1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
|
(phonopy_module)=
# Phonopy API for Python
## Three unit cells
In the `Phonopy` class, mainly three different unit cells are used, `unitcell`,
`supercell`, and `primitive`, which can be accessed with these attributes in the
instance. `unitcell` is the initial input crystal structure. From `unitcell`,
`supercell` is created by `supercell_matrix` ({ref}`variable_supercell_matrix`).
Then `primitive` is created from `supercell` with `supercell_matrix` and
`primitive_matrix` ({ref}`variable_primitive_matrix`).
Having the `supercell_matrix` ($\mathrm{M}_\mathrm{s}$) and the
`primitive matrix` ($\mathrm{M}_\mathrm{p}$), for example,
```{math}
\mathrm{M}_\mathrm{s} = \begin{pmatrix}
2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2
\end{pmatrix} \;\text{and}\;\;
\mathrm{M}_\mathrm{p} = \begin{pmatrix}
0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0
\end{pmatrix},
```
respectively, the basis vectors of `supercell` are built from those of
`unitcell` by
```{math}
( \mathbf{a}_\mathrm{s} \; \mathbf{b}_\mathrm{s} \; \mathbf{c}_\mathrm{s} ) = (
\mathbf{a}_\mathrm{u} \; \mathbf{b}_\mathrm{u} \; \mathbf{c}_\mathrm{u} )
\mathrm{M}_\mathrm{s}
```
and the basis vectors of `primitive` are built from those of `supercell` by
```{math}
( \mathbf{a}_\mathrm{p} \; \mathbf{b}_\mathrm{p} \; \mathbf{c}_\mathrm{p} ) = (
\mathbf{a}_\mathrm{s} \; \mathbf{b}_\mathrm{s} \; \mathbf{c}_\mathrm{s} )
\mathrm{M}_\mathrm{s}^{-1} \mathrm{M}_\mathrm{p}.
```
Once `supercell` and `primitive` are made, `unitcell` will not be used
basically.
## Import modules
After setting the phonopy python path, the phonopy module is imported by:
```python
from phonopy import Phonopy
```
Crystal structure is defined by the `PhonopyAtoms` class. The `PhonopyAtoms`
module is imported by:
```python
from phonopy.structure.atoms import PhonopyAtoms
```
The instance of `PhonopyAtoms` can be made by reading a crystal structure in a
variety of calculator formats found at {ref}`calculator_interfaces`.
```python
from phonopy.interface.calculator import read_crystal_structure
unitcell, _ = read_crystal_structure("POSCAR-unitcell", interface_mode='vasp')
```
For VASP format, the keyword argument of `interface_mode` can be omitted. For
QE,
```python
unitcell, optional_structure_info = read_crystal_structure("NaCl.in", interface_mode='qe')
```
Note that `read_crystal_structure` returns a tuple and the first element is the
`PhonopyAtoms` instance.
## Work flow
The work flow is schematically shown in {ref}`workflow`.
### Pre-process
The first step is to create a `Phonopy` object with at least two arguments, a
unit cell (`PhonopyAtoms` object, see {ref}`phonopy_Atoms`) and a supercell
matrix (3x3 array, see {ref}`variable_supercell_matrix`). In the following
example, a {math}`2\times 2\times 2` supercell is created. The displacements to
be introduced to the supercell are internally generated by the
`generate_displacements()` method with the `distance` keyword argument. The
supercells with displacements are obtained by
`get_supercells_with_displacements()` method as a list of `PhonopyAtoms`
objects.
