store vectors with more precision?
You can use the `double precision[]` or `numeric[]` type to store vectors with more precision.
```sql
CREATE TABLE items (id bigserial PRIMARY KEY, embedding double precision[]);
-- use {} instead of [] for Postgres arrays
INSERT INTO items (embedding) VALUES ('{1,2,3}'), ('{4,5,6}');
```
Optionally, add a [check constraint](https://www.postgresql.org/docs/current/ddl-constraints.html) to ensure data can be converted to the `vector` type and has the expected dimensions.
```sql
ALTER TABLE items ADD CHECK (vector_dims(embedding::vector) = 3);
```
Use [expression indexing](https://www.postgresql.org/docs/current/indexes-expressional.html) to index (at a lower precision):
```sql
CREATE INDEX ON items USING hnsw ((embedding::vector(3)) vector_l2_ops);
```
and query with:
```sql
SELECT * FROM items ORDER BY embedding::vector(3) <-> '[3,1,2]' LIMIT 5;
```
#### Do indexes need to fit into memory?
No, but like other index types, you’ll likely see better performance if they do. You can get the size of an index with:
```sql
SELECT pg_size_pretty(pg_relation_size('index_name'));
```
## Troubleshooting
#### Why isn’t a query using an index?
The query needs to have an `ORDER BY` and `LIMIT`, and the `ORDER BY` must be the result of a distance operator (not an expression) in ascending order.
```sql
-- index
ORDER BY embedding <=> '[3,1,2]' LIMIT 5;
-- no index
ORDER BY 1 - (embedding <=> '[3,1,2]') DESC LIMIT 5;
```
You can encourage the planner to use an index for a query with:
```sql
BEGIN;
SET LOCAL enable_seqscan = off;
SELECT ...
COMMIT;
```
Also, if the table is small, a table scan may be faster.
#### Why isn’t a query using a parallel table scan?
The planner doesn’t consider [out-of-line storage](https://www.postgresql.org/docs/current/storage-toast.html) in cost estimates, which can make a serial scan look cheaper. You can reduce the cost of a parallel scan for a query with:
```sql
BEGIN;
SET LOCAL min_parallel_table_scan_size = 1;
SET LOCAL parallel_setup_cost = 1;
SELECT ...
COMMIT;
```
or choose to store vectors inline:
```sql
ALTER TABLE items ALTER COLUMN embedding SET STORAGE PLAIN;
```
#### Why are there less results for a query after adding an HNSW index?
Results are limited by the size of the dynamic candidate list (`hnsw.ef_search`), which is 40 by default. There may be even less results due to dead tuples or filtering conditions in the query. Enabling [iterative index scans](#iterative-index-scans) can help address this.
Also, note that `NULL` vectors are not indexed (as well as zero vectors for cosine distance).
#### Why are there less results for a query after adding an IVFFlat index?
The index was likely created with too little data for the number of lists. Drop the index until the table has more data.
```sql
DROP INDEX index_name;
```
Results can also be limited by the number of probes (`ivfflat.probes`). Enabling [iterative index scans](#iterative-index-scans) can address this.
Also, note that `NULL` vectors are not indexed (as well as zero vectors for cosine distance).
## Reference
- [Vector](#vector-type)
- [Halfvec](#halfvec-type)
- [Bit](#bit-type)
- [Sparsevec](#sparsevec-type)
### Vector Type
Each vector takes `4 * dimensions + 8` bytes of storage. Each element is a single-precision floating-point number (like the `real` type in Postgres), and all elements must be finite (no `NaN`, `Infinity` or `-Infinity`). Vectors can have up to 16,000 dimensions.
