1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
(formulations)=
# Formulations
## Second-order force constants
Potential energy of phonon system is represented as functions of atomic
positions:
```{math}
V[\mathbf{r}(j_1 l_1),\ldots,\mathbf{r}(j_n l_N)],
```
where {math}`\mathbf{r}(jl)` is the point of the {math}`j`-th atom in the
{math}`l`-th unit cell and {math}`n` and {math}`N` are the number of atoms in a
unit cell and the number of unit cells, respectively. A force and a second-order
force constant {math}`\Phi_{\alpha \beta}` are given by
```{math}
F_\alpha(jl) = -\frac{\partial V }{\partial r_\alpha(jl)}
```
and
```{math}
\Phi_{\alpha\beta}(jl, j'l') = \frac{\partial^2 V}{\partial r_\alpha(jl)
\partial r_\beta(j'l')} = -\frac{\partial F_\beta(j'l')}{\partial
r_\alpha(jl)},
```
respectively, where {math}`\alpha`, {math}`\beta`, ..., are the Cartesian
indices, {math}`j`, {math}`j'`, ..., are the indices of atoms in a unit cell,
and {math}`l`, {math}`l'`, ..., are the indices of unit cells. In the finite
displacement method, the equation for the force constants is approximated as
```{math}
\Phi_{\alpha\beta}(jl, j'l') \simeq -\frac{ F_\beta(j'l';\Delta
r_\alpha{(jl)}) - F_\beta(j'l')} {\Delta r_\alpha(jl)},
```
where {math}`F_\beta(j'l'; \Delta r_\alpha{(jl)})` are the forces on atoms with
a finite displacement {math}`\Delta r_\alpha{(jl)}` and usually
{math}`F_\beta(j'l') \equiv 0`.
(force_constants_solver_theory)=
## Modified Parlinski-Li-Kawazoe method
The following is a modified and simplified version of the Parlinski-Li-Kawazoe
method, which is just a numerical fitting approach to obtain force constants
from forces and displacements.
The last equation above is represented by matrices as
```{math}
\mathbf{F} = - \mathbf{U} \mathbf{P},
```
where {math}`\mathbf{F}`, {math}`\mathbf{P}`, and {math}`\mathbf{U}` for a pair
of atoms, e.g. {math}`\{jl, j'l'\}`, are given by
```{math}
\mathbf{F} = \begin{pmatrix} F_{x} & F_{y} & F_{z} \end{pmatrix},
```
```{math}
\mathbf{P} = \begin{pmatrix} \Phi_{xx} & \Phi_{xy} & \Phi_{xz} \\
\Phi_{yx} & \Phi_{yy} & \Phi_{yz} \\ \Phi_{zx} & \Phi_{zy} & \Phi_{zz}
\end{pmatrix},
```
```{math}
\mathbf{U} = \begin{pmatrix} \Delta r_{x} & \Delta r_{y} & \Delta r_{z} \\
\end{pmatrix}.
```
The matrix equation is expanded for number of forces and displacements as
follows:
```{math}
\begin{pmatrix} \mathbf{F}_1 \\ \mathbf{F}_2 \\ \vdots \end{pmatrix} = -
\begin{pmatrix} \mathbf{U}_1 \\ \mathbf{U}_2 \\ \vdots \end{pmatrix}
\mathbf{P}.
```
With sufficient number of atomic displacements, this may be solved by pseudo
inverse such as
```{math}
\mathbf{P} = - \begin{pmatrix} \mathbf{U}_1 \\ \mathbf{U}_2 \\ \vdots
\end{pmatrix}^{+} \begin{pmatrix} \mathbf{F}_1 \\ \mathbf{F}_2 \\ \vdots
\end{pmatrix}.
```
Required number of atomic displacements to solve the simultaneous equations may
be reduced using site-point symmetries. The matrix equation can be written using
a symmetry operation as
```{math}
\hat{R}(\mathbf{F}) = -\hat{R}(\mathbf{U})\mathbf{P},
```
where {math}`\hat{R}` is the site symmetry operation centring at
{math}`\mathbf{r}(jl)`. {math}`\hat{R}(\mathbf{F})` and
{math}`\hat{R}(\mathbf{U})` are defined as
{math}`\mathbf{RF}(\hat{R^{-1}}(j'l'))` and {math}`\mathbf{RU}`, respectively,
where {math}`\mathbf{R}` is the matrix representation of the rotation operation.