```python
import numpy as np
from phonopy import Phonopy
from phonopy.structure.atoms import PhonopyAtoms
a = 5.404
unitcell = PhonopyAtoms(symbols=['Si'] * 8,
cell=(np.eye(3) * a),
scaled_positions=[[0, 0, 0],
[0, 0.5, 0.5],
[0.5, 0, 0.5],
[0.5, 0.5, 0],
[0.25, 0.25, 0.25],
[0.25, 0.75, 0.75],
[0.75, 0.25, 0.75],
[0.75, 0.75, 0.25]])
phonon = Phonopy(unitcell,
supercell_matrix=[[2, 0, 0], [0, 2, 0], [0, 0, 2]],
primitive_matrix=[[0, 0.5, 0.5],
[0.5, 0, 0.5],
[0.5, 0.5, 0]])
phonon.generate_displacements(distance=0.03)
supercells = phonon.supercells_with_displacements
```
In this example, the displacement distance is set to 0.03 (0.01 by default).
The units are determined by the `calculator` used (See {ref}`interfaces-physical-units`
for the complete list). This example uses the default `calculator` for the instance of
`Phonopy`—VASP—which uses Angstroms for distance.
The supercells with displacements are given as a list of `PhonopyAtoms`. See
{ref}`phonopy_read_write_structure` to write
those into files in a crystal structure format.
#### Calculators
If not using the default calculator (`"vasp"`), the `calculator` keyword argument
must also be set in your instance of `Phonopy` (e.g. `Phonopy(..., calculator="qe")`).
The range of supported calculators use different units internally. If not using VASP,
set `set_factor_by_calculator` to `True` for correct unit conversion. Some more
information on physical unit conversion is found at
{ref}`frequency_conversion_factor_tag`, {ref}`physical_unit_conversion`, and
{ref}`calculator_interfaces`.
#### Pre-processing Example
```python
import numpy as np
from phonopy import Phonopy
from phonopy.interface.calculator import (
read_crystal_structure,
write_crystal_structure,
)
calc = "qe" # Quantum Espresso
unitcell, optional_structure_info = read_crystal_structure("pw.in",
interface_mode=calc)
phonon = Phonopy(unitcell, supercell_matrix=np.eye(3), calculator=calc,
set_factor_by_calculator=True)
phonon.generate_displacements(distance=0.03)
supercells = phonon.supercells_with_displacements
for i, supercell in enumerate(supercells):
write_crystal_structure(
f"supercell-{i}.in",
supercell,
interface_mode=calc,
optional_structure_info=optional_structure_info,
)
phonon.save("phonopy_disp.yaml")
```
### Post process
Forces on atoms are supposed to be obtained by running force calculator (e.g.
VASP) with each supercell with a displacement. Then the forces in the
calculation outputs have to be collected by users. However output parsers for
selected calculators are found under `phonopy.interface`, which may be useful.
The forces have to be stored in a specific structure: a numpy array (or nested
list) as follows:
```python
[ [ [ f_1x, f_1y, f_1z ], [ f_2x, f_2y, f_2z ], ... ], # first supercell
[ [ f_1x, f_1y, f_1z ], [ f_2x, f_2y, f_2z ], ... ], # second supercell
... ]
```
This array (`sets_of_forces`) is set to the `Phonopy` object by:
```python
phonon.forces = sets_of_forces
```
This is the case when the set of atomic displacements is generated internally.
The information of displacements is already stored in the `Phonopy` object. But
if you want to input the forces together with the corresponding custom set of
displacements, `displacement_dataset` has to be prepared as a python dictionary
as follows:
```python
displacement_dataset =
{'natom': number_of_atoms_in_supercell,
'first_atoms': [
{'number': atom index of displaced atom (starting with 0),
'displacement': displacement in Cartesian coordinates,
'forces': forces on atoms in supercell},
{...}, ...]}
```
This is set to the `Phonopy` object by:
```python
phonon.dataset = displacement_dataset
```
From the set of displacements and forces, force constants internally with
calculated supercell sets of forces by
```python
phonon.produce_force_constants()
```
If you have force constants and don't need to create force constants from forces
and displacements, simply set your force constants by
```python
phonon.force_constants = force_constants
```
The force constants matrix is given in 4 dimensional array (better to be a numpy
array of `dtype='double', order='C'`). The shape of force constants matrix is
`(N, N, 3, 3)` where `N` is the number of atoms in the supercell and 3 gives
Cartesian axes. The compact force constants matrix with `(Np, N, 3, 3)` where
`Np` is the number of atoms in the primitive cell is also supported. See the
details at {ref}`file_force_constants`.
