1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
"""Bindings for the Persistent Homology Algorithm Toolbox
PHAT is a tool for algebraic topology. It can be used via phat.py to compute
persistent (co)homology from boundary matrices, using various reduction
algorithms and column data representations.
Here is a simple example of usage.
We will build an ordered boundary matrix of this simplicial complex consisting of a single triangle::
3
|\\
| \\
| \\
| \\ 4
5| \\
| \\
| 6 \\
| \\
|________\\
0 2 1
Now the code::
import phat
# define a boundary matrix with the chosen internal representation
boundary_matrix = phat.boundary_matrix(representation = phat.representations.vector_vector)
# set the respective columns -- (dimension, boundary) pairs
boundary_matrix.columns = [ (0, []),
(0, []),
(1, [0,1]),
(0, []),
(1, [1,3]),
(1, [0,3]),
(2, [2,4,5])]
# or equivalently,
# boundary_matrix = phat.boundary_matrix(representation = ...,
# columns = ...)
# would combine the creation of the matrix and
# the assignment of the columns
# print some information of the boundary matrix:
print()
print("The boundary matrix has %d columns:" % len(boundary_matrix.columns))
for col in boundary_matrix.columns:
s = "Column %d represents a cell of dimension %d." % (col.index, col.dimension)
if (col.boundary):
s = s + " Its boundary consists of the cells " + " ".join([str(c) for c in col.boundary])
print(s)
print("Overall, the boundary matrix has %d entries." % len(boundary_matrix))
pairs = boundary_matrix.compute_persistence_pairs()
pairs.sort()
print()
print("There are %d persistence pairs: " % len(pairs))
for pair in pairs:
print("Birth: %d, Death: %d" % pair)
Please see https://bitbucket.org/phat-code/phat/python for more information.
"""
import _phat
import enum
from _phat import persistence_pairs
# The public API for the module
__all__ = ['boundary_matrix',
'persistence_pairs',
'representations',
'reductions']
class representations(enum.Enum):
"""Available representations for internal storage of columns in
a `boundary_matrix`
"""
bit_tree_pivot_column = 1
sparse_pivot_column = 2
full_pivot_column = 3
vector_vector = 4
vector_heap = 5
vector_set = 6
vector_list = 7
class reductions(enum.Enum):
"""Available reduction algorithms"""
twist_reduction = 1
chunk_reduction = 2
standard_reduction = 3
row_reduction = 4
spectral_sequence_reduction = 5
class column(object):
"""A view on one column of data in a boundary matrix"""
def __init__(self, matrix, index):
"""INTERNAL. Columns are created automatically by boundary matrices.
There is no need to construct them directly"""
self._matrix = matrix
self._index = index
@property
def index(self):
"""The 0-based index of this column in its boundary matrix"""
return self._index
@property
def dimension(self):
"""The dimension of the column (0 = point, 1 = line, 2 = triangle, etc.)"""
return self._matrix._matrix.get_dim(self._index)
@dimension.setter
def dimension(self, value):
self._matrix._matrix.set_dim(self._index, value)
@property
def boundary(self):
"""The boundary values in this column, i.e. the other columns that this column is bounded by"""
return self._matrix._matrix.get_col(self._index)
@boundary.setter
def boundary(self, values):
self._matrix._matrix.set_col(self._index, values)
def __str__(self):
return "(%d, %s)" % (self.dimension, self.boundary)
class boundary_matrix(object):
"""Boundary matrices that store the shape information of a cell complex.
"""
def __init__(self, representation=representations.bit_tree_pivot_column, source=None, columns=None):
"""
The boundary matrix will use the specified implementation for storing its
column data. If the `source` parameter is specified, it will be assumed to
be another boundary matrix, whose data should be copied into the new
matrix.
Parameters
----------
representation : phat.representation, optional
The type of column storage to use in the requested boundary matrix.
source : phat.boundary_matrix, optional
If provided, creates the requested matrix as a copy of the data and dimensions
in `source`.
columns : column list, or list of (dimension, boundary) tuples, optional
If provided, loads these columns into the new boundary matrix. Note that
columns will be loaded in the order given, not according to their ``index`` properties.