The combined simultaneous equations are built such as
```{math}
\begin{pmatrix} \mathbf{F}^{(1)}_1 \\ \mathbf{F}^{(2)}_1 \\ \vdots \\
\mathbf{F}^{(1)}_2 \\ \mathbf{F}^{(2)}_2 \\ \vdots \end{pmatrix} = -
\begin{pmatrix} \mathbf{U}^{(1)}_1 \\ \vdots \\ \mathbf{U}^{(2)}_1 \\
\mathbf{U}^{(1)}_2 \\ \mathbf{U}^{(2)}_2 \\ \vdots \end{pmatrix} \mathbf{P}.
```
where the superscript with parenthesis gives the index of site-symmetry
operations. This is solved by pseudo inverse.
(dynacmial_matrix_theory)=
## Dynamical matrix
In phonopy, a phase convention of dynamical matrix is used as follows:
```{math}
:label: eq_dynmat
D_{\alpha\beta}(jj',\mathbf{q}) = \frac{1}{\sqrt{m_j m_{j'}}} \sum_{l'}
\Phi_{\alpha\beta}(j0, j'l')
\exp(i\mathbf{q}\cdot[\mathbf{r}(j'l')-\mathbf{r}(j0)]),
```
where {math}`m` is the atomic mass and {math}`\mathbf{q}` is the wave vector. An
equation of motion is written as
```{math}
\sum_{j'\beta} D_{\alpha\beta}(jj',\mathbf{q}) e_\beta(j', \mathbf{q}\nu) =
[ \omega(\mathbf{q}\nu) ]^2 e_\alpha(j, \mathbf{q}\nu).
```
where the eigenvector of the band index {math}`\nu` at {math}`\mathbf{q}` is
obtained by the diagonalization of {math}`\mathbf{D}(\mathbf{q})`:
```{math}
\sum_{j \alpha j' \beta}e_\alpha(j',\mathbf{q}\nu)^*
D_{\alpha\beta}(jj',\mathbf{q}) e_\beta(j',\mathbf{q}\nu') =
[\omega(\mathbf{q}\nu)]^2 \delta_{\nu\nu'}.
```
The atomic displacements {math}`\mathbf{u}` are given as
```{math}
u_\alpha(jl,t) = \left(\frac{\hbar}{2Nm_j}\right)^{\frac{1}{2}}
\sum_{\mathbf{q},\nu}\left[\omega(\mathbf{q}\nu)\right]^{-\frac{1}{2}}
\left[\hat{a}(\mathbf{q}\nu)\exp(-i\omega(\mathbf{q}\nu)t)+
\hat{a}^\dagger(\mathbf{-q}\nu)\exp({i\omega(\mathbf{q}\nu)}t)\right]
\exp({i\mathbf{q}\cdot\mathbf{r}(jl)}) e_\alpha(j,\mathbf{q}\nu),
```
where {math}`\hat{a}^\dagger` and {math}`\hat{a}` are the creation and
annihilation operators of phonon, {math}`\hbar` is the reduced Planck constant,
and {math}`t` is the time.
(non_analytical_term_correction_theory)=
## Non-analytical term correction
To treat long range interaction of macroscopic electric field induced by
polarization of collective ionic motions near the {math}`\Gamma`-point,
non-analytical term is added to dynamical matrix ({ref}`reference_NAC`). At
{math}`\mathbf{q}\to\mathbf{0}`, the dynamical matrix with non-analytical term
is given by,
```{math}
D_{\alpha\beta}(jj',\mathbf{q}\to \mathbf{0}) =
D_{\alpha\beta}(jj',\mathbf{q}=\mathbf{0}) + \frac{1}{\sqrt{m_j m_{j'}}}
\frac{4\pi}{\Omega_0}
\frac{\left[\sum_{\gamma}q_{\gamma}Z^{*}_{j,\gamma\alpha}\right]
\left[\sum_{\gamma'}q_{\gamma'}Z^{*}_{j',\gamma'\beta}\right]}
{\sum_{\alpha\beta}q_{\alpha}\epsilon_{\alpha\beta}^{\infty} q_{\beta}}.