## Phonon calculation
(phonopy_save_parameters)=
### Save parameters (`phonopy.save`)
Basic information and parameters needed for phonon calculation are saved into a
file by `phonopy.save`.
```python
phonon.save()
```
Force sets, displacements, Born effective charges, and dielectric constant
are written in the default behaviour.
The default file name is `phonopy_params.yaml`, but this can be changed with the
`filename` keword argument, which may be necessary if using certain CUI commands
that expect a particular filename
The force constants can be written as follows:
```python
phonon.save(settings={'force_constants': True})
```
### Band structure
Set band paths (`run_band_structure()`) and get the results
(`get_band_structure_dict()`).
A dictionary with `qpoints`, `distances`, `frequencies`, `eigenvectors`,
`group_velocities` is returned by `get_band_structure_dict()`. Eigenvectors can
be obtained when `with_eigenvectors=True` at `run_band_structure()`. See the
details at docstring of `Phonopy.get_band_structure_dict`. Phonon frequency is
sqrt(eigenvalue). A negative eigenvalue has to correspond to the imaginary
frequency, but for the plotting, it is set as the negative value in the above
example. In addition, you need to multiply by your unit conversion factor. In
the case of VASP to transform to THz, the factor is 15.633302.
In `example/NaCl`, the phonopy is executed from python script, e.g.,
```python
import phonopy
from phonopy.phonon.band_structure import get_band_qpoints_and_path_connections
path = [[[0, 0, 0], [0.5, 0, 0.5], [0.625, 0.25, 0.625]],
[[0.375, 0.375, 0.75], [0, 0, 0], [0.5, 0.5, 0.5], [0.5, 0.25, 0.75]]]
labels = ["$\\Gamma$", "X", "U", "K", "$\\Gamma$", "L", "W"]
qpoints, connections = get_band_qpoints_and_path_connections(path, npoints=51)
phonon = phonopy.load("phonopy_disp.yaml")
phonon.run_band_structure(qpoints, path_connections=connections, labels=labels)
phonon.plot_band_structure().show()
# To plot DOS next to band structure
phonon.run_mesh([20, 20, 20])
phonon.run_total_dos()
phonon.plot_band_structure_and_dos().show()
# To plot PDOS next to band structure
phonon.run_mesh([20, 20, 20], with_eigenvectors=True, is_mesh_symmetry=False)
phonon.run_projected_dos()
phonon.plot_band_structure_and_dos(pdos_indices=[[0], [1]]).show()
```
`path_connections` and `labels` are optional unless nice looking
plotting is needed. To obtain eigenvectors, the corresponding
keyword argument must be set:
```python
phonon.run_band_structure(bands, with_eigenvectors=True)
```
To obtain group velocities:
```python
phonon.run_band_structure(bands, with_group_velocities=True)
```
Automatic selection of band paths using
[SeeK-path](https://seekpath.readthedocs.io/en/latest/) is invoked by
```python
phonon.auto_band_structure()
```
and to plot
```python
phonon.auto_band_structure(plot=True).show()
```
To use this method, `seekpath` python module is needed.
### Mesh sampling
Set sampling mesh (`set_mesh`) in reciprocal space. The irreducible _q_-points
and corresponding _q_-point weights, eigenvalues, and eigenvectors are obtained
by `get_mesh_dict()`. `mesh` gives the sampling mesh with Monkhorst-Pack scheme.
The keyword `shift` gives the fractional mesh shift with respect to the
neighboring grid points.