### Vector Operators
Operator | Description | Added
--- | --- | ---
\+ | element-wise addition |
\- | element-wise subtraction |
\* | element-wise multiplication | 0.5.0
\|\| | concatenate | 0.7.0
<-> | Euclidean distance |
<#> | negative inner product |
<=> | cosine distance |
<+> | taxicab distance | 0.7.0
### Vector Functions
Function | Description | Added
--- | --- | ---
binary_quantize(vector) → bit | binary quantize | 0.7.0
cosine_distance(vector, vector) → double precision | cosine distance |
inner_product(vector, vector) → double precision | inner product |
l1_distance(vector, vector) → double precision | taxicab distance | 0.5.0
l2_distance(vector, vector) → double precision | Euclidean distance |
l2_normalize(vector) → vector | Normalize with Euclidean norm | 0.7.0
subvector(vector, integer, integer) → vector | subvector | 0.7.0
vector_dims(vector) → integer | number of dimensions |
vector_norm(vector) → double precision | Euclidean norm |
### Vector Aggregate Functions
Function | Description | Added
--- | --- | ---
avg(vector) → vector | average |
sum(vector) → vector | sum | 0.5.0
### Halfvec Type
Each half vector takes `2 * dimensions + 8` bytes of storage. Each element is a half-precision floating-point number, and all elements must be finite (no `NaN`, `Infinity` or `-Infinity`). Half vectors can have up to 16,000 dimensions.
### Halfvec Operators
Operator | Description | Added
--- | --- | ---
\+ | element-wise addition | 0.7.0
\- | element-wise subtraction | 0.7.0
\* | element-wise multiplication | 0.7.0
\|\| | concatenate | 0.7.0
<-> | Euclidean distance | 0.7.0
<#> | negative inner product | 0.7.0
<=> | cosine distance | 0.7.0
<+> | taxicab distance | 0.7.0
### Halfvec Functions
Function | Description | Added
--- | --- | ---
binary_quantize(halfvec) → bit | binary quantize | 0.7.0
cosine_distance(halfvec, halfvec) → double precision | cosine distance | 0.7.0
inner_product(halfvec, halfvec) → double precision | inner product | 0.7.0
l1_distance(halfvec, halfvec) → double precision | taxicab distance | 0.7.0
l2_distance(halfvec, halfvec) → double precision | Euclidean distance | 0.7.0
l2_norm(halfvec) → double precision | Euclidean norm | 0.7.0
l2_normalize(halfvec) → halfvec | Normalize with Euclidean norm | 0.7.0
subvector(halfvec, integer, integer) → halfvec | subvector | 0.7.0
vector_dims(halfvec) → integer | number of dimensions | 0.7.0
### Halfvec Aggregate Functions
Function | Description | Added
--- | --- | ---
avg(halfvec) → halfvec | average | 0.7.0
sum(halfvec) → halfvec | sum | 0.7.0
### Bit Type
Each bit vector takes `dimensions / 8 + 8` bytes of storage. See the [Postgres docs](https://www.postgresql.org/docs/current/datatype-bit.html) for more info.
### Bit Operators
Operator | Description | Added
--- | --- | ---
<~> | Hamming distance | 0.7.0
<%> | Jaccard distance | 0.7.0
### Bit Functions
Function | Description | Added
--- | --- | ---
hamming_distance(bit, bit) → double precision | Hamming distance | 0.7.0
jaccard_distance(bit, bit) → double precision | Jaccard distance | 0.7.0
### Sparsevec Type
Each sparse vector takes `8 * non-zero elements + 16` bytes of storage. Each element is a single-precision floating-point number, and all elements must be finite (no `NaN`, `Infinity` or `-Infinity`). Sparse vectors can have up to 16,000 non-zero elements.
### Sparsevec Operators
Operator | Description | Added
--- | --- | ---
<-> | Euclidean distance | 0.7.0
<#> | negative inner product | 0.7.0
<=> | cosine distance | 0.7.0
<+> | taxicab distance | 0.7.0
### Sparsevec Functions
Function | Description | Added
--- | --- | ---
cosine_distance(sparsevec, sparsevec) → double precision | cosine distance | 0.7.0
inner_product(sparsevec, sparsevec) → double precision | inner product | 0.7.0
l1_distance(sparsevec, sparsevec) → double precision | taxicab distance | 0.7.0
l2_distance(sparsevec, sparsevec) → double precision | Euclidean distance | 0.7.0
l2_norm(sparsevec) → double precision | Euclidean norm | 0.7.0
l2_normalize(sparsevec) → sparsevec | Normalize with Euclidean norm | 0.7.0
## Installation Notes - Linux and Mac
### Postgres Location
If your machine has multiple Postgres installations, specify the path to [pg_config](https://www.postgresql.org/docs/current/app-pgconfig.html) with:
```sh
export PG_CONFIG=/Library/PostgreSQL/17/bin/pg_config
```
Then re-run the installation instructions (run `make clean` before `make` if needed). If `sudo` is needed for `make install`, use:
```sh
sudo --preserve-env=PG_CONFIG make install
```
A few common paths on Mac are:
- EDB installer - `/Library/PostgreSQL/17/bin/pg_config`
- Homebrew (arm64) - `/opt/homebrew/opt/postgresql@17/bin/pg_config`
- Homebrew (x86-64) - `/usr/local/opt/postgresql@17/bin/pg_config`
Note: Replace `17` with your Postgres server version
### Missing Header
If compilation fails with `fatal error: postgres.h: No such file or directory`, make sure Postgres development files are installed on the server.