```
where {math}`\Omega_0` is the unit cell volume. See more details about the
physical units at {ref}`physical_unit_conversion`. Phonon frequencies at general
**q**-points with long-range dipole-dipole interaction are calculated by the
method of Gonze _et al._ ({ref}`reference_dp_dp_NAC`).
(thermal_properties_expressions)=
## Thermodynamic properties
### Phonon number
```{math}
n = \frac{1}{\exp(\hbar\omega(\mathbf{q}\nu)/k_\mathrm{B} T)-1}
```
### Harmonic phonon energy
```{math}
E = \sum_{\mathbf{q}\nu}\hbar\omega(\mathbf{q}\nu)\left[\frac{1}{2} +
\frac{1}{\exp(\hbar\omega(\mathbf{q}\nu)/k_\mathrm{B} T)-1}\right]
```
### Constant volume heat capacity
```{math}
C_V &= \left(\frac{\partial E}{\partial T} \right)_V \\
&= \sum_{\mathbf{q}\nu} k_\mathrm{B}
\left(\frac{\hbar\omega(\mathbf{q}\nu)}{k_\mathrm{B} T} \right)^2
\frac{\exp(\hbar\omega(\mathbf{q}\nu)/k_\mathrm{B}
T)}{[\exp(\hbar\omega(\mathbf{q}\nu)/k_\mathrm{B} T)-1]^2}
```
### Partition function
```{math}
Z = \exp(-\varphi/k_\mathrm{B} T) \prod_{\mathbf{q}\nu}
\frac{\exp(-\hbar\omega(\mathbf{q}\nu)/2k_\mathrm{B}
T)}{1-\exp(-\hbar\omega(\mathbf{q}\nu)/k_\mathrm{B} T)}
```
### Helmholtz free energy
```{math}
F &= -k_\mathrm{B} T \ln Z \\
&= \varphi + \frac{1}{2} \sum_{\mathbf{q}\nu}
\hbar\omega(\mathbf{q}\nu) + k_\mathrm{B} T \sum_{\mathbf{q}\nu} \ln
\bigl[1 -\exp(-\hbar\omega(\mathbf{q}\nu)/k_\mathrm{B} T) \bigr]
```
### Entropy
```{math}
S &= -\frac{\partial F}{\partial T} \\ &= \frac{1}{2T}
\sum_{\mathbf{q}\nu} \hbar\omega(\mathbf{q}\nu)
\coth(\hbar\omega(\mathbf{q}\nu)/2k_\mathrm{B}T)-k_\mathrm{B}
\sum_{\mathbf{q}\nu}
\ln\left[2\sinh(\hbar\omega(\mathbf{q}\nu)/2k_\mathrm{B}T)\right]
```
(thermal_displacement)=
## Thermal displacement
### Mean square displacement
From Eq. (10.71) in the book "Thermodynamics of Crystal", atomic displacement,
**u**, is written by
```{math}
u^\alpha(jl,t) = \left(\frac{\hbar}{2Nm_j}\right)^{\frac{1}{2}}
\sum_{\mathbf{q},\nu}\left[\omega_\nu(\mathbf{q})\right]^{-\frac{1}{2}}
\left[\hat{a}_\nu(\mathbf{q})\exp(-i\omega_\nu(\mathbf{q})t)+
\hat{a}^\dagger_\nu(\mathbf{-q})\exp({i\omega_\nu(\mathbf{q})}t)\right]
\exp({i\mathbf{q}\cdot\mathbf{r}(jl)})
e^\alpha_\nu(j,\mathbf{q})
```
where _j_ and _l_ are the labels for the _j_-th atomic position in the _l_-th
unit cell, _t_ is the time, {math}`\alpha` is an axis (a Cartesian axis in the
default behavior of phonopy), _m_ is the atomic mass, _N_ is the number of the
unit cells, {math}`\mathbf{q}` is the wave vector, {math}`\nu` is the index of
phonon mode. _e_ is the polarization vector of the atom _jl_ and the band
{math}`\nu` at {math}`\mathbf{q}`. {math}`\mathbf{r}(jl)` is the atomic position
and {math}`\omega` is the phonon frequency. {math}`\hat{a}^\dagger` and
{math}`\hat{a}` are the creation and annihilation operators of phonon. The
expectation value of the squared atomic displacement is calculated as,
```{math}