Returns
-------
matrix : boundary_matrix
"""
self._representation = representation
if source:
self._matrix = _convert(source, representation)
else:
self._matrix = self.__matrix_for_representation(representation)()
if columns:
self.columns = columns
@property
def columns(self):
"""A collection of column objects"""
return [column(self, i) for i in range(self._matrix.get_num_cols())]
@columns.setter
def columns(self, columns):
for col in columns:
if not (isinstance(col, column) or isinstance(col, tuple)):
raise TypeError("All columns must be column objects, or (dimension, values) tuples")
if len(columns) != len(self.dimensions):
self._matrix.set_dims([0] * len(columns))
for i, col in enumerate(columns):
if isinstance(col, column):
self._matrix.set_dim(i, col.dimension)
self._matrix.set_col(i, col.boundary)
else:
dimension, values = col
self._matrix.set_dim(i, dimension)
self._matrix.set_col(i, sorted(values))
@property
def dimensions(self):
"""A collection of dimensions, equivalent to [c.dimension for c in self.columns]"""
return [self._matrix.get_dim(i) for i in range(self._matrix.get_num_cols())]
@dimensions.setter
def dimensions(self, dimensions):
self._matrix.set_dims(dimensions)
def __matrix_for_representation(self, representation):
short_name = _short_name(representation.name)
return getattr(_phat, "boundary_matrix_" + short_name)
def __eq__(self, other):
return self._matrix == other._matrix
# Note Python 2.7 needs BOTH __eq__ and __ne__ otherwise you get things that
# are both equal and not equal
def __ne__(self, other):
return self._matrix != other._matrix
def __len__(self):
return self._matrix.get_num_entries()
# Pickle support
def __getstate__(self):
(dimensions, columns) = self._matrix.get_vector_vector()
return (self._representation, dimensions, columns)
# Pickle support
def __setstate__(self, state):
presentation, dimensions, columns = state
self._representation = representation
self._matrix = self.__matrix_for_representation(representation)
self._matrix.set_vector_vector(dimensions, columns)
def load(self, file_name, mode='b'):
"""Load this boundary matrix from a file
Parameters
----------
file_name : string
The file name to load
mode : string, optional (defaults to 'b')
The mode ('b' for binary, 't' for text) to use for working with the file
Returns
-------
success : bool
"""
if mode == 'b':
return self._matrix.load_binary(file_name)
elif mode == 't':
return self._matrix.load_ascii(file_name)
else:
raise ValueError("Only 'b' - binary and 't' - text modes are supported")
def save(self, file_name, mode='b'):
"""Save this boundary matrix to a file
Parameters
----------
file_name : string
The file name to load
mode : string, optional (defaults to 'b')
The mode ('b' for binary, 't' for text) to use for working with the file
Returns
-------
success : bool
"""
if mode == 'b':
return self._matrix.save_binary(file_name)
elif mode == 't':
return self._matrix.save_ascii(file_name)
else:
raise ValueError("Only 'b' - binary and 't' - text modes are supported")
def compute_persistence_pairs(self,
reduction=reductions.twist_reduction):
"""Computes persistence pairs (birth, death) for the given boundary matrix."""
representation_short_name = _short_name(self._representation.name)
algo_name = reduction.name
algo_short_name = _short_name(algo_name)
# Look up an implementation that matches the requested characteristics
# in the _phat module
function = getattr(_phat, "compute_persistence_pairs_" + representation_short_name + "_" + algo_short_name)
return function(self._matrix)
def compute_persistence_pairs_dualized(self,
reduction=reductions.twist_reduction):
"""Computes persistence pairs (birth, death) from the dualized form of the given boundary matrix."""
representation_short_name = _short_name(self._representation.name)
algo_name = reduction.name
algo_short_name = _short_name(algo_name)
# Look up an implementation that matches the requested characteristics
# in the _phat module
function = getattr(_phat,
"compute_persistence_pairs_dualized_" + representation_short_name + "_" + algo_short_name)
return function(self._matrix)
def convert(self, representation):
"""Copy this matrix to another with a different representation"""
return boundary_matrix(representation, self)
def _short_name(name):
"""An internal API that takes leading characters from words
For instance, 'bit_tree_pivot_column' becomes 'btpc'
"""
return "".join([n[0] for n in name.split("_")])
def _convert(source, to_representation):
"""Internal - function to convert from one `boundary_matrix` implementation to another"""
class_name = source._representation.name
source_rep_short_name = _short_name(class_name)
to_rep_short_name = _short_name(to_representation.name)
function = getattr(_phat, "convert_%s_to_%s" % (source_rep_short_name, to_rep_short_name))
return function(source._matrix)
|