1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
(dynamic_structure_factor)=
# Dynamic structure factor
From Eq. (3.120) in the book "Thermal of Neutron Scattering", coherent
one-phonon dynamic structure factor is given as
```{math}
S(\mathbf{Q}, \nu, \omega)^{+1\text{ph}} =
\frac{k'}{k} \frac{N}{\hbar}
\sum_\mathbf{q} |F(\mathbf{Q}, -\mathbf{q}\nu)|^2
(n_{\mathbf{q}\nu} + 1) \delta(\omega - \omega_{\mathbf{q}\nu})
\Delta(\mathbf{Q} - \mathbf{q}),
```
```{math}
S(\mathbf{Q}, \nu, \omega)^{-1\text{ph}} = \frac{k'}{k} \frac{N}{\hbar}
\sum_\mathbf{q} |F(\mathbf{Q}, \mathbf{q}\nu)|^2 n_{\mathbf{q}\nu}
\delta(\omega + \omega_{\mathbf{q}\nu}) \Delta(\mathbf{Q} + \mathbf{q}),
```
with
```{math}
F(\mathbf{Q}, \mathbf{q}'\nu) = \sum_j \sqrt{\frac{\hbar}{2 m_j
\omega_{\mathbf{q}'\nu}}} \bar{b}_j \exp\left[ -\frac{1}{2} \langle
|\mathbf{Q}\cdot\mathbf{u}(j0)|^2 \rangle \right]
e^{i(\mathbf{Q} + \mathbf{q}') \cdot \mathbf{r}_{j0}}
\mathbf{Q} \cdot\mathbf{e}(j, \mathbf{q}'\nu).
```
where {math}`\mathbf{Q}` is the scattering vector defined as
{math}`\mathbf{Q} = \mathbf{k} - \mathbf{k}'` with incident wave vector
{math}`\mathbf{k}` and final wavevector {math}`\mathbf{k}'`. Similarly,
{math}`\omega=1/\hbar (E-E')` where {math}`E` and {math}`E'` are the energies of
the incident and final particles. These follow the convention of the book
"Thermal of Neutron Scattering". In some other text books, their definitions
have opposite sign. {math}`\Delta(\mathbf{Q-q})` is defined so that
{math}`\Delta(\mathbf{Q-q})=1` with {math}`\mathbf{Q}-\mathbf{q}=\mathbf{G}` and
{math}`\Delta(\mathbf{Q-q})=0` with
{math}`\mathbf{Q}-\mathbf{q} \neq \mathbf{G}` where {math}`\mathbf{G}` is any
reciprocal lattice vector. Other variables are refered to {ref}`formulations`
page. Note that the phase convention of the dynamical matrix given
{ref}`here <dynacmial_matrix_theory>` is used. This changes the representation
of the phase factor in {math}`F(\mathbf{Q}, \mathbf{q}\nu)` from that given in
the book "Thermal of Neutron Scattering", but the additional term
{math}`\exp(i\mathbf{q}\cdot\mathbf{r}_{j0})` comes from the different phase
convention of the dynamical matrix or equivalently the eigenvector. For
inelastic neutron scattering, {math}`\bar{b}_j` is the average scattering length
over isotopes and spins. For inelastic X-ray scattering, {math}`\bar{b}_j` is
replaced by atomic form factor {math}`f_j(\mathbf{Q})` and {math}`k'/k \sim 1`.
Currently only {math}`S(\mathbf{Q}, \nu, \omega)^{+1\text{ph}}` is calcualted
with setting {math}`N k'/k = 1` and the physical unit is
{math}`\text{m}^2/\text{J}` when {math}`\bar{b}_j` is given in Angstrom.
## Usage
Currently this feature is usable only from API. The following example runs with
the input files in `example/NaCl`.
```python
import numpy as np
import phonopy
from phonopy.phonon.degeneracy import degenerate_sets
from phonopy.spectrum.dynamic_structure_factor import atomic_form_factor_WK1995
from phonopy.physical_units import get_physical_units
def get_AFF_func(f_params):
def func(symbol, s):
return atomic_form_factor_WK1995(s, f_params[symbol])
return func
def run(
phonon, Qpoints, temperature, atomic_form_factor_func=None, scattering_lengths=None
):
# Transformation to the Q-points in reciprocal primitive basis vectors
Q_prim = np.dot(Qpoints, phonon.primitive_matrix)
# Q_prim must be passed to the phonopy dynamical structure factor code.
phonon.run_dynamic_structure_factor(
Q_prim,
temperature,
atomic_form_factor_func=atomic_form_factor_func,
scattering_lengths=scattering_lengths,
freq_min=1e-3,
)
dsf = phonon.dynamic_structure_factor
q_cartesian = np.dot(dsf.qpoints, np.linalg.inv(phonon.primitive.cell).T)
distances = np.sqrt((q_cartesian ** 2).sum(axis=1))
print("# [1] Distance from Gamma point,")
print("# [2-4] Q-points in cubic reciprocal space, ")
print("# [5-8] 4 band frequencies in meV (becaues of degeneracy), ")
print("# [9-12] 4 dynamic structure factors.")