\left\langle |u^\alpha(jl, t)|^2 \right\rangle = \frac{\hbar}{2Nm_j}
\sum_{\mathbf{q},\nu}\omega_\nu(\mathbf{q})^{-1}
(1+2n_\nu(\mathbf{q},T))|e^\alpha_\nu(j,\mathbf{q})|^2,
```
where {math}`n_\nu(\mathbf{q},T)` is the phonon population, which is give by,
```{math}
n_\nu(\mathbf{q},T) =
\frac{1}{\exp(\hbar\omega_\nu(\mathbf{q})/\mathrm{k_B}T)-1},
```
where _T_ is the temperature, and {math}`\mathrm{k_B}` is the Boltzmann
constant. The equation is calculated using the commutation relation of the
creation and annihilation operators and the expectation values of the
combination of the operations, e.g.,
```{math}
[ \hat{a}_\nu(\mathbf{q}), \hat{a}^\dagger_{\nu'}(\mathbf{q'}) ] &=
\delta(\mathbf{q}-\mathbf{q}')\delta_{\nu\nu'},\\ [ \hat{a}_\nu(\mathbf{q}),
\hat{a}_{\nu'}(\mathbf{q'}) ] &= 0,\\ [ \hat{a}^\dagger_\nu(\mathbf{q}),
\hat{a}^\dagger_{\nu'}(\mathbf{q'}) ] &= 0,\\
\langle|\hat{a}_\nu(\mathbf{q})\hat{a}_{\nu'}(\mathbf{q'})|\rangle &= 0,\\
\langle|\hat{a}^\dagger_\nu(\mathbf{q})\hat{a}^\dagger_{\nu'}(\mathbf{q'})|\rangle
&= 0.
```
(thermal_displacement_matrix)=
### Mean square displacement matrix
Mean square displacement matrix is defined as follows:
```{math}
\mathrm{U}_\text{cart}(j, T) = \frac{\hbar}{2Nm_j}
\sum_{\mathbf{q},\nu}\omega_\nu(\mathbf{q})^{-1} (1+2n_\nu(\mathbf{q},T))
\mathbf{e}_\nu(j,\mathbf{q}) \otimes \mathbf{e}^*_\nu(j,\mathbf{q}).
```
This is a symmetry matrix and diagonal elements are same as mean square
displacement calculated along Cartesian x, y, z directions.
### Projection to an arbitrary axis
In phonopy, eigenvectors are calculated in the Cartesian axes that are defined
in the input structure file. Mean square displacement along an arbitrary axis is
obtained projecting eigenvectors in the Cartesian axes as follows:
```{math}
\left\langle |u(jl, t)|^2 \right\rangle = \frac{\hbar}{2Nm_j}
\sum_{\mathbf{q},\nu}\omega_\nu(\mathbf{q})^{-1} (1+2n_\nu(\mathbf{q},T))|
\hat{\mathbf{n}}\cdot\mathbf{e}_\nu(j,\mathbf{q})|^2
```
where {math}`\hat{\mathbf{n}}` is an arbitrary unit direction.
### Mean square displacement matrix in cif format
According to the paper by Grosse-Kunstleve and Adams [J. Appl. Cryst., 35,
477-480 (2002)], mean square displacement matrix in the cif definition
(`aniso_U`), {math}`\mathrm{U}_\text{cif}`, is obtained by
```{math}
\mathrm{U}_\text{cif} = (\mathrm{AN})^{-1}\mathrm{U}_\text{cart}
(\mathrm{AN})^{-\mathrm{T}},
```
where {math}`\mathrm{A}` is the matrix to transform a point in fractional
coordinates to the Cartesian coordinates and {math}`\mathrm{N}` is the diagonal
matrix made of reciprocal basis vector lengths as follows:
```{math}
\mathrm{A} = \begin{pmatrix} a_x & b_x & c_x \\ a_y & b_y & c_y \\ a_z & b_z &
c_z \end{pmatrix}
```
and
```{math}
\mathrm{N} = \begin{pmatrix} a^* & 0 & 0 \\ 0 & b^* & 0 \\ 0 & 0 & c^*
\end{pmatrix}.
```
{math}`a^*`, {math}`b^*`, {math}`c^*` are defined without {math}`2\pi`.
