1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
<?xml version="1.0" encoding="utf-8"?>
<!-- $Revision$ -->
<reference xml:id="class.svm" role="class" xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xi="http://www.w3.org/2001/XInclude">
<title>The SVM class</title>
<titleabbrev>SVM</titleabbrev>
<partintro>
<!-- {{{ svm intro -->
<section xml:id="svm.intro">
&reftitle.intro;
<para>
</para>
</section>
<!-- }}} -->
<section xml:id="svm.synopsis">
&reftitle.classsynopsis;
<!-- {{{ Synopsis -->
<classsynopsis>
<ooclass><classname>SVM</classname></ooclass>
<!-- {{{ Class synopsis -->
<classsynopsisinfo>
<ooclass>
<classname>SVM</classname>
</ooclass>
</classsynopsisinfo>
<!-- }}} -->
<classsynopsisinfo role="comment">&Constants;</classsynopsisinfo>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.c-svc">SVM::C_SVC</varname>
<initializer>0</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.nu-svc">SVM::NU_SVC</varname>
<initializer>1</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.one-class">SVM::ONE_CLASS</varname>
<initializer>2</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.epsilon-svr">SVM::EPSILON_SVR</varname>
<initializer>3</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.nu-svr">SVM::NU_SVR</varname>
<initializer>4</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.kernel-linear">SVM::KERNEL_LINEAR</varname>
<initializer>0</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.kernel-poly">SVM::KERNEL_POLY</varname>
<initializer>1</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.kernel-rbf">SVM::KERNEL_RBF</varname>
<initializer>2</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.kernel-sigmoid">SVM::KERNEL_SIGMOID</varname>
<initializer>3</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.kernel-precomputed">SVM::KERNEL_PRECOMPUTED</varname>
<initializer>4</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.opt-type">SVM::OPT_TYPE</varname>
<initializer>101</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.opt-kernel-type">SVM::OPT_KERNEL_TYPE</varname>
<initializer>102</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.opt-degree">SVM::OPT_DEGREE</varname>
<initializer>103</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.opt-shrinking">SVM::OPT_SHRINKING</varname>
<initializer>104</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.opt-probability">SVM::OPT_PROPABILITY</varname>
<initializer>105</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.opt-gamma">SVM::OPT_GAMMA</varname>
<initializer>201</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.opt-nu">SVM::OPT_NU</varname>
<initializer>202</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.opt-eps">SVM::OPT_EPS</varname>
<initializer>203</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.opt-p">SVM::OPT_P</varname>
<initializer>204</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.opt-coef-zero">SVM::OPT_COEF_ZERO</varname>
<initializer>205</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.opt-c">SVM::OPT_C</varname>
<initializer>206</initializer>
</fieldsynopsis>
<fieldsynopsis>
<modifier>const</modifier>
<type>int</type>
<varname linkend="svm.constants.opt-cache-size">SVM::OPT_CACHE_SIZE</varname>
<initializer>207</initializer>
</fieldsynopsis>
<classsynopsisinfo role="comment">&Methods;</classsynopsisinfo>
<xi:include xpointer="xmlns(db=http://docbook.org/ns/docbook) xpointer(id('class.svm')/db:refentry/db:refsect1[@role='description']/descendant::db:constructorsynopsis[not(@role='procedural')])">
<xi:fallback/>
</xi:include>
<xi:include xpointer="xmlns(db=http://docbook.org/ns/docbook) xpointer(id('class.svm')/db:refentry/db:refsect1[@role='description']/descendant::db:methodsynopsis[not(@role='procedural')])">
<xi:fallback/>
</xi:include>
</classsynopsis>
<!-- }}} -->
</section>
<!-- {{{ svm constants -->
<section xml:id="svm.constants">
&reftitle.constants;
<section xml:id="svm.constants.types">
<title>SVM Constants</title>
<variablelist>
<varlistentry xml:id="svm.constants.c-svc">
<term><constant>SVM::C_SVC</constant></term>
<listitem>
<para>The basic C_SVC SVM type. The default, and a good starting point</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.nu-svc">
<term><constant>SVM::NU_SVC</constant></term>
<listitem>
<para>The NU_SVC type uses a different, more flexible, error weighting</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.one-class">
<term><constant>SVM::ONE_CLASS</constant></term>
<listitem>