print("# For degenerate bands, dynamic structure factors are summed.")
print("")
# Use as iterator
for Q, d, f, S in zip(
Qpoints, distances, dsf.frequencies, dsf.dynamic_structure_factors
):
bi_sets = degenerate_sets(f) # to treat for band degeneracy
text = "%f " % d
text += "%f %f %f " % tuple(Q)
text += " ".join(
["%f" % (f[bi].sum() * get_physical_units().THzToEv * 1000 / len(bi)) for bi in bi_sets]
)
text += " "
text += " ".join(["%f" % (S[bi].sum()) for bi in bi_sets])
print(text)
if __name__ == "__main__":
phonon = phonopy.load("phonopy_disp.yaml")
# Q-points in reduced coordinates wrt cubic reciprocal space
Qpoints = [
[2.970000, -2.970000, 2.970000],
[2.950000, 2.950000, -2.950000],
[2.930000, -2.930000, 2.930000],
[2.905000, -2.905000, 2.905000],
[2.895000, -2.895000, 2.895000],
[2.880000, -2.880000, 2.880000],
[2.850000, -2.850000, 2.850000],
[2.810000, -2.810000, 2.810000],
[2.735000, -2.735000, 2.735000],
[2.660000, -2.660000, 2.660000],
[2.580000, -2.580000, 2.580000],
[2.500000, -2.500000, 2.500000],
]
# Mesh sampling phonon calculation is needed for Debye-Waller factor.
# This must be done with is_mesh_symmetry=False and with_eigenvectors=True.
mesh = [11, 11, 11]
phonon.run_mesh(mesh, is_mesh_symmetry=False, with_eigenvectors=True)
temperature = 300
IXS = True
if IXS:
# For IXS, atomic form factor is needed and given as a function as
# a parameter.
# D. Waasmaier and A. Kirfel, Acta Cryst. A51, 416 (1995)
# f(s) = \sum_i a_i \exp((-b_i s^2) + c
# s = |k' - k|/2 = |Q|/2 is in angstron^-1, where k, k', Q are given
# without 2pi.
# a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, c
f_params = {
"Na": [
3.148690,
2.594987,
4.073989,
6.046925,
0.767888,
0.070139,
0.995612,
14.1226457,
0.968249,
0.217037,
0.045300,
], # 1+
"Cl": [
1.061802,
0.144727,
7.139886,
1.171795,
6.524271,
19.467656,
2.355626,
60.320301,
35.829404,
0.000436,
-34.916604,
],
} # 1-
AFF_func = get_AFF_func(f_params)
run(phonon, Qpoints, temperature, atomic_form_factor_func=AFF_func)
else:
# For INS, scattering length has to be given.
# The following values is obtained at (Coh b)
# https://www.nist.gov/ncnr/neutron-scattering-lengths-list
run(phonon, Qpoints, temperature, scattering_lengths={"Na": 3.63, "Cl": 9.5770})
```
The output of the script is like below.
```
# [1] Distance from Gamma point,
# [2-4] Q-points in cubic reciprocal space,
# [5-8] 4 band frequencies in meV (becaues of degeneracy),
# [9-12] 4 dynamic structure factors.
# For degenerate bands, dynamic structure factors are summed.
0.009132 2.970000 -2.970000 2.970000 0.990754 1.650964 19.068021 30.556134 0.000000 989.100086 0.000000 61.862136
0.015219 2.950000 2.950000 -2.950000 1.649715 2.748809 19.026010 30.498821 0.000000 359.101167 0.000000 62.419653
0.021307 2.930000 -2.930000 2.930000 2.306414 3.842450 18.964586 30.414407 0.000000 184.887464 0.000000 63.060431
0.028917 2.905000 -2.905000 2.905000 3.122869 5.200999 18.863220 30.273465 0.000000 101.732633 0.000000 63.969683
0.031961 2.895000 -2.895000 2.895000 3.447777 5.741079 18.815865 30.206915 0.000000 83.809696 0.000000 64.363976
0.036526 2.880000 -2.880000 2.880000 3.933076 6.546928 18.738420 30.097099 0.000000 64.884831 0.000000 64.984545
0.045658 2.850000 -2.850000 2.850000 4.895250 8.140375 18.563906 29.845228 0.000000 42.801713 0.000000 66.313660
0.057833 2.810000 -2.810000 2.810000 6.157511 10.217162 18.300255 29.453883 0.000000 28.489244 0.000000 68.206188
0.080662 2.735000 -2.735000 2.735000 8.440395 13.901752 17.738201 28.593810 0.000000 18.900914 0.000000 71.718225
0.103491 2.660000 -2.660000 2.660000 10.558805 17.073109 17.174759 27.604416 0.000000 0.000000 19.251626 73.945633
0.127842 2.580000 -2.580000 2.580000 12.497501 16.203294 19.926554 26.474368 0.000000 0.000000 32.207405 69.110148
0.152193 2.500000 -2.500000 2.500000 13.534679 15.548262 21.156819 25.813428 0.000000 0.000000 78.865720 36.788580
```
|