1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
|
<?xml version="1.0" encoding="utf-8"?>
<!-- $Revision: 331220 $ -->
<appendix xml:id="fann.constants" xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink">
&reftitle.constants;
&extension.constants;
<para>
<variablelist xml:id="constants.fann-train">
<title>Training algorithms</title>
<varlistentry xml:id="constant.fann-train-incremental">
<term>
<constant>FANN_TRAIN_INCREMENTAL</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Standard backpropagation algorithm, where the weights are updated after each training pattern.
This means that the weights are updated many times during a single epoch. For this reason some problems,
will train very fast with this algorithm, while other more advanced problems will not train very well.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-train-batch">
<term>
<constant>FANN_TRAIN_BATCH</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Standard backpropagation algorithm, where the weights are updated after calculating the mean square error
for the whole training set. This means that the weights are only updated once during a epoch.
For this reason some problems, will train slower with this algorithm. But since the mean square
error is calculated more correctly than in incremental training, some problems will reach a better
solutions with this algorithm.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-train-rprop">
<term>
<constant>FANN_TRAIN_RPROP</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
A more advanced batch training algorithm which achieves good results for many problems. The RPROP
training algorithm is adaptive, and does therefore not use the learning_rate. Some other parameters
can however be set to change the way the RPROP algorithm works, but it is only recommended
for users with insight in how the RPROP training algorithm works. The RPROP training algorithm
is described by [Riedmiller and Braun, 1993], but the actual learning algorithm used here is
the iRPROP- training algorithm which is described by [Igel and Husken, 2000] which is an variety
of the standard RPROP training algorithm.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-train-quickprop">
<term>
<constant>FANN_TRAIN_QUICKPROP</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
A more advanced batch training algorithm which achieves good results for many problems.
The quickprop training algorithm uses the learning_rate parameter along with other more advanced parameters,
but it is only recommended to change these advanced parameters, for users with insight in how the quickprop
training algorithm works. The quickprop training algorithm is described by [Fahlman, 1988].
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-train-sarprop">
<term>
<constant>FANN_TRAIN_SARPROP</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Even more advance training algorithm. Only for version 2.2
</simpara>
</listitem>
</varlistentry>
</variablelist>
<variablelist xml:id="constants.fann-activation-funcs">
<title>Activation functions</title>
<varlistentry xml:id="constant.fann-linear">
<term>
<constant>FANN_LINEAR</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Linear activation function.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-threshold">
<term>
<constant>FANN_THRESHOLD</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Threshold activation function.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-threshold-symmetric">
<term>
<constant>FANN_THRESHOLD_SYMMETRIC</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Threshold activation function.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-sigmoid">
<term>
<constant>FANN_SIGMOID</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Sigmoid activation function.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-sigmoid-stepwise">
<term>
<constant>FANN_SIGMOID_STEPWISE</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Stepwise linear approximation to sigmoid.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-sigmoid-symmetric">
<term>
<constant>FANN_SIGMOID_SYMMETRIC</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Symmetric sigmoid activation function, aka. tanh.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-sigmoid-symmetric-stepwise">
<term>
<constant>FANN_SIGMOID_SYMMETRIC_STEPWISE</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Stepwise linear approximation to symmetric sigmoid
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-gaussian">
<term>
<constant>FANN_GAUSSIAN</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Gaussian activation function.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-gaussian-symmetric">
<term>
<constant>FANN_GAUSSIAN_SYMMETRIC</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Symmetric gaussian activation function.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-gaussian-stepwise">
<term>
<constant>FANN_GAUSSIAN_STEPWISE</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Stepwise gaussian activation function.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-elliot">
<term>
<constant>FANN_ELLIOT</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Fast (sigmoid like) activation function defined by David Elliott.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-elliot-symmetric">
<term>
<constant>FANN_ELLIOT_SYMMETRIC</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Fast (symmetric sigmoid like) activation function defined by David Elliott.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-linear-piece">
<term>
<constant>FANN_LINEAR_PIECE</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Bounded linear activation function.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-linear-piece-symmetric">
<term>
<constant>FANN_LINEAR_PIECE_SYMMETRIC</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Bounded linear activation function.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-sin-symmetric">
<term>
<constant>FANN_SIN_SYMMETRIC</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Periodical sinus activation function.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-cos-symmetric">
<term>
<constant>FANN_COS_SYMMETRIC</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Periodical cosinus activation function.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-sin">
<term>
<constant>FANN_SIN</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Periodical sinus activation function.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-cos">
<term>
<constant>FANN_COS</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Periodical cosinus activation function.
</simpara>
</listitem>
</varlistentry>
</variablelist>
<variablelist xml:id="constants.fann-errorfunc">
<title>Error function used during training</title>
<varlistentry xml:id="constant.fann-errorfunc-linear">
<term>
<constant>FANN_ERRORFUNC_LINEAR</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Standard linear error function.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-errorfunc-tanh">
<term>
<constant>FANN_ERRORFUNC_TANH</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Tanh error function, usually better but can require a lower learning rate. This error function agressively
targets outputs that differ much from the desired, while not targetting outputs that only differ a little that much.