(group_velocity)=
## Group velocity
### Method
Phonopy calculates group velocity of phonon as follows:
```{math}
\mathbf{v}_\mathrm{g}(\mathbf{q}\nu) = & \nabla_\mathbf{q} \omega(\mathbf{q}\nu) \\
=&\frac{\partial\omega(\mathbf{q}\nu)}{\partial \mathbf{q}} \\
=&\frac{1}{2\omega(\mathbf{q}\nu)}\frac{\partial[\omega(\mathbf{q}\nu)]^2}{\partial
\mathbf{q}} \\
=&\frac{1}{2\omega(\mathbf{q}\nu)}\left<\mathbf{e}(\mathbf{q}\nu)\biggl|
\frac{\partial D(\mathbf{q})} {\partial
\mathbf{q}}\biggl|\mathbf{e}(\mathbf{q}\nu)\right>,
```
where the meanings of the variables are found at {ref}`formulations`.
### Finite difference method
In the previous versions, group velocity was calculated using finite difference
method:
```{math}
\mathbf{v}_\mathrm{g}(\mathbf{q}\nu) =
\frac{1}{2\omega(\mathbf{q}\nu)}\left<\mathbf{e}(\mathbf{q}\nu)\biggl|
\frac{\partial D(\mathbf{q})} {\partial
\mathbf{q}}\biggl|\mathbf{e}(\mathbf{q}\nu)\right> \simeq
\frac{1}{2\omega(\mathbf{q}\nu)} \left<\mathbf{e}(\mathbf{q}\nu)\biggl|
\frac{\Delta D(\mathbf{q})} {\Delta
\mathbf{q}}\biggl|\mathbf{e}(\mathbf{q}\nu)\right>.
```
Group velocity calculation with the finite difference method is still able to be
activated using `GV_DELTA_Q` tag or `--gv_delta_q` option.
{math}`\Delta\mathbf{q} = (\Delta q_x, \Delta q_y, \Delta q_z)` is described in
Cartesian coordinated in reciprocal space. In the implementation, central
difference is employed, and {math}`+\Delta q_\alpha` and
{math}`-\Delta q_\alpha` are taken to calculate group velocity, where
{math}`\alpha` is the Cartesian index in reciprocal space.
{math}`\Delta q_\alpha` is specified in the unit of reciprocal space distance
by `--gv_delta_q` option or
`GV_DELTA_Q` tag.
(physical_unit_conversion)=
## Physical unit conversion
Phonopy calculates phonon frequencies based on input values from users. In the
default case, the physical units of distance, atomic mass, force, and force
constants are supposed to be {math}`\text{Angstrom}`, {math}`\text{AMU}`,
{math}`\text{eV/Angstrom}`, and {math}`\text{eV/Angstrom}^2`, respectively, and
the physical unit of the phonon frequency is converted to THz. This conversion
is made as follows:
Internally phonon frequency has the physical unit of
{math}`\sqrt{\text{eV/}(\text{Angstrom}^2\cdot \text{AMU})}` in angular
frequency. To convert this unit to THz (not angular frequency), the calculation
of `sqrt(EV/AMU)/Angstrom/(2*pi)/1e12` is made. `EV`, `AMU`, `Angstrom` are the
values to convert them to those in the SI base unit, i.e., to Joule, kg, and
metre, respectively. These values implemented in phonopy are found at
[a phonopy github page](https://github.com/phonopy/phonopy/blob/master/phonopy/units.py).
This unit conversion factor can be manually specified. See
{ref}`frequency_conversion_factor_tag`.
The unit conversion factor in the `BORN` file is multiplied with the second term
of the right hand side of the equation in
{ref}`non_analytical_term_correction_theory` where this equation is written in
atomic units ({ref}`Gonze and Lee, 1997 <reference_NAC>`). The physical unit of
the part of the equation corresponding to force constants:
```{math}
\frac{4\pi}{\Omega_0}
\frac{[\sum_{\gamma}q_{\gamma}Z^{*}_{j,\gamma\alpha}]
[\sum_{\gamma'}q_{\gamma'}Z^{*}_{j',\gamma'\beta}]}
{\sum_{\alpha\beta}q_{\alpha}\epsilon_{\alpha\beta}^{\infty} q_{\beta}}.
