File: background.rst

package info (click to toggle)
photutils 2.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,016 kB
  • sloc: python: 29,584; makefile: 115
file content (519 lines) | stat: -rw-r--r-- 21,097 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
.. _background:

Background Estimation (`photutils.background`)
==============================================

Introduction
------------

To accurately measure the photometry and morphological properties
of astronomical sources, one requires an accurate estimate of the
background, which can be from both the sky and the detector. Similarly,
having an accurate estimate of the background noise is important for
determining the significance of source detections and for estimating
photometric errors.

Unfortunately, accurate background and background noise estimation is a
difficult task. Further, because astronomical images can cover a wide
variety of scenes, there is not a single background estimation method
that will always be applicable. Photutils provides tools for estimating
the background and background noise in your data, but they will likely
require some tweaking to optimize the background estimate for your data.


Scalar Background and Noise Estimation
--------------------------------------

Simple Statistics
^^^^^^^^^^^^^^^^^

If the background level and noise are relatively constant across an
image, the simplest way to estimate these values is to derive scalar
quantities using simple approximations. When computing the image
statistics one must take into account the astronomical sources present
in the images, which add a positive tail to the distribution of pixel
intensities. For example, one may consider using the image median as
the background level and the image standard deviation as the 1-sigma
background noise, but the resulting values are biased by the presence of
real sources.

A slightly better method involves using statistics that
are robust against the presence of outliers, such as the
biweight location for the background level and biweight
scale or normalized `median absolute deviation (MAD)
<https://en.wikipedia.org/wiki/Median_absolute_deviation>`__ for the
background noise estimation. However, for most astronomical scenes these
methods will also be biased by the presence of astronomical sources in
the image.

As an example, we load a synthetic image comprised of 100 sources with
a Gaussian-distributed background whose mean is 5 and standard
deviation is 2::

    >>> from photutils.datasets import make_100gaussians_image
    >>> data = make_100gaussians_image()

Let's plot the image:

.. doctest-skip::

    >>> import matplotlib.pyplot as plt
    >>> from astropy.visualization import SqrtStretch
    >>> from astropy.visualization.mpl_normalize import ImageNormalize
    >>> norm = ImageNormalize(stretch=SqrtStretch())
    >>> plt.imshow(data, norm=norm, origin='lower', cmap='Greys_r',
    ...            interpolation='nearest')

.. plot::

    import matplotlib.pyplot as plt
    from astropy.visualization import SqrtStretch
    from astropy.visualization.mpl_normalize import ImageNormalize
    from photutils.datasets import make_100gaussians_image

    data = make_100gaussians_image()
    norm = ImageNormalize(stretch=SqrtStretch())
    plt.imshow(data, norm=norm, origin='lower', cmap='Greys_r',
               interpolation='nearest')
    plt.title('Data')

The image median and biweight location are both larger than the true
background level of 5::

    >>> import numpy as np
    >>> from astropy.stats import biweight_location
    >>> print(np.median(data))  # doctest: +FLOAT_CMP
    5.222396450477202
    >>> print(biweight_location(data))  # doctest: +FLOAT_CMP
    5.187556942771537

Similarly, using the median absolute deviation to estimate the
background noise level gives a value that is larger than the true
value of 2::

    >>> from astropy.stats import mad_std
    >>> print(mad_std(data))  # doctest: +FLOAT_CMP
    2.1497096320053166


Sigma Clipping Sources
^^^^^^^^^^^^^^^^^^^^^^

The most widely used technique to remove the sources from the image
statistics is called sigma clipping. Briefly, pixels that are above or
below a specified sigma level from the median are discarded and the
statistics are recalculated. The procedure is typically repeated over
a number of iterations or until convergence is reached. This method
provides a better estimate of the background and background noise
levels::

    >>> from astropy.stats import sigma_clipped_stats
    >>> mean, median, std = sigma_clipped_stats(data, sigma=3.0)
    >>> print(np.array((mean, median, std)))  # doctest: +FLOAT_CMP
    [5.19968673 5.15244174 2.09423739]


Masking Sources
^^^^^^^^^^^^^^^

An even better procedure is to exclude the sources in the image by
masking them. This technique requires one to :ref:`identify the sources
in the data <source_detection>`, which in turn depends on the background
and background noise. Therefore, this method for estimating the
background and background RMS requires an iterative procedure.

