1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
<?php
include_once "includes/header.php";
include_once "includes/navbar.php";
?>
<h2>Magic Square Example</h2>
<p>
The Jama distribution comes with a magic square example that is used to
test and benchmark the LU, QR, SVD and symmetric Eig decompositions.
The example outputs a multi-column table with these column headings:
</p>
<table border='1' cellpadding='5' cellspacing='0' align='center'>
<tr>
<td><b>n</b></td>
<td>Order of magic square.</td>
</tr>
<tr>
<td><b>trace</b></td>
<td>Diagonal sum, should be the magic sum, (n^3 + n)/2.</td>
</tr>
<tr>
<td><b>max_eig</b></td>
<td>Maximum eigenvalue of (A + A')/2, should equal trace.</td>
</tr>
<tr>
<td><b>rank</b></td>
<td>Linear algebraic rank, should equal n if n is odd, be less than n if n is even.</td>
</tr>
<tr>
<td><b>cond</b></td>
<td>L_2 condition number, ratio of singular values.</td>
</tr>
<tr>
<td><b>lu_res</b></td>
<td>test of LU factorization, norm1(L*U-A(p,:))/(n*eps).</td>
</tr>
<tr>
<td><b>qr_res</b></td>
<td>test of QR factorization, norm1(Q*R-A)/(n*eps).</td>
</tr>
</table>
<p>
Running the Java-based version of the matix square example produces these results:
</p>
<table border='1' align='center'>
<tr>
<th> n </th>
<th> trace </th>
<th> max_eig </th>
<th> rank </th>
<th> cond </th>
<th> lu_res </th>
<th> qr_res </th>
</tr>
<tr>
<td>3</td><td>15</td><td>15.000</td><td>3</td><td>4.330</td><td>0.000</td><td>11.333</td>
</tr>
<tr>
<td>4</td><td>34</td><td>34.000</td><td>3</td><td> Inf</td><td>0.000</td><td>13.500</td>
<tr>
<td>5</td><td>65</td><td>65.000</td><td>5</td><td>5.462</td><td>0.000</td><td>14.400</td>
</tr>
<tr>
<td>6</td><td>111</td><td>111.000</td><td>5</td><td> Inf</td><td>5.333</td><td>16.000</td>
</tr>
<tr>
<td>7</td><td>175</td><td>175.000</td><td>7</td><td>7.111</td><td>2.286</td><td>37.714</td>
</tr>
<tr>
<td>8</td><td>260</td><td>260.000</td><td>3</td><td> Inf</td><td>0.000</td><td>59.000</td>
</tr>
<tr>
<td>9</td><td>369</td><td>369.000</td><td>9</td><td>9.102</td><td>7.111</td><td>53.333</td>
</tr>
<tr>
<td>10</td><td>505</td><td>505.000</td><td>7</td><td> Inf</td><td>3.200</td><td>159.200</td>
</tr>
<tr>
<td>11</td><td>671</td><td>671.000</td><td>11</td><td>11.102</td><td>2.909</td><td>215.273</td>
</tr>
<tr>
<td>12</td><td>870</td><td>870.000</td><td>3</td><td> Inf</td><td>0.000</td><td>185.333</td>
</tr>
<tr>
<td>13</td><td>1105</td><td>1105.000</td><td>13</td><td>13.060</td><td>4.923</td><td>313.846</td>
</tr>
<tr>
<td>14</td><td>1379</td><td>1379.000</td><td>9</td><td> Inf</td><td>4.571</td><td>540.571</td>
</tr>
<tr>
<td>15</td><td>1695</td><td>1695.000</td><td>15</td><td>15.062</td><td>4.267</td><td>242.133</td>
</tr>
<tr>
<td>16</td><td>2056</td><td>2056.000</td><td>3</td><td> Inf</td><td>0.000</td><td>488.500</td>
</tr>
<tr>
<td>17</td><td>2465</td><td>2465.000</td><td>17</td><td>17.042</td><td>7.529</td><td>267.294</td>
</tr>
<tr>
<td>18</td><td>2925</td><td>2925.000</td><td>11</td><td> Inf</td><td>7.111</td><td>520.889</td>
</tr>
<tr>
<td>19</td><td>3439</td><td>3439.000</td><td>19</td><td>19.048</td><td>16.842</td><td>387.368</td>
</tr>
<tr>
<td>20</td><td>4010</td><td>4010.000</td><td>3</td><td> Inf</td><td>14.400</td><td>584.800</td>
</tr>
<tr>
<td>21</td><td>4641</td><td>4641.000</td><td>21</td><td>21.035</td><td>6.095</td><td>1158.095</td>
</tr>
<tr>
<td>22</td><td>5335</td><td>5335.000</td><td>13</td><td> Inf</td><td>6.545</td><td>1132.364</td>
</tr>
<tr>
<td>23</td><td>6095</td><td>6095.000</td><td>23</td><td>23.037</td><td>11.130</td><td>1268.870</td>
</tr>
<tr>
<td>24</td><td>6924</td><td>6924.000</td><td>3</td><td> Inf</td><td>10.667</td><td>827.500</td>
</tr>
<tr>
<td>25</td><td>7825</td><td>7825.000</td><td>25</td><td>25.029</td><td>35.840</td><td>1190.400</td>
</tr>
<tr>
<td>26</td><td>8801</td><td>8801.000</td><td>15</td><td> Inf</td><td>4.923</td><td>1859.077</td>
</tr>
<tr>
<td>27</td><td>9855</td><td>9855.000</td><td>27</td><td>27.032</td><td>37.926</td><td>1365.333</td>
</tr>
<tr>
<td>28</td><td>10990</td><td>10990.000</td><td>3</td><td> Inf</td><td>34.286</td><td>1365.714</td>
</tr>
<tr>
<td>29</td><td>12209</td><td>12209.000</td><td>29</td><td>29.025</td><td>30.897</td><td>1647.448</td>
</tr>
<tr>
<td>30</td><td>13515</td><td>13515.000</td><td>17</td><td> Inf</td><td>8.533</td><td>2571.733</td>
</tr>
<tr>
<td>31</td><td>14911</td><td>14911.000</td><td>31</td><td>31.027</td><td>33.032</td><td>1426.581</td>
</tr>
<tr>
<td>32</td><td>16400</td><td>16400.000</td><td>3</td><td> Inf</td><td>0.000</td><td>1600.125</td>
</tr>
</table>
<center>Elapsed Time = 0.710 seconds</center>
<p>
The magic square example does not fare well when <a href='../examples/MagicSquareExample.php'>run as a PHP script</a>. For a 32x32 matrix array
it takes around a second to complete just the last row of computations in the above table.
Hopefully this result will spur PHP developers to find optimizations and better attuned algorithms
to speed things up. Matrix algebra is a great testing ground for ideas about time and memory
performance optimation. Keep in perspective that PHP JAMA scripts are still plenty fast for use as
a tool for learning about matrix algebra and quickly extending your knowledge with new scripts
to apply knowledge.
</p>
<p>
To learn more about the subject of magic squares you can visit the <a href='http://mathforum.org/alejandre/magic.square.html'>Drexel Math Forum on Magic Squares</a>.
You can also learn more by carefully examining the <code>MagicSquareExample.php</code> source code below.
</p>
<?php
highlight_file("../examples/MagicSquareExample.php");
include_once "includes/footer.php";
?>
|