```python
mesh = [20, 20, 20]
phonon.run_mesh(mesh)
mesh_dict = phonon.get_mesh_dict()
qpoints = mesh_dict['qpoints']
weights = mesh_dict['weights']
frequencies = mesh_dict['frequencies']
eigenvectors = mesh_dict['eigenvectors']
group_velocities = mesh_dict['group_velocities']
```
To obtain eigenvectors, the corresponding keyword argument must be set:
```python
phonon.run_mesh([20, 20, 20], with_eigenvectors=True)
```
and for group velocities:
```python
phonon.run_mesh([20, 20, 20], with_group_velocities=True)
```
The first argument of `run_mesh()` can be a float value, which is a length
measure as explained at {ref}`mesh_tag`, for example:
```python
phonon.run_mesh(100.0)
```
### DOS and PDOS
Before starting mesh sampling has to be finished. Then set parameters
(`run_total_dos()` or `run_projected_dos()`) and write the results into files
(`write_total_dos()` and `write_projected_dos()`). In the case of PDOS, the
eigenvectors have to be calculated in the mesh sampling. To get the results
`get_total_dos_dict()` and `get_projected_dos_dict()` can be used.
To plot total DOS,
```python
phonon.run_mesh([20, 20, 20]) phonon.run_total_dos()
phonon.plot_total_dos().show()
```
and projected DOS
```python
phonon.run_mesh([20, 20, 20], with_eigenvectors=True, is_mesh_symmetry=False)
phonon.run_projected_dos()
phonon.plot_projected_dos().show()
```
Convenient shortcuts exist as follows:
```python
phonon.auto_total_dos(plot=True).show()
```
and
```python
phonon.auto_projected_dos(plot=True).show()
```
### Thermal properties
Before starting the thermal property calculation, the mesh sampling calculation
has to be done in the **THz unit**. The unit conversion factor for phonon
frequency is set in the pre-process of Phonopy with the `factor` keyword.
Calculation range of temperature is set by the parameters
`run_thermal_properties`. Helmholtz free energy, entropy, heat capacity at
constant volume at temperatures are obtained by `get_thermal_properties_dict`,
where the results are given as a dictionary of temperatures, Helmholtz free
energy, entropy, and heat capacity with keys `temperatures`, `free_energy`,
`entropy`, and `heat_capacity`, respectively.
```python
phonon.run_mesh([20, 20, 20])
phonon.run_thermal_properties(t_step=10,
t_max=1000,
t_min=0)
tp_dict = phonon.get_thermal_properties_dict()
temperatures = tp_dict['temperatures']
free_energy = tp_dict['free_energy']
entropy = tp_dict['entropy']
heat_capacity = tp_dict['heat_capacity']
for t, F, S, cv in zip(temperatures, free_energy, entropy, heat_capacity):
print(("%12.3f " + "%15.7f" * 3) % ( t, F, S, cv ))
phonon.plot_thermal_properties().show()
```
### Non-analytical term correction
To apply non-analytical term correction, Born effective charge tensors for all
atoms in **primitive** cell, dielectric constant tensor, and the unit conversion
factor have to be correctly set. The tensors are given in Cartesian coordinates.
```python
born = [[[1.08878299, 0, 0],
[0, 1.08878299, 0],
[0, 0, 1.08878299]],
[[-1.08878299, 0, 0],
[0, -1.08878299, 0],
[0, 0, -1.08878299]]]
epsilon = [[2.56544559, 0, 0],
[0, 2.56544559, 0],
[0, 0, 2.56544559]]
factors = 14.400
phonon.nac_params = {'born': born,
'factor': factors,
'dielectric': epsilon}
```
## Data structure
### Eigenvectors
Eigenvectors are given as the column vectors. Internally phonopy uses
`numpy.linalg.eigh` and `eigh` is a wrapper of LAPACK. So eigenvectors follow
the convention of LAPACK, which can be shown at
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eigh.html
Eigenvectors corresponding to phonopy yaml output are obtained as follows.