For Ubuntu and Debian, use:
```sh
sudo apt install postgresql-server-dev-17
```
Note: Replace `17` with your Postgres server version
### Missing SDK
If compilation fails and the output includes `warning: no such sysroot directory` on Mac, your Postgres installation points to a path that no longer exists.
```sh
pg_config --cppflags
```
Reinstall Postgres to fix this.
### Portability
By default, pgvector compiles with `-march=native` on some platforms for best performance. However, this can lead to `Illegal instruction` errors if trying to run the compiled extension on a different machine.
To compile for portability, use:
```sh
make OPTFLAGS=""
```
## Installation Notes - Windows
### Missing Header
If compilation fails with `Cannot open include file: 'postgres.h': No such file or directory`, make sure `PGROOT` is correct.
### Mismatched Architecture
If compilation fails with `error C2196: case value '4' already used`, make sure you’re using the `x64 Native Tools Command Prompt`. Then run `nmake /F Makefile.win clean` and re-run the installation instructions.
### Missing Symbol
If linking fails with `unresolved external symbol float_to_shortest_decimal_bufn` with Postgres 17.0-17.2, upgrade to Postgres 17.3+.
### Permissions
If installation fails with `Access is denied`, re-run the installation instructions as an administrator.
## Additional Installation Methods
### Docker
Get the [Docker image](https://hub.docker.com/r/pgvector/pgvector) with:
```sh
docker pull pgvector/pgvector:pg17-trixie
```
This adds pgvector to the [Postgres image](https://hub.docker.com/_/postgres) (replace `17` with your Postgres server version, and run it the same way).
Supported tags are:
- `pg17-trixie`, `0.8.1-pg17-trixie`
- `pg17-bookworm`, `0.8.1-pg17-bookworm`, `pg17`, `0.8.1-pg17`
- `pg16-trixie`, `0.8.1-pg16-trixie`
- `pg16-bookworm`, `0.8.1-pg16-bookworm`, `pg16`, `0.8.1-pg16`
- `pg15-trixie`, `0.8.1-pg15-trixie`
- `pg15-bookworm`, `0.8.1-pg15-bookworm`, `pg15`, `0.8.1-pg15`
- `pg14-trixie`, `0.8.1-pg14-trixie`
- `pg14-bookworm`, `0.8.1-pg14-bookworm`, `pg14`, `0.8.1-pg14`
- `pg13-trixie`, `0.8.1-pg13-trixie`
- `pg13-bookworm`, `0.8.1-pg13-bookworm`, `pg13`, `0.8.1-pg13`
You can also build the image manually:
```sh
git clone --branch v0.8.1 https://github.com/pgvector/pgvector.git
cd pgvector
docker build --pull --build-arg PG_MAJOR=17 -t myuser/pgvector .
```
If you increase `maintenance_work_mem`, make sure `--shm-size` is at least that size to avoid an error with parallel HNSW index builds.
```sh
docker run --shm-size=1g ...
