1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
|
# -*- coding: utf-8 -*-
import pygame.rect
class Rect(pygame.rect.Rect):
__slots__ = ()
# From Pygame docs
VALID_ATTRIBUTES = """
x y
top left bottom right
topleft bottomleft topright bottomright
midtop midleft midbottom midright
center centerx centery
size width height
w h
""".split()
def __setattr__(self, key, value):
try:
pygame.rect.Rect.__setattr__(self, key, value)
except AttributeError as e:
from .spellcheck import suggest
suggestions = suggest(key, self.VALID_ATTRIBUTES)
msg = e.args[0]
if suggestions:
msg += "; did you mean {!r}?".format(suggestions[0])
raise AttributeError(msg) from None
Rect.__doc__ = pygame.rect.Rect.__doc__
class NoIntersect(Exception):
pass
class ZRect:
"""ZRect
This is a Python implementation of the pygame Rect class. Its raison
d'ĂȘtre is to allow the coordinates to be floating point. All pygame
functions which require a rect allow for an object with a "rect"
attribute and whose coordinates will be converted to integers implictly.
All functions which require a dict will use the flexible constructor
to convert from: this (or a subclass); a Pygame Rect; a 4-tuple or a
pair of 2-tuples. In addition, they'll recognise any object which has
an (optionally callable) .rect attribute whose value will be used instead.
"""
_item_mapping = dict(enumerate("xywh"))
def __init__(self, *args):
if len(args) == 1:
args = tuple(self._handle_one_arg(args[0]))
#
# At this point we have one of:
#
# x, y, w, h
# (x, y), (w, h)
# (x, y, w, h),
#
if len(args) == 4:
self.x, self.y, self.w, self.h = args
elif len(args) == 2:
(self.x, self.y), (self.w, self.h) = args
elif len(args) == 1:
self.x, self.y, self.w, self.h = args[0]
else:
raise TypeError("%s should be called with one, two or four arguments" % (cls.__name__))
self.rect = self
def _handle_one_arg(self, arg):
"""Handle -- possibly recursively -- the case of one parameter
Pygame -- and consequently pgzero -- is very accommodating when constructing
a rect. You can pass four integers, two pairs of 2-tuples, or one 4-tuple.
Also, you can pass an existing Rect-like object, or an object with a .rect
attribute. The object named by the .rect attribute is either one of the above,
or it's a callable object which returns one of the above.
This is evidently a recursive solution where an object with a .rect
attribute can yield an object with a .rect attribute, and so ad infinitum.
"""
#
# If the arg is an existing rect, return its elements
#
if isinstance(arg, RECT_CLASSES):
return arg.x, arg.y, arg.w, arg.h
#
# If it's something with a .rect attribute, start again with
# that attribute, calling it first if it's callable
#
if hasattr(arg, "rect"):
rectobj = arg.rect
if callable(rectobj):
rectobj = rectobj()
return self._handle_one_arg(rectobj)
#
# Otherwise, we assume it's an iterable of four elements
#
return arg
def __repr__(self):
return "<%s (x: %s, y: %s, w: %s, h: %s)>" % (self.__class__.__name__, self.x, self.y, self.w, self.h)
def __reduce__(self):
return self.__class__, (self.x, self.y, self.w, self.h)
def copy(self):
return self.__class__(self.x, self.y, self.w, self.h)
__copy__ = copy
def __len__(self):
return 4
def __getitem__(self, item):
try:
return getattr(self, self._item_mapping[item])
except KeyError:
raise IndexError
def __setitem__(self, item, value):
try:
attribute = self._item_mapping[item]
except KeyError:
raise IndexError
else:
setattr(attribute, value)
def __bool__(self):
return self.w != 0 and self.h != 0
def __iter__(self):
yield self.x
yield self.y
yield self.w
yield self.h
def __hash__(self):
raise TypeError("ZRect instances may not be used as dictionary keys")
def __eq__(self, *other):
rect = self.__class__(*other)
return (self.x, self.y, self.w, self.h) == (rect.x, rect.y, rect.w, rect.h)
def __ne__(self, *other):
rect = self.__class__(*other)
return (self.x, self.y, self.w, self.h) != (rect.x, rect.y, rect.w, rect.h)
def __lt__(self, *other):
rect = self.__class__(*other)
return (self.x, self.y, self.w, self.h) < (rect.x, rect.y, rect.w, rect.h)
def __gt__(self, *other):