#### Band structure
```python
if eigvecs is not None:
for eigvecs_on_path in eigvecs:
for eigvecs_at_q in eigvecs_on_path:
for vec in eigvecs_at_q.T:
print(vec)
```
#### Mesh sampling
```python
if eigvecs is not None:
for eigvecs_at_q in eigvecs:
for vec in eigvecs_at_q.T:
print(vec)
```
(phonopy_Atoms)=
## `PhonopyAtoms` class
### Initialization
The usable keywords in the initialization are:
```python
cell=None,
scaled_positions=None,
positions=None,
numbers=None,
symbols=None,
masses=None,
magnetic_moments=None,
```
At least three arguments have to be given at the initialization, which are
- `cell`
- `positions` or `scaled_positions`
- `symbols` or `numbers`
(phonopy_Atoms_variables)=
### Variables
The following variables are implemented in the `PhonopyAtoms` class in
`phonopy/structure/atoms.py`.
(phonopy_Atoms_cell)=
#### `cell`
Basis vectors are given in the matrix form in Cartesian coordinates.
```python
[ [ a_x, a_y, a_z ], [ b_x, b_y, b_z ], [ c_x, c_y, c_z ] ]
```
#### `scaled_positions`
Atomic positions in fractional coordinates.
```python
[ [ x1_a, x1_b, x1_c ], [ x2_a, x2_b, x2_c ], [ x3_a, x3_b, x3_c ], ... ]
```
#### `positions`
Cartesian positions of atoms.
```python
positions = np.dot(scaled_positions, cell)
```
where `np` means the numpy module (`import numpy as np`).
#### `symbols`
Chemical symbols, e.g.,
```python
['Zn', 'Zn', 'O', 'O']
```
for the ZnO unit cell.
#### `numbers`
Atomic numbers, e.g.,
```python
[30, 30, 8, 8]
```
for the ZnO unit cell.
#### `masses`
Atomic masses, e.g.,
```python
[65.38, 65.38, 15.9994, 15.9994]
```
for the ZnO unit cell.
### Attributes
```
cell
positions
scaled_positions
masses
magnetic_moments
symbols
numbers
volume
```
where `volume` is the getter only.
### Methods
`unitcell.get_number_of_atoms()` is equivalent to `len(unitcell)`. An instance
can be deep-copied by `unitcell.copy()`. Human-readable crystal structure in
Yaml format is shown by `print(unitcell)`. `unitcell.to_tuple` converts to
spglib crystal structure
(https://spglib.github.io/spglib/python-spglib.html#crystal-structure-cell).
## Definitions of variables
(variable_supercell_matrix)=
### Supercell matrix
Supercell matrix {math}`\mathrm{M}_\mathrm{s}` is a transformation matrix from lattice
vectors to those of a super cell. Following a crystallography convention, the
transformation is given by
```{math}
( \mathbf{a}_\mathrm{s} \; \mathbf{b}_\mathrm{s} \; \mathbf{c}_\mathrm{s} ) = (
\mathbf{a}_\mathrm{u} \; \mathbf{b}_\mathrm{u} \; \mathbf{c}_\mathrm{u} )
\mathrm{M}_\mathrm{s}
```
where {math}`\mathbf{a}_\mathrm{u}`, {math}`\mathbf{b}_\mathrm{u}`, and
{math}`\mathbf{c}_\mathrm{u}` are the column vectors of the original lattice
vectors, and {math}`\mathbf{a}_\mathrm{s}`, {math}`\mathbf{b}_\mathrm{s}`, and
{math}`\mathbf{c}_\mathrm{s}` are the column vectors of the supercell lattice
vectors. Be careful that the lattice vectors of the `PhonopyAtoms` class are the
row vectors ({ref}`phonopy_Atoms_cell`). Therefore the phonopy code, which
relies on the `PhonopyAtoms` class, is usually written such as
```python