<para>One class SVM type. Train just on a single class, using outliers as negative examples</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.epsilon-svr">
<term><constant>SVM::EPSILON_SVR</constant></term>
<listitem>
<para>A SVM type for regression (predicting a value rather than just a class)</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.nu-svr">
<term><constant>SVM::NU_SVR</constant></term>
<listitem>
<para>A NU style SVM regression type</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.kernel-linear">
<term><constant>SVM::KERNEL_LINEAR</constant></term>
<listitem>
<para>A very simple kernel, can work well on large document classification problems</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.kernel-poly">
<term><constant>SVM::KERNEL_POLY</constant></term>
<listitem>
<para>A polynomial kernel</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.kernel-rbf">
<term><constant>SVM::KERNEL_RBF</constant></term>
<listitem>
<para>The common Gaussian RBD kernel. Handles non-linear problems well and is a good default for classification</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.kernel-sigmoid">
<term><constant>SVM::KERNEL_SIGMOID</constant></term>
<listitem>
<para>A kernel based on the sigmoid function. Using this makes the SVM very similar to a two layer sigmoid based neural network</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.kernel-precomputed">
<term><constant>SVM::KERNEL_PRECOMPUTED</constant></term>
<listitem>
<para>A precomputed kernel - currently unsupported.</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.opt-type">
<term><constant>SVM::OPT_TYPE</constant></term>
<listitem>
<para>The options key for the SVM type</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.opt-kernel-type">
<term><constant>SVM::OPT_KERNEL_TYPE</constant></term>
<listitem>
<para>The options key for the kernel type</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.opt-degree">
<term><constant>SVM::OPT_DEGREE</constant></term>
<listitem>
<para></para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.opt-shrinking">
<term><constant>SVM::OPT_SHRINKING</constant></term>
<listitem>
<para>Training parameter, boolean, for whether to use the shrinking heuristics</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.opt-probability">
<term><constant>SVM::OPT_PROBABILITY</constant></term>
<listitem>
<para>Training parameter, boolean, for whether to collect and use probability estimates</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.opt-gamma">
<term><constant>SVM::OPT_GAMMA</constant></term>
<listitem>
<para>Algorithm parameter for Poly, RBF and Sigmoid kernel types.</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.opt-nu">
<term><constant>SVM::OPT_NU</constant></term>
<listitem>
<para>The option key for the nu parameter, only used in the NU_ SVM types</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.opt-eps">
<term><constant>SVM::OPT_EPS</constant></term>
<listitem>
<para>The option key for the Epsilon parameter, used in epsilon regression</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.opt-p">
<term><constant>SVM::OPT_P</constant></term>
<listitem>
<para>Training parameter used by Episilon SVR regression</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.opt-coef-zero">
<term><constant>SVM::OPT_COEF_ZERO</constant></term>
<listitem>
<para>Algorithm parameter for poly and sigmoid kernels</para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.opt-c">
<term><constant>SVM::OPT_C</constant></term>
<listitem>
<para>The option for the cost parameter that controls tradeoff between errors and generality - effectively the penalty for misclassifying training examples. </para>
</listitem>
</varlistentry>
<varlistentry xml:id="svm.constants.opt-cache-size">
<term><constant>SVM::OPT_CACHE_SIZE</constant></term>
<listitem>
<para>Memory cache size, in MB</para>
</listitem>
</varlistentry>
</variablelist>
</section>
</section>
<!-- }}} -->
</partintro>
&reference.svm.entities.svm;
</reference>
<!-- Keep this comment at the end of the file
Local variables:
mode: sgml
sgml-omittag:t
sgml-shorttag:t
sgml-minimize-attributes:nil
sgml-always-quote-attributes:t
sgml-indent-step:1
sgml-indent-data:t
indent-tabs-mode:nil
sgml-parent-document:nil
sgml-default-dtd-file:"~/.phpdoc/manual.ced"
sgml-exposed-tags:nil
sgml-local-catalogs:nil
sgml-local-ecat-files:nil
End:
vim600: syn=xml fen fdm=syntax fdl=2 si
vim: et tw=78 syn=sgml
vi: ts=1 sw=1
-->
|