1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
|
<?php
/**
* GMP BigInteger Engine
*
* PHP version 5 and 7
*
* @author Jim Wigginton <terrafrost@php.net>
* @copyright 2017 Jim Wigginton
* @license http://www.opensource.org/licenses/mit-license.html MIT License
* @link http://pear.php.net/package/Math_BigInteger
*/
namespace phpseclib3\Math\BigInteger\Engines;
use phpseclib3\Exception\BadConfigurationException;
/**
* GMP Engine.
*
* @author Jim Wigginton <terrafrost@php.net>
*/
class GMP extends Engine
{
/**
* Can Bitwise operations be done fast?
*
* @see parent::bitwise_leftRotate()
* @see parent::bitwise_rightRotate()
*/
const FAST_BITWISE = true;
/**
* Engine Directory
*
* @see parent::setModExpEngine
*/
const ENGINE_DIR = 'GMP';
/**
* Test for engine validity
*
* @return bool
* @see parent::__construct()
*/
public static function isValidEngine()
{
return extension_loaded('gmp');
}
/**
* Default constructor
*
* @param mixed $x integer Base-10 number or base-$base number if $base set.
* @param int $base
* @see parent::__construct()
*/
public function __construct($x = 0, $base = 10)
{
if (!isset(static::$isValidEngine[static::class])) {
static::$isValidEngine[static::class] = self::isValidEngine();
}
if (!static::$isValidEngine[static::class]) {
throw new BadConfigurationException('GMP is not setup correctly on this system');
}
if ($x instanceof \GMP) {
$this->value = $x;
return;
}
$this->value = gmp_init(0);
parent::__construct($x, $base);
}
/**
* Initialize a GMP BigInteger Engine instance
*
* @param int $base
* @see parent::__construct()
*/
protected function initialize($base)
{
switch (abs($base)) {
case 256:
$this->value = gmp_import($this->value);
if ($this->is_negative) {
$this->value = -$this->value;
}
break;
case 16:
$temp = $this->is_negative ? '-0x' . $this->value : '0x' . $this->value;
$this->value = gmp_init($temp);
break;
case 10:
$this->value = gmp_init(isset($this->value) ? $this->value : '0');
}
}
/**
* Converts a BigInteger to a base-10 number.
*
* @return string
*/
public function toString()
{
return (string)$this->value;
}
/**
* Converts a BigInteger to a bit string (eg. base-2).
*
* Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're
* saved as two's compliment.
*
* @param bool $twos_compliment
* @return string
*/
public function toBits($twos_compliment = false)
{
$hex = $this->toHex($twos_compliment);
$bits = gmp_strval(gmp_init($hex, 16), 2);
if ($this->precision > 0) {
$bits = substr($bits, -$this->precision);
}
if ($twos_compliment && $this->compare(new static()) > 0 && $this->precision <= 0) {
return '0' . $bits;
}
return $bits;
}
/**
* Converts a BigInteger to a byte string (eg. base-256).
*
* @param bool $twos_compliment
* @return string
*/
public function toBytes($twos_compliment = false)
{
if ($twos_compliment) {
return $this->toBytesHelper();
}
if (gmp_cmp($this->value, gmp_init(0)) == 0) {
return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : '';
}
$temp = gmp_export($this->value);
return $this->precision > 0 ?
substr(str_pad($temp, $this->precision >> 3, chr(0), STR_PAD_LEFT), -($this->precision >> 3)) :
ltrim($temp, chr(0));
}
/**
* Adds two BigIntegers.
*
* @param GMP $y
* @return GMP
*/
public function add(GMP $y)
{
$temp = new self();
$temp->value = $this->value + $y->value;
return $this->normalize($temp);
}
/**
* Subtracts two BigIntegers.
*
* @param GMP $y
* @return GMP
*/
public function subtract(GMP $y)
{
$temp = new self();
$temp->value = $this->value - $y->value;
return $this->normalize($temp);
}
/**
* Multiplies two BigIntegers.
*
* @param GMP $x
* @return GMP
*/
public function multiply(GMP $x)
{
$temp = new self();
$temp->value = $this->value * $x->value;
return $this->normalize($temp);
}
/**
* Divides two BigIntegers.
*
* Returns an array whose first element contains the quotient and whose second element