supercell_lattice = (original_lattice.T @ supercell_matrix).T,
```
(variable_primitive_matrix)=
### Primitive matrix
Primitive matrix {math}`\mathrm{M}_\mathrm{p}` is a tranformation matrix from lattice
vectors to those of a primitive cell if there exists the primitive cell in the
lattice vectors. Following a crystallography convention, the transformation is
given by
```{math}
( \mathbf{a}_\mathrm{p} \; \mathbf{b}_\mathrm{p} \; \mathbf{c}_\mathrm{p} ) = (
\mathbf{a}_\mathrm{s} \; \mathbf{b}_\mathrm{s} \; \mathbf{c}_\mathrm{s} )
\mathrm{M}_\mathrm{s}^{-1} \mathrm{M}_\mathrm{p}
```
where {math}`\mathbf{a}_\mathrm{p}`, {math}`\mathbf{b}_\mathrm{p}`, and
{math}`\mathbf{c}_\mathrm{p}` are the column vectors of the primitive lattice
vectors. Be careful that the lattice vectors of the `PhonopyAtoms` class are the
row vectors ({ref}`phonopy_Atoms_cell`). Therefore the phonopy code, which
relies on the `PhonopyAtoms` class, is usually written such as
```python
primitive_lattice = (supercell_lattice.T @ np.linalg.inv(supercell_matrix) @ primitive_matrix).T,
```
### Symmetry search tolerance
Symmetry search tolerance (often the name `symprec` is used in phonopy) is used
to determine symmetry operations of the crystal structures. The physical unit
follows that of input crystal structure.
(phonopy_load)=
## Load phonopy settings `phonopy.load`
`phonopy.load` is a convenient function that creates a `Phonopy` instance by
loading data from a `phonopy_xxx.yaml` file, which may include all the necessary
information to run phonopy. A typical usage is:
```python
import phonopy
phonon = phonopy.load("phonopy_params.yaml")
```
If `phonopy_params.yaml` contains a displacement-force dataset and you want to
avoid producing force constants, set `produce_fc=False`:
```python
phonon = phonopy.load("phonopy_params.yaml", produce_fc=False)
```
Alternatively, if you have either `phonopy.yaml` (or `phonopy_disp.yaml`) along
with a `FORCE_SETS` file, you can create a `Phonopy` object like this:
```python
phonon = phonopy.load("phonopy.yaml", force_sets_filename="FORCE_SETS")
```
In this case, the command reads the structure information from `phonopy.yaml`
and the displacement-force data from `FORCE_SETS` to create the `Phonopy`
instance.
If your current directory contains the following files:
```bash
% ls
BORN FORCE_SETS phonopy.yaml
```
then both the `BORN` and `FORCE_SETS` files will be read automatically by
```python
phonon = phonopy.load("phonopy.yaml")
```
For more details, see the function's docstring:
```python
In [1]: import phonopy
In [2]: help(phonopy.load)
```
(phonopy_read_write_structure)=
## Read and write crystal structures
There is a function to write the `PhonopyAtoms` instance into crystal structure
formats of different force calculators, `write_crystal_structure`. This works as
a partner of `read_crystal_structure`. Taking an example of QE interface, how to
use these functions is shown below.
```ipython
In [1]: from phonopy.interface.calculator import read_crystal_structure, write_crystal_structure
In [2]: !cat "NaCl.in"
&control
calculation = 'scf'
tprnfor = .true.
tstress = .true.