This activation function is not recommended for cascade training and incremental training.
</simpara>
</listitem>
</varlistentry>
</variablelist>
<variablelist xml:id="constants.fann-stopfunc">
<title>Stop criteria used during training</title>
<varlistentry xml:id="constant.fann-stopfunc-mse">
<term>
<constant>FANN_STOPFUNC_MSE</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Stop criteria is Mean Square Error (MSE) value.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-stopfunc-bit">
<term>
<constant>FANN_STOPFUNC_BIT</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Stop criteria is number of bits that fail. The number of bits means the number of output neurons
which differs more than the bit fail limit (see fann_get_bit_fail_limit, fann_set_bit_fail_limit). The bits are counted
in all of the training data, so this number can be higher than the number of training data.
</simpara>
</listitem>
</varlistentry>
</variablelist>
<variablelist xml:id="constants.fann-nettype">
<title>Definition of network types used by <function>fann_get_network_type</function></title>
<varlistentry xml:id="constant.fann-nettype-layer">
<term>
<constant>FANN_NETTYPE_LAYER</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Each layer only has connections to the next layer.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-nettype-shortcut">
<term>
<constant>FANN_NETTYPE_SHORTCUT</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Each layer has connections to all following layers
</simpara>
</listitem>
</varlistentry>
</variablelist>
<variablelist xml:id="constants.fann-e">
<title>Errors</title>
<varlistentry xml:id="constant.fann-e-no-error">
<term>
<constant>FANN_E_NO_ERROR</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
No error.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-cant-open-config-r">
<term>
<constant>FANN_E_CANT_OPEN_CONFIG_R</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Unable to open configuration file for reading.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-cant-open-config-w">
<term>
<constant>FANN_E_CANT_OPEN_CONFIG_W</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Unable to open configuration file for writing.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-wrong-config-version">
<term>
<constant>FANN_E_WRONG_CONFIG_VERSION</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Wrong version of configuration file.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-cant-read-config">
<term>
<constant>FANN_E_CANT_READ_CONFIG</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Error reading info from configuration file.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-cant-read-neuron">
<term>
<constant>FANN_E_CANT_READ_NEURON</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Error reading neuron info from configuration file.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-cant-read-connections">
<term>
<constant>FANN_E_CANT_READ_CONNECTIONS</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Error reading connections from configuration file.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-wrong-num-connections">
<term>
<constant>FANN_E_WRONG_NUM_CONNECTIONS</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Number of connections not equal to the number expected.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-cant-open-td-w">
<term>
<constant>FANN_E_CANT_OPEN_TD_W</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Unable to open train data file for writing.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-cant-open-td-r">
<term>
<constant>FANN_E_CANT_OPEN_TD_R</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Unable to open train data file for reading.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-cant-read-td">
<term>
<constant>FANN_E_CANT_READ_TD</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Error reading training data from file.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-cant-allocate-mem">
<term>
<constant>FANN_E_CANT_ALLOCATE_MEM</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Unable to allocate memory.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-cant-train-activation">
<term>
<constant>FANN_E_CANT_TRAIN_ACTIVATION</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Unable to train with the selected activation function.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-cant-use-activation">
<term>
<constant>FANN_E_CANT_USE_ACTIVATION</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Unable to use the selected activation function.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-train-data-mismatch">
<term>
<constant>FANN_E_TRAIN_DATA_MISMATCH</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Irreconcilable differences between two struct fann_train_data structures.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-cant-use-train-alg">
<term>
<constant>FANN_E_CANT_USE_TRAIN_ALG</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Unable to use the selected training algorithm.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-train-data-subset">
<term>
<constant>FANN_E_TRAIN_DATA_SUBSET</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Trying to take subset which is not within the training set.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-index-out-of-bound">
<term>
<constant>FANN_E_INDEX_OUT_OF_BOUND</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Index is out of bound.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-scale-not-present">
<term>
<constant>FANN_E_SCALE_NOT_PRESENT</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
Scaling parameters not present.
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-input-no-match">
<term>
<constant>FANN_E_INPUT_NO_MATCH</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
The number of input neurons in the ann data do not match
</simpara>
</listitem>
</varlistentry>
<varlistentry xml:id="constant.fann-e-output-no-match">
<term>
<constant>FANN_E_OUTPUT_NO_MATCH</constant>
(<type>integer</type>)
</term>
<listitem>
<simpara>
The number of output neurons in the ann and data do not match.
</simpara>
</listitem>
</varlistentry>
</variablelist>
</para>
</appendix>
<!-- Keep this comment at the end of the file
Local variables:
mode: sgml
sgml-omittag:t
sgml-shorttag:t
sgml-minimize-attributes:nil
sgml-always-quote-attributes:t
sgml-indent-step:1
sgml-indent-data:t
indent-tabs-mode:nil
sgml-parent-document:nil
sgml-default-dtd-file:"~/.phpdoc/manual.ced"
sgml-exposed-tags:nil
sgml-local-catalogs:nil
sgml-local-ecat-files:nil
End:
vim600: syn=xml fen fdm=syntax fdl=2 si
vim: et tw=78 syn=sgml
vi: ts=1 sw=1
-->
|