rect = self.__class__(*other)
return (self.x, self.y, self.w, self.h) > (rect.x, rect.y, rect.w, rect.h)
def __le__(self, *other):
rect = self.__class__(*other)
return (self.x, self.y, self.w, self.h) <= (rect.x, rect.y, rect.w, rect.h)
def __ge__(self, *other):
rect = self.__class__(*other)
return (self.x, self.y, self.w, self.h) >= (rect.x, rect.y, rect.w, rect.h)
def __contains__(self, other):
"""Test whether a point (x, y) or another rectangle
(anything accepted by ZRect) is contained within this ZRect
"""
if len(other) == 2:
return self.collidepoint(*other)
else:
return self.contains(*other)
def _get_width(self):
return self.w
def _set_width(self, width):
self.w = width
width = property(_get_width, _set_width)
def _get_height(self):
return self.h
def _set_height(self, height):
self.h = height
height = property(_get_height, _set_height)
def _get_top(self):
return self.y
def _set_top(self, top):
self.y = top
top = property(_get_top, _set_top)
def _get_left(self):
return self.x
def _set_left(self, left):
self.x = left
left = property(_get_left, _set_left)
def _get_right(self):
return self.x + self.w
def _set_right(self, right):
self.x = right - self.w
right = property(_get_right, _set_right)
def _get_bottom(self):
return self.y + self.h
def _set_bottom(self, bottom):
self.y = bottom - self.h
bottom = property(_get_bottom, _set_bottom)
def _get_centerx(self):
return self.x + (self.w / 2)
def _set_centerx(self, centerx):
self.x = centerx - (self.w / 2)
centerx = property(_get_centerx, _set_centerx)
def _get_centery(self):
return self.y + (self.h / 2)
def _set_centery(self, centery):
self.y = centery - (self.h / 2)
centery = property(_get_centery, _set_centery)
def _get_topleft(self):
return self.x, self.y
def _set_topleft(self, topleft):
self.x, self.y = topleft
topleft = property(_get_topleft, _set_topleft)
def _get_topright(self):
return self.x + self.w, self.y
def _set_topright(self, topright):
x, y = topright
self.x = x - self.w
self.y = y
topright = property(_get_topright, _set_topright)
def _get_bottomleft(self):
return self.x, self.y + self.h
def _set_bottomleft(self, bottomleft):
x, y = bottomleft
self.x = x
self.y = y - self.h
bottomleft = property(_get_bottomleft, _set_bottomleft)
def _get_bottomright(self):
return self.x + self.w, self.y + self.h
def _set_bottomright(self, bottomright):
x, y = bottomright
self.x = x - self.w
self.y = y - self.h
bottomright = property(_get_bottomright, _set_bottomright)
def _get_midtop(self):
return self.x + self.w / 2, self.y
def _set_midtop(self, midtop):
x, y = midtop
self.x = x - self.w / 2
self.y = y
midtop = property(_get_midtop, _set_midtop)
def _get_midleft(self):
return self.x, self.y + self.h / 2
def _set_midleft(self, midleft):
x, y = midleft
self.x = x
self.y = y - self.h / 2
midleft = property(_get_midleft, _set_midleft)
def _get_midbottom(self):
return self.x + self.w / 2, self.y + self.h
def _set_midbottom(self, midbottom):
x, y = midbottom
self.x = x - self.w / 2
self.y = y - self.h
midbottom = property(_get_midbottom, _set_midbottom)
def _get_midright(self):
return self.x + self.w, self.y + self.h / 2
def _set_midright(self, midright):
x, y = midright
self.x = x - self.w
self.y = y - self.h / 2
midright = property(_get_midright, _set_midright)
def _get_center(self):
return self.x + self.w / 2, self.y + self.h / 2
def _set_center(self, center):
x, y = center
self.x = x - self.w / 2
self.y = y - self.h / 2
center = property(_get_center, _set_center)
def _get_size(self):
return self.w, self.h
def _set_size(self, size):
self.w, self.h = size
size = property(_get_size, _set_size)
def move(self, x, y):
return self.__class__(self.x + x, self.y + y, self.w, self.h)
def move_ip(self, x, y):
self.x += x
self.y += y
def _inflated(self, x, y):
return self.x - x / 2, self.y - y / 2, self.w + x, self.h + y
def inflate(self, x, y):
return self.__class__(*self._inflated(x, y))
def inflate_ip(self, x, y):
self.x, self.y, self.w, self.h = self._inflated(x, y)
def _clamped(self, *other):
rect = self.__class__(*other)
if self.w >= rect.w:
x = rect.x + rect.w / 2 - self.w / 2
elif self.x < rect.x:
x = rect.x
elif self.x + self.w > rect.x + rect.w:
x = rect.x + rect.w - self.w
else:
x = self.x
if self.h >= rect.h:
y = rect.y + rect.h / 2 - self.h / 2
elif self.y < rect.y:
y = rect.y
elif self.y + self.h > rect.y + rect.h:
y = rect.y + rect.h - self.h
else:
y = self.y
return x, y
def clamp(self, *other):
rect = self.__class__(*other)
x, y = self._clamped(rect)
return self.__class__(x, y, self.w, self.h)
def clamp_ip(self, *other):
rect = self.__class__(*other)
self.x, self.y = self._clamped(rect)
def _clipped(self, *other):
rect = self.__class__(*other)
if self.x >= rect.x and self.x < (rect.x + rect.w):
x = self.x
elif rect.x >= self.x and rect.x < (self.x + self.w):
x = rect.x
else:
raise NoIntersect
if (self.x + self.w) > rect.x and (self.x + self.w) <= (rect.x + rect.w):
w = self.x + self.w - x
elif (rect.x + rect.w) > self.x and (rect.x + rect.w) <= (self.x + self.w):
w = rect.x + rect.w - x
else:
raise NoIntersect
if self.y >= rect.y and self.y < (rect.y + rect.h):
y = self.y
elif rect.y >= self.y and rect.y < (self.y + self.h):
y = rect.y
else:
raise NoIntersect
if (self.y + self.h) > rect.y and (self.y + self.h) <= (rect.y + rect.h):
h = self.y + self.h - y
elif (rect.y + rect.h) > self.y and (rect.y + rect.h) <= (self.y + self.h):
h = rect.y + rect.h - y
else:
raise NoIntersect
return x, y, w, h
def clip(self, *other):
rect = self.__class__(*other)
try:
x, y, w, h = self._clipped(rect)
except NoIntersect:
x, y, w, h = self.x, self.y, 0, 0
return self.__class__(x, y, w, h)
def clip_ip(self, *other):
rect = self.__class__(*other)
try:
self.x, self.y, self.w, self.h = self._clipped(rect)
except NoIntersect:
self.x, self.y, self.w, self.h = self.x, self.y, 0, 0
def _unioned(self, *other):
rect = self.__class__(*other)
x = min(self.x, rect.x)
y = min(self.y, rect.y)
w = max(self.x + self.w, rect.x + rect.w) - x
h = max(self.y + self.h, rect.y + rect.h) - y
return x, y, w, h
def union(self, *other):
rect = self.__class__(*other)
return self.__class__(*self._unioned(rect))
def union_ip(self, *other):
rect = self.__class__(*other)
self.x, self.y, self.w, self.h = self._unioned(rect)
def _unionalled(self, others):
allrects = [self] + [self.__class__(other) for other in others]
x = min(r.x for r in allrects)
y = min(r.y for r in allrects)
w = max(r.x + r.w for r in allrects) - x
h = max(r.y + r.h for r in allrects) - y
return x, y, w, h
def unionall(self, others):
return self.__class__(*self._unionalled(others))
def unionall_ip(self, others):
self.x, self.y, self.w, self.h = self._unionalled(others)
def fit(self, *other):
rect = self.__class__(*other)
ratio = max(self.w / rect.w, self.h / rect.h)
w = self.w / ratio
h = self.h / ratio
x = rect.x + (rect.w - w) / 2
y = rect.y + (rect.h - h) / 2
return self.__class__(x, y, w, h)
def normalize(self):
if self.w < 0:
self.x += self.w
self.w = abs(self.w)
if self.h < 0:
self.y += self.h
self.h = abs(self.h)
def contains(self, *other):
rect = self.__class__(*other)
return (
self.x <= rect.x and
self.y <= rect.y and
self.x + self.w >= rect.x + rect.w and
self.y + self.h >= rect.y + rect.h and
self.x + self.w > rect.x and
self.y + self.h > rect.y
)
def collidepoint(self, *args):
if len(args) == 1:
x, y = args[0]
else:
x, y = args
return (
self.x <= x < (self.x + self.w) and
self.y <= y < (self.y + self.h)
)
def colliderect(self, *other):
rect = self.__class__(*other)
return (
self.x < rect.x + rect.w and
self.y < rect.y + rect.h and
self.x + self.w > rect.x and
self.y + self.h > rect.y
)
def collidelist(self, others):
for n, other in enumerate(others):
if self.colliderect(other):
return n
else:
return -1
def collidelistall(self, others):
return [n for n, other in enumerate(others) if self.colliderect(other)]
def collidedict(self, dict, use_values=True):
for k, v in dict.items():
if self.colliderect(v if use_values else k):
return k, v
def collidedictall(self, dict, use_values=True):
return [(k, v) for (k, v) in dict.items() if self.colliderect(v if use_values else k)]
RECT_CLASSES = (pygame.rect.Rect, ZRect)
|