```
is {math}`[\text{hartree}/\text{bohr}^2]`. In the default case for the VASP
interface, internally {math}`\Omega_0` is given in {math}`\text{Angstrom}^3`,
while Born charges {math}`Z^{*}` have physical unit of charge ({math}`e_{0}`).
Normally, physical units of Born charges obtained in many calculators are atomic
ones. In atomic units Hartree energy is equal to
{math}`1 \text{Ha} = e_{0}^{2}/a_{0}` ({math}`a_{0}` is Bohr radius), therefore
the units of charge squared is
{math}`e_{0}^{2}=[\text{hartree}\cdot \text{bohr}]`. In case for the VASP in
order to convert the nonanalytical term, one has to convert units of energy (Ha
to eV) and units of distance (Bohr to Angstrom). In total, the necessary unit
conversion is
{math}`(\text{hartree} \rightarrow \text{eV}) \times (\text{bohr} \rightarrow \text{Angstrom})=14.4`.
In the default case of the Wien2k interface, the conversion factor is
{math}`(\text{hartree} \rightarrow \text{mRy})=2000`. For the other interfaces,
the conversion factors are similarly calculated following the unit systems
employed in phonopy ({ref}`calculator_interfaces`).
## Crystal structure
### Coordinates in direct and reciprocal spaces
As usual, in phonopy, the Born-von Karman boundary condition is assumed. Basis
vectors of a primitive lattice are defined in three column vectors
{math}`( \mathbf{a} \; \mathbf{b} \; \mathbf{c} )`. Coordinates of a point in
the direct space {math}`\mathbf{r}` is represented with respect to these basis
vectors. The direct lattice points are given by
{math}`i \mathbf{a} + j \mathbf{b} + k \mathbf{a}, \{i, j, k \in \mathbb{Z}\}`,
and the points for atoms in a unit cell
{math}`x \mathbf{a} + y \mathbf{b} + z \mathbf{a}, \{0 \le x, y, z < 1\}`. Basis
vectors of the reciprocal lattice may be given by three row vectors,
{math}`( \mathbf{a}^{*T} /\; \mathbf{b}^{*T} /\; \mathbf{c}^{*T} )`, but here
they are defined as three column vectors as
{math}`( \mathbf{a}^{*} \; \mathbf{b}^{*} \; \mathbf{c}^{*} )` with
```{math}
:label: eq_rec_basis_vectors
\mathbf{a}^{*} &= \frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot
(\mathbf{b} \times \mathbf{c})}, \\ \mathbf{b}^{*} &= \frac{\mathbf{c} \times
\mathbf{a}}{\mathbf{b} \cdot (\mathbf{c} \times \mathbf{a})}, \\ \mathbf{c}^{*}
&= \frac{\mathbf{a} \times \mathbf{b}}{\mathbf{c} \cdot (\mathbf{a} \times
\mathbf{b})}.
```
Coordinates of a point in the reciprocal space {math}`\mathbf{q}` is represented
with respect to these basis vectors, therefore
{math}`q_x \mathbf{a}^{*} + q_y \mathbf{b}^{*} + q_z \mathbf{c}^{*}`. The
reciprocal lattice points are given by
{math}`G_x\mathbf{a}^{*} + G_y \mathbf{b}^{*} + G_z \mathbf{c}^{*}, \{G_x, G_y, G_z \in \mathbb{Z}\}`.
Following these definition, phase factor should be represented as
{math}`\exp(2\pi i\mathbf{q}\cdot\mathbf{r})`, however in phonopy documentation,
{math}`2\pi` is implicitly included and not shown, i.e., it is represented like
{math}`\exp(i\mathbf{q}\cdot\mathbf{r})` (e.g., see Eq. {eq}`eq_dynmat`). In the
output of the reciprocal basis vectors, {math}`2\pi` is not included, e.g., in
`band.yaml`.
