1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/* Copyright 2025 Wikimedia Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "timerlib.h"
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <pthread.h>
#include <sys/event.h>
#include "timerlib_pthread_mutex.h"
/**
* Handle a single timer event from a kqueue-based timer.
* @param timer The timer instance holding the kqueue-based timer.
* @param event Pointer to a kevent struct to store the event in.
* @return TIMERLIB_SUCCESS if event processing may continue, TIMERLIB_FAILURE otherwise.
*/
static int timerlib_handle_timer_event(timerlib_timer_t *timer, struct kevent* event) {
int ret = kevent(timer->kq, NULL, 0, event, 1, NULL);
if (ret == -1) {
// EINTR merely implies that a signal was delivered before the timeout expired, so ignore it if it shows up.
if (errno != EINTR) {
// EBADF implies that the kqueue was closed, so we should exit the thread.
if (errno != EBADF) {
timerlib_abort("kevent", errno);
}
return TIMERLIB_FAILURE;
}
} else if (ret > 0) {
// Help emulate POSIX timer_gettime by keeping track of each moment the timer fires.
timerlib_mutex_lock(&timer->last_fired_at_mutex);
timerlib_clock_get_time(0, &timer->last_fired_at);
timerlib_mutex_unlock(&timer->last_fired_at_mutex);
// Match the behavior of POSIX's timer_getoverrun, which only counts additional timer expirations.
int overrun_count = (int)event->data - 1;
timer->notify_function(timer->notify_data, overrun_count);
}
return TIMERLIB_SUCCESS;
}
/**
* Configure a kqueue-based timer using the given flags and period.
* @param timer Pointer to the timer this timer belongs to.
* @param flags Flags to use when configuring the kqueue timer.
* @param period Period to use for the timer.
* @return TIMERLIB_SUCCESS if the timer was successfully setup, TIMERLIB_FAILURE otherwise.
*/
static int timerlib_setup_kqueue_timer(timerlib_timer_t *timer, int flags, timerlib_timespec_t* period) {
struct kevent kev;
EV_SET(&kev, 1, EVFILT_TIMER, flags,
NOTE_NSECONDS, timerlib_timespec_to_ns(period), (void*)timer);
int ret = kevent(timer->kq, &kev, 1, NULL, 0, NULL);
if (ret == -1) {
timerlib_report_errno("kevent", errno);
return TIMERLIB_FAILURE;
}
return TIMERLIB_SUCCESS;
}
/**
* Main loop for a kqueue-based timer handler thread.
* @param arg Pointer to the timer this handler belongs to.
*/
static void* timerlib_kqueue_handle(void *arg) {
struct kevent event;
timerlib_timer_t *timer = (timerlib_timer_t*)arg;
// kqueue supports either periodic or one-shot timers, but not periodic timers with a delayed initial expiration.
// So, if the initial delay is non-zero, wait for the one-shot initial timer to expire,
// then - if needed - reconfigure the underlying kqueue as a periodic timer with the proper period going forward.
if (!timerlib_timespec_is_zero(&timer->initial)) {
if (timerlib_handle_timer_event(timer, &event) == TIMERLIB_FAILURE) {
return NULL;
}
if (timerlib_timespec_is_zero(&timer->period)) {
return NULL;
}
int ret = timerlib_setup_kqueue_timer(timer, EV_ADD | EV_ENABLE, &timer->period);
if (ret == TIMERLIB_FAILURE) {
return NULL;
}
}
while (timerlib_handle_timer_event(timer, &event) == TIMERLIB_SUCCESS) {}
return NULL;
}
int timerlib_timer_init(timerlib_timer_t *timer, int clock,
timerlib_notify_function_t *notify_function, void *notify_data)
{
*timer = (timerlib_timer_t){
.kq = -1,
.notify_function = notify_function,
.notify_data = notify_data,
.last_fired_at_mutex = PTHREAD_MUTEX_INITIALIZER
};
return TIMERLIB_SUCCESS;
}
int timerlib_timer_start(timerlib_timer_t* timer, timerlib_timespec_t *period, timerlib_timespec_t *initial) {
timer->period = *period;
timer->initial = *initial;
int kq = kqueue();
if (kq == -1) {
timerlib_report_errno("kqueue", errno);
return TIMERLIB_FAILURE;
}
timer->kq = kq;
timerlib_clock_get_time(0, &timer->last_fired_at);
int flags = EV_ADD | EV_ENABLE;
int ret;
// Use a non-periodic timer if an initial expiration was provided
if (!timerlib_timespec_is_zero(initial)) {
flags |= EV_ONESHOT;
ret = timerlib_setup_kqueue_timer(timer, flags, initial);
} else {
ret = timerlib_setup_kqueue_timer(timer, flags, period);
}
if (ret == TIMERLIB_FAILURE) {
return TIMERLIB_FAILURE;
}
ret = pthread_create(&timer->handler_thread_id, NULL, timerlib_kqueue_handle, timer);
if (ret != 0) {
timerlib_report_errno("pthread_create", ret);
return TIMERLIB_FAILURE;
}
return TIMERLIB_SUCCESS;
}
int timerlib_timer_stop(timerlib_timer_t* timer) {
if (timer->kq != -1) {
timer->period.tv_sec = 0;
timer->period.tv_nsec = 0;
if (close(timer->kq) == -1) {
timerlib_report_errno("close", errno);
return TIMERLIB_FAILURE;
}
// Wait for the signal handler thread to finish.
int ret = pthread_join(timer->handler_thread_id, NULL);
if (ret != 0) {
timerlib_report_errno("pthread_join", ret);
return TIMERLIB_FAILURE;
}
}
return TIMERLIB_SUCCESS;
}
void timerlib_timer_destroy(timerlib_timer_t *timer) {
int ret = pthread_mutex_destroy(&timer->last_fired_at_mutex);
if (ret != 0) {
timerlib_report_errno("pthread_mutex_destroy", ret);
}
}
int timerlib_timer_get_time(timerlib_timer_t *timer, timerlib_timespec_t *remaining) {
// Get the time at which the timer last fired
timerlib_mutex_lock(&timer->last_fired_at_mutex);
timerlib_timespec_t last_fired_at = timer->last_fired_at;
timerlib_mutex_unlock(&timer->last_fired_at_mutex);
// Add the period to get the next expiry time
timerlib_timespec_t will_fire_at = timer->period;
timerlib_timespec_add(&will_fire_at, &last_fired_at);
// Subtract the current time to get the remaining time
timerlib_timespec_t now;
timerlib_clock_get_time(0, &now);
*remaining = will_fire_at;
timerlib_timespec_subtract(remaining, &now);
return TIMERLIB_SUCCESS;
}
int timerlib_clock_get_time(int clock, timerlib_timespec_t* time) {
if (clock_gettime(CLOCK_MONOTONIC, time) == -1) {
timerlib_report_errno("clock_gettime", errno);
return TIMERLIB_FAILURE;
}
return TIMERLIB_SUCCESS;
}
|