```
### Homebrew
With Homebrew Postgres, you can use:
```sh
brew install pgvector
```
Note: This only adds it to the `postgresql@17` and `postgresql@14` formulas
### PGXN
Install from the [PostgreSQL Extension Network](https://pgxn.org/dist/vector) with:
```sh
pgxn install vector
```
### APT
Debian and Ubuntu packages are available from the [PostgreSQL APT Repository](https://wiki.postgresql.org/wiki/Apt). Follow the [setup instructions](https://wiki.postgresql.org/wiki/Apt#Quickstart) and run:
```sh
sudo apt install postgresql-17-pgvector
```
Note: Replace `17` with your Postgres server version
### Yum
RPM packages are available from the [PostgreSQL Yum Repository](https://yum.postgresql.org/). Follow the [setup instructions](https://www.postgresql.org/download/linux/redhat/) for your distribution and run:
```sh
sudo yum install pgvector_17
# or
sudo dnf install pgvector_17
```
Note: Replace `17` with your Postgres server version
### pkg
Install the FreeBSD package with:
```sh
pkg install postgresql17-pgvector
```
or the port with:
```sh
cd /usr/ports/databases/pgvector
make install
```
### conda-forge
With Conda Postgres, install from [conda-forge](https://anaconda.org/conda-forge/pgvector) with:
```sh
conda install -c conda-forge pgvector
```
This method is [community-maintained](https://github.com/conda-forge/pgvector-feedstock) by [@mmcauliffe](https://github.com/mmcauliffe)
### Postgres.app
Download the [latest release](https://postgresapp.com/downloads.html) with Postgres 15+.
## Hosted Postgres
pgvector is available on [these providers](https://github.com/pgvector/pgvector/issues/54).
## Upgrading
[Install](#installation) the latest version (use the same method as the original installation). Then in each database you want to upgrade, run:
```sql
ALTER EXTENSION vector UPDATE;
```
You can check the version in the current database with:
```sql
SELECT extversion FROM pg_extension WHERE extname = 'vector';
```
## Thanks
Thanks to:
- [PASE: PostgreSQL Ultra-High-Dimensional Approximate Nearest Neighbor Search Extension](https://dl.acm.org/doi/pdf/10.1145/3318464.3386131)
- [Faiss: A Library for Efficient Similarity Search and Clustering of Dense Vectors](https://github.com/facebookresearch/faiss)
- [Using the Triangle Inequality to Accelerate k-means](https://cdn.aaai.org/ICML/2003/ICML03-022.pdf)
- [k-means++: The Advantage of Careful Seeding](https://theory.stanford.edu/~sergei/papers/kMeansPP-soda.pdf)
- [Concept Decompositions for Large Sparse Text Data using Clustering](https://www.cs.utexas.edu/users/inderjit/public_papers/concept_mlj.pdf)
- [Efficient and Robust Approximate Nearest Neighbor Search using Hierarchical Navigable Small World Graphs](https://arxiv.org/ftp/arxiv/papers/1603/1603.09320.pdf)
## History
View the [changelog](https://github.com/pgvector/pgvector/blob/master/CHANGELOG.md)
## Contributing
Everyone is encouraged to help improve this project. Here are a few ways you can help:
- [Report bugs](https://github.com/pgvector/pgvector/issues)
- Fix bugs and [submit pull requests](https://github.com/pgvector/pgvector/pulls)
- Write, clarify, or fix documentation
- Suggest or add new features
To get started with development:
```sh
git clone https://github.com/pgvector/pgvector.git
cd pgvector
make
make install
```
To run all tests:
```sh
make installcheck # regression tests
make prove_installcheck # TAP tests
```
To run single tests:
```sh
make installcheck REGRESS=functions # regression test
make prove_installcheck PROVE_TESTS=test/t/001_ivfflat_wal.pl # TAP test
```
To enable assertions:
```sh
make clean && PG_CFLAGS="-DUSE_ASSERT_CHECKING" make && make install
```
To enable benchmarking:
```sh
make clean && PG_CFLAGS="-DIVFFLAT_BENCH" make && make install
```
To show memory usage:
```sh
make clean && PG_CFLAGS="-DHNSW_MEMORY -DIVFFLAT_MEMORY" make && make install
```
To get k-means metrics:
```sh
make clean && PG_CFLAGS="-DIVFFLAT_KMEANS_DEBUG" make && make install
```
Resources for contributors
- [Extension Building Infrastructure](https://www.postgresql.org/docs/current/extend-pgxs.html)
- [Index Access Method Interface Definition](https://www.postgresql.org/docs/current/indexam.html)
- [Generic WAL Records](https://www.postgresql.org/docs/current/generic-wal.html)
|