In phonopy, unless {ref}`primitive_axes_tag` (or `--pa` option) is specified,
basis vectors in direct space {math}`( \mathbf{a} \; \mathbf{b} \; \mathbf{c})`
are set from the input unit cell structure even if it is a supercell or a
conventional unit cell having centring, therefore the basis vectors in the
reciprocal space are given by Eq. {eq}`eq_rec_basis_vectors`. When using
{ref}`primitive_axes_tag`, {math}`( \mathbf{a} \; \mathbf{b} \; \mathbf{c})` are
set from those transformed by the transformation matrix {math}`M_\text{p}` as
written at {ref}`primitive_axes_tag`, therefore
{math}`( \mathbf{a}^{*} \; \mathbf{b}^{*} \; \mathbf{c}^{*} )` are given by
those calculated following Eq. {eq}`eq_rec_basis_vectors` with this
{math}`( \mathbf{a} \; \mathbf{b} \; \mathbf{c})`.
(definition_of_commensurate_points)=
### Commensurate points
In phonopy, so-called commensurate points mean the q-points whose waves are
confined in the supercell used in the phonon calculation.
To explain about the commensurate points, let basis vectors of a primitive cell
in direct space cell be the column vectors
{math}`(\mathbf{a}_\mathrm{p} \; \mathbf{b}_\mathrm{p} \; \mathbf{c}_\mathrm{p})`
and those of the supercell be
{math}`(\mathbf{a}_\mathrm{s} \; \mathbf{b}_\mathrm{s} \; \mathbf{c}_\mathrm{s})`.
The transformation of the basis vectors from the primitive cell to the supercell
is written as
```{math}
( \mathbf{a}_\mathrm{s} \; \mathbf{b}_\mathrm{s} \; \mathbf{c}_\mathrm{s} )
= ( \mathbf{a}_\mathrm{p} \; \mathbf{b}_\mathrm{p} \;
\mathbf{c}_\mathrm{p} ) \boldsymbol{P}.
```
{math}`\boldsymbol{P}` is given as a {math}`3\times 3` matrix and its elements
are all integers, which is a constraint we have. The resolution for q-points
being the commensurate points is determined by {math}`\boldsymbol{P}` since one
period of a wave has to be bound by any of lattice points inside the supercell.
Therefore the number of commensurate points becomes the same as the number of
the primitive cell that can be contained in the supercell, i.e.,
{math}`\det(\boldsymbol{P})`.
Then let the basis vectors in reciprocal space be the column vectors
{math}`(\mathbf{a}^*_\mathrm{p} \; \mathbf{b}^*_\mathrm{p} \; \mathbf{c}^*_\mathrm{p})`.
Note that often reciprocal vectors are deifned by row vectors, but column
vectors are chosen here to formulate. Formally we see the set of besis vectors
are {math}`3\times 3` matrices, we have the following relation:
```{math}
( \mathbf{a}^*_\mathrm{p} \;
\mathbf{b}^*_\mathrm{p} \; \mathbf{c}^*_\mathrm{p} ) = (
\mathbf{a}_\mathrm{p} \; \mathbf{b}_\mathrm{p} \;
\mathbf{c}_\mathrm{p} )^{-\mathbf{T}}.
```
Similarly for the supercell, we define a relation
```{math}
( \mathbf{a}^*_\mathrm{s} \;
\mathbf{b}^*_\mathrm{s} \; \mathbf{c}^*_\mathrm{s} ) = (
\mathbf{a}_\mathrm{s} \; \mathbf{b}_\mathrm{s} \;
\mathbf{c}_\mathrm{s} )^{-\mathbf{T}}.
```
Then
```{math}
( \mathbf{a}^*_\mathrm{s} \; \mathbf{b}^*_\mathrm{s} \;
\mathbf{c}^*_\mathrm{s} ) \boldsymbol{P}^{\mathrm{T}} = (
\mathbf{a}^*_\mathrm{p} \; \mathbf{b}^*_\mathrm{p} \;
\mathbf{c}^*_\mathrm{p} ).
```
To multiply an arbitrary q-point {math}`\mathbf{q}` on both sides
```{math}
( \mathbf{a}^*_\mathrm{s} \; \mathbf{b}^*_\mathrm{s} \;
\mathbf{c}^*_\mathrm{s} ) \boldsymbol{P}^{\mathrm{T}} \mathbf{q} = (
\mathbf{a}^*_\mathrm{p} \; \mathbf{b}^*_\mathrm{p} \;
\mathbf{c}^*_\mathrm{p} ) \mathbf{q},
```
we find the constraint of a q-point being one of the commensurate points is the
elements of {math}`\boldsymbol{P}^{\mathrm{T}} \mathbf{q}` to be integers.
|