pseudo_dir = '/home/togo/espresso/pseudo/'
/
&system
ibrav = 0
nat = 8
ntyp = 2
ecutwfc = 70.0
/
&electrons
diagonalization = 'david'
conv_thr = 1.0d-9
/
ATOMIC_SPECIES
Na 22.98976928 Na.pbe-spn-kjpaw_psl.0.2.UPF
Cl 35.453 Cl.pbe-n-kjpaw_psl.0.1.UPF
ATOMIC_POSITIONS crystal
Na 0.0000000000000000 0.0000000000000000 0.0000000000000000
Na 0.0000000000000000 0.5000000000000000 0.5000000000000000
Na 0.5000000000000000 0.0000000000000000 0.5000000000000000
Na 0.5000000000000000 0.5000000000000000 0.0000000000000000
Cl 0.5000000000000000 0.5000000000000000 0.5000000000000000
Cl 0.5000000000000000 0.0000000000000000 0.0000000000000000
Cl 0.0000000000000000 0.5000000000000000 0.0000000000000000
Cl 0.0000000000000000 0.0000000000000000 0.5000000000000000
CELL_PARAMETERS angstrom
5.6903014761756712 0 0
0 5.6903014761756712 0
0 0 5.6903014761756712
K_POINTS automatic
8 8 8 1 1 1
In [3]: cell, optional_structure_info = read_crystal_structure("NaCl.in", interface_mode='qe')
In [4]: optional_structure_info
Out[4]:
('NaCl.in',
{'Na': 'Na.pbe-spn-kjpaw_psl.0.2.UPF', 'Cl': 'Cl.pbe-n-kjpaw_psl.0.1.UPF'})
In [5]: write_crystal_structure("NaCl-out.in", cell, interface_mode='qe', optional_structure_info=optional_structure_info)
In [6]: !cat "NaCl-out.in"
! ibrav = 0, nat = 8, ntyp = 2
CELL_PARAMETERS bohr
10.7531114272216008 0.0000000000000000 0.0000000000000000
0.0000000000000000 10.7531114272216008 0.0000000000000000
0.0000000000000000 0.0000000000000000 10.7531114272216008
ATOMIC_SPECIES
Na 22.98977 Na.pbe-spn-kjpaw_psl.0.2.UPF
Cl 35.45300 Cl.pbe-n-kjpaw_psl.0.1.UPF
ATOMIC_POSITIONS crystal
Na 0.0000000000000000 0.0000000000000000 0.0000000000000000
Na 0.0000000000000000 0.5000000000000000 0.5000000000000000
Na 0.5000000000000000 0.0000000000000000 0.5000000000000000
Na 0.5000000000000000 0.5000000000000000 0.0000000000000000
Cl 0.5000000000000000 0.5000000000000000 0.5000000000000000
Cl 0.5000000000000000 0.0000000000000000 0.0000000000000000
Cl 0.0000000000000000 0.5000000000000000 0.0000000000000000
Cl 0.0000000000000000 0.0000000000000000 0.5000000000000000
```
Depending on calculator interfaces, all the information can not be recovered
from the information obtained from `read_crystal_structure`. More details about
how `write_crystal_structure` works may need to read directly the
[code](https://github.com/phonopy/phonopy/blob/develop/phonopy/interface/calculator.py#L123).
## Getting parameters for non-analytical term correction
Parameters for non-analytical term correction may be made as follows. This
example assumes that the user knows what are the unit cell and primitive cell
and that the Born effective charge and dielectric constant were calculated using
VASP code by the unit cell.
```python
import io
import numpy as np
from phonopy.physical_units import get_physical_units
from phonopy.structure.symmetry import symmetrize_borns_and_epsilon
from phonopy.interface.vasp import VasprunxmlExpat
with io.open("vasprun.xml", "rb") as f:
vasprun = VasprunxmlExpat(f)
vasprun.parse():
epsilon = vasprun.epsilon
borns = vasprun.born
unitcell = vasprun.cell
borns_, epsilon_ = symmetrize_borns_and_epsilon(
borns,
epsilon,
unitcell,
primitive_matrix=[[0, 0.5, 0.5],
[0.5, 0, 0.5],
[0.5, 0.5, 0]],
supercell_matrix=np.diag([2, 2, 2]),
symprec=1e-5)
units = get_physical_units()
nac_params = {'born': borns_,
'factor': units.Hartree * units.Bohr,
'dielectric': epsilon_}
```
|