One method to create a source mask is to use a
:ref:`segmentation image <image_segmentation>`. Here we use the
`~photutils.segmentation.detect_threshold` convenience function to get a
rough estimate of the threshold at the 2-sigma background noise level.
Then we use the `~photutils.segmentation.detect_sources` function to
generate a `~photutils.segmentation.SegmentationImage`. Finally, we use
the :meth:`~photutils.segmentation.SegmentationImage.make_source_mask`
method with a circular dilation footprint to create the source mask::

    >>> from astropy.stats import sigma_clipped_stats, SigmaClip
    >>> from photutils.segmentation import detect_threshold, detect_sources
    >>> from photutils.utils import circular_footprint
    >>> sigma_clip = SigmaClip(sigma=3.0, maxiters=10)
    >>> threshold = detect_threshold(data, nsigma=2.0, sigma_clip=sigma_clip)
    >>> segment_img = detect_sources(data, threshold, npixels=10)
    >>> footprint = circular_footprint(radius=10)
    >>> mask = segment_img.make_source_mask(footprint=footprint)
    >>> mean, median, std = sigma_clipped_stats(data, sigma=3.0, mask=mask)
    >>> print(np.array((mean, median, std)))  # doctest: +FLOAT_CMP
    [5.00257401 4.99641799 1.97009566]

The source detection and masking procedure can be iterated further. Even
with one iteration we are within 0.2% of the true background value and
1.5% of the true background RMS.


2D Background and Noise Estimation
----------------------------------

If the background or the background noise varies across the image,
then you will generally want to generate a 2D image of the background
and background RMS (or compute these values locally). This can be
accomplished by applying the above techniques to subregions of the
image. A common procedure is to use sigma-clipped statistics in each
mesh of a grid that covers the input data to create a low-resolution
background image. The final background or background RMS image can then
be generated by interpolating the low-resolution image.

Photutils provides the :class:`~photutils.background.Background2D`
class to estimate the 2D background and background noise in an
astronomical image. :class:`~photutils.background.Background2D`
requires the size of the box (``box_size``) in which to estimate the
background.  Selecting the box size requires some care by the user.
The box size should generally be larger than the typical size of
sources in the image, but small enough to encapsulate any background
variations.  For best results, the box size should also be chosen so
that the data are covered by an integer number of boxes in both
dimensions.  If that is not the case, the ``edge_method`` keyword
determines whether to pad or crop the image such that there is an
integer multiple of the ``box_size`` in both dimensions.

The background level in each of the meshes is calculated using
the function or callable object (e.g., class instance) input via
``bkg_estimator`` keyword. Photutils provides a several background
classes that can be used:

* `~photutils.background.MeanBackground`
* `~photutils.background.MedianBackground`
* `~photutils.background.ModeEstimatorBackground`
* `~photutils.background.MMMBackground`
* `~photutils.background.SExtractorBackground`
* `~photutils.background.BiweightLocationBackground`

The default is a `~photutils.background.SExtractorBackground` instance.
For this method, the background in each mesh is calculated as ``(2.5 *
median) - (1.5 * mean)``. However, if ``(mean - median) / std > 0.3``
then the ``median`` is used instead.

Likewise, the background RMS level in each mesh is calculated using the
function or callable object input via the ``bkgrms_estimator`` keyword.
Photutils provides the following classes for this purpose:

* `~photutils.background.StdBackgroundRMS`
* `~photutils.background.MADStdBackgroundRMS`
* `~photutils.background.BiweightScaleBackgroundRMS`

For even more flexibility, users may input a custom function or
callable object to the ``bkg_estimator`` and/or ``bkgrms_estimator``
keywords.

By default, the ``bkg_estimator`` and ``bkgrms_estimator`` are
applied to sigma clipped data. Sigma clipping is defined by inputting
a :class:`astropy.stats.SigmaClip` object to the ``sigma_clip``
keyword. The default is to perform sigma clipping with ``sigma=3``
and ``maxiters=10``. Sigma clipping can be turned off by setting
``sigma_clip=None``.

After the background level has been determined in each of the boxes, the
low-resolution background image can be median filtered, with a window
of size of ``filter_size``, to suppress local under or over estimations
(e.g., due to bright galaxies in a particular box). Likewise, the median
filter can be applied only to those boxes where the background level is
above a specified threshold (``filter_threshold``).

The low-resolution background and background RMS images are resized to
the original data size using the function or callable object
input via the ``interpolator`` keyword.  Photutils provides two
interpolator classes:
:class:`~photutils.background.BkgZoomInterpolator` (default), which
performs spline interpolation, and
:class:`~photutils.background.BkgIDWInterpolator`, which uses
inverse-distance weighted (IDW) interpolation.

For this example, we will create a test image by adding a strong
background gradient to the image defined above::

    >>> ny, nx = data.shape
    >>> y, x = np.mgrid[:ny, :nx]
    >>> gradient = x * y / 5000.0
    >>> data2 = data + gradient
    >>> plt.imshow(data2, norm=norm, origin='lower', cmap='Greys_r',
    ...            interpolation='nearest')  # doctest: +SKIP

.. plot::

    import matplotlib.pyplot as plt
    import numpy as np
    from astropy.visualization import SqrtStretch
    from astropy.visualization.mpl_normalize import ImageNormalize
    from photutils.datasets import make_100gaussians_image

    data = make_100gaussians_image()
    ny, nx = data.shape
    y, x = np.mgrid[:ny, :nx]
    gradient = x * y / 5000.0
    data2 = data + gradient
    norm = ImageNormalize(stretch=SqrtStretch())
    plt.imshow(data2, norm=norm, origin='lower', cmap='Greys_r',
               interpolation='nearest')
    plt.title('Data with added background gradient')

We start by creating a `~photutils.background.Background2D` object
using a box size of 50x50 and a 3x3 median filter.  We will estimate
the background level in each mesh as the sigma-clipped median using an
instance of :class:`~photutils.background.MedianBackground`::

    >>> from astropy.stats import SigmaClip
    >>> from photutils.background import Background2D, MedianBackground
    >>> sigma_clip = SigmaClip(sigma=3.0)
    >>> bkg_estimator = MedianBackground()
    >>> bkg = Background2D(data2, (50, 50), filter_size=(3, 3),
    ...                    sigma_clip=sigma_clip, bkg_estimator=bkg_estimator)


The 2D background and background RMS images are retrieved using the
``background`` and ``background_rms`` attributes, respectively, on the
returned object. The low-resolution versions of these images are stored
in the ``background_mesh`` and ``background_rms_mesh`` attributes,
respectively. The global median value of the low-resolution background
and background RMS image can be accessed with the ``background_median``
and ``background_rms_median`` attributes, respectively::

    >>> print(bkg.background_median)  # doctest: +FLOAT_CMP
    10.852487630351824
    >>> print(bkg.background_rms_median)  # doctest: +FLOAT_CMP
    2.262996981325314

Let's plot the background image:

.. doctest-skip::

    >>> plt.imshow(bkg.background, origin='lower', cmap='Greys_r',
    ...            interpolation='nearest')

.. plot::

    import matplotlib.pyplot as plt
    import numpy as np
    from astropy.stats import SigmaClip
    from photutils.background import Background2D, MedianBackground
    from photutils.datasets import make_100gaussians_image

    data = make_100gaussians_image()
    ny, nx = data.shape
    y, x = np.mgrid[:ny, :nx]
    gradient = x * y / 5000.0
    data2 = data + gradient
    sigma_clip = SigmaClip(sigma=3.0)
    bkg_estimator = MedianBackground()
    bkg = Background2D(data2, (50, 50), filter_size=(3, 3),
                       sigma_clip=sigma_clip, bkg_estimator=bkg_estimator)
    plt.imshow(bkg.background, origin='lower', cmap='Greys_r',
               interpolation='nearest')
    plt.title('Estimated Background')

and the background-subtracted image:

.. doctest-skip::

    >>> plt.imshow(data2 - bkg.background, norm=norm, origin='lower',
    ...            cmap='Greys_r', interpolation='nearest')

.. plot::

    import matplotlib.pyplot as plt
    import numpy as np
    from astropy.stats import SigmaClip
    from astropy.visualization import SqrtStretch
    from astropy.visualization.mpl_normalize import ImageNormalize
    from photutils.background import Background2D, MedianBackground
    from photutils.datasets import make_100gaussians_image

    data = make_100gaussians_image()
    ny, nx = data.shape
    y, x = np.mgrid[:ny, :nx]
    gradient = x * y / 5000.0
    data2 = data + gradient
    sigma_clip = SigmaClip(sigma=3.0)
    bkg_estimator = MedianBackground()
    bkg = Background2D(data2, (50, 50), filter_size=(3, 3),
                       sigma_clip=sigma_clip, bkg_estimator=bkg_estimator)
    norm = ImageNormalize(stretch=SqrtStretch())
    plt.imshow(data2 - bkg.background, norm=norm, origin='lower',
               cmap='Greys_r', interpolation='nearest')
    plt.title('Background-subtracted Data')


Masking
^^^^^^^

Masks can also be input into `~photutils.background.Background2D`. The
``mask`` keyword can be used to mask sources or bad pixels in the image
prior to estimating the background levels.

Additionally, the ``coverage_mask`` keyword can be used to mask blank
regions without data coverage (e.g., from a rotated image or an image
from a mosaic). Otherwise, the data values in the regions without
coverage (usually zeros or NaNs) will adversely affect the background
statistics. Unlike ``mask``, ``coverage_mask`` is applied to the output
background and background RMS maps. The ``fill_value`` keyword defines
the value assigned in the output background and background RMS maps
where the input ``coverage_mask`` is `True`.

Let's create a rotated image that has blank areas and plot it::

    >>> from scipy.ndimage import rotate
    >>> data3 = rotate(data2, -45.0)
    >>> norm = ImageNormalize(stretch=SqrtStretch())  # doctest: +SKIP
    >>> plt.imshow(data3, origin='lower', cmap='Greys_r', norm=norm,
    ...            interpolation='nearest')  # doctest: +SKIP

.. plot::

    import matplotlib.pyplot as plt
    import numpy as np
    from astropy.visualization import SqrtStretch
    from astropy.visualization.mpl_normalize import ImageNormalize
    from photutils.datasets import make_100gaussians_image
    from scipy.ndimage import rotate

    data = make_100gaussians_image()
    ny, nx = data.shape
    y, x = np.mgrid[:ny, :nx]
    gradient = x * y / 5000.0
    data2 = data + gradient
    data3 = rotate(data2, -45.0)
    norm = ImageNormalize(stretch=SqrtStretch())
    plt.imshow(data3, origin='lower', cmap='Greys_r', norm=norm,
               interpolation='nearest')
    plt.title('Data with added background gradient')

Now we create a coverage mask and input it into
`~photutils.background.Background2D` to exclude the regions where we
have no data. For this example, we set the ``fill_value`` to 0.0. For
real data, one can usually create a coverage mask from a weight or noise
image. In this example we also use a smaller box size to help capture
the strong gradient in the background. We also increase the value of the
``exclude_percentile`` keyword to include more boxes around the edge of
the rotated image::

    >>> coverage_mask = (data3 == 0)
    >>> bkg3 = Background2D(data3, (15, 15), filter_size=(3, 3),
    ...                     coverage_mask=coverage_mask, fill_value=0.0,
    ...                     exclude_percentile=50.0)

Note that the ``coverage_mask`` is applied to the output background
image (values assigned to ``fill_value``)::

    >>> norm = ImageNormalize(stretch=SqrtStretch())  # doctest: +SKIP
    >>> plt.imshow(bkg3.background, origin='lower', cmap='Greys_r', norm=norm,
    ...            interpolation='nearest')  # doctest: +SKIP

.. plot::

    import matplotlib.pyplot as plt
    import numpy as np
    from astropy.visualization import SqrtStretch
    from astropy.visualization.mpl_normalize import ImageNormalize
    from photutils.background import Background2D
    from photutils.datasets import make_100gaussians_image
    from scipy.ndimage import rotate

    data = make_100gaussians_image()
    ny, nx = data.shape
    y, x = np.mgrid[:ny, :nx]
    gradient = x * y / 5000.0
    data2 = data + gradient
    data3 = rotate(data2, -45.0)
    coverage_mask = (data3 == 0)
    bkg3 = Background2D(data3, (15, 15), filter_size=(3, 3),
                        coverage_mask=coverage_mask, fill_value=0.0,
                        exclude_percentile=50.0)
    norm = ImageNormalize(stretch=SqrtStretch())
    plt.imshow(bkg3.background, origin='lower', cmap='Greys_r', norm=norm,
               interpolation='nearest')
    plt.title('Estimated Background')


Finally, let's subtract the background from the image and plot it:

.. doctest-skip::

    >>> norm = ImageNormalize(stretch=SqrtStretch())
    >>> plt.imshow(data3 - bkg3.background, origin='lower', cmap='Greys_r',
    ...            norm=norm, interpolation='nearest')

.. plot::

    import matplotlib.pyplot as plt
    import numpy as np
    from astropy.visualization import SqrtStretch
    from astropy.visualization.mpl_normalize import ImageNormalize
    from photutils.background import Background2D
    from photutils.datasets import make_100gaussians_image
    from scipy.ndimage import rotate

    data = make_100gaussians_image()
    ny, nx = data.shape
    y, x = np.mgrid[:ny, :nx]
    gradient = x * y / 5000.0
    data2 = data + gradient
    data3 = rotate(data2, -45.0)
    coverage_mask = (data3 == 0)
    bkg3 = Background2D(data3, (15, 15), filter_size=(3, 3),
                        coverage_mask=coverage_mask, fill_value=0.0,
                        exclude_percentile=50.0)
    norm = ImageNormalize(stretch=SqrtStretch())
    plt.imshow(data3 - bkg3.background, origin='lower', cmap='Greys_r',
               norm=norm, interpolation='nearest')
    plt.title('Background-subtracted Data')

If there is any small residual background still present in the image,
the background subtraction can be improved by masking the sources
and/or through further iterations.


Plotting Meshes
^^^^^^^^^^^^^^^

Finally, the meshes that were used in generating the 2D
background can be plotted on the original image using the
:meth:`~photutils.background.Background2D.plot_meshes` method. Here we
zoom in on a small portion of the image to show the background meshes.
Meshes without a center marker were excluded.

.. doctest-skip::

    >>> plt.imshow(data3, origin='lower', cmap='Greys_r', norm=norm,
    ...            interpolation='nearest')
    >>> bkg3.plot_meshes(outlines=True, marker='.', color='cyan', alpha=0.3)
    >>> plt.xlim(0, 250)
    >>> plt.ylim(0, 250)

.. plot::

    import matplotlib.pyplot as plt
    import numpy as np
    from astropy.visualization import SqrtStretch
    from astropy.visualization.mpl_normalize import ImageNormalize
    from photutils.background import Background2D
    from photutils.datasets import make_100gaussians_image
    from scipy.ndimage import rotate

    data = make_100gaussians_image()
    ny, nx = data.shape
    y, x = np.mgrid[:ny, :nx]
    gradient = x * y / 5000.0
    data2 = data + gradient
    data3 = rotate(data2, -45.0)
    coverage_mask = (data3 == 0)
    bkg3 = Background2D(data3, (15, 15), filter_size=(3, 3),
                        coverage_mask=coverage_mask, fill_value=0.0,
                        exclude_percentile=50.0)
    norm = ImageNormalize(stretch=SqrtStretch())
    plt.imshow(data3, origin='lower', cmap='Greys_r', norm=norm,
               interpolation='nearest')
    bkg3.plot_meshes(outlines=True, marker='.', color='cyan', alpha=0.3)
    plt.xlim(0, 250)
    plt.ylim(0, 250)


API Reference
-------------

:doc:`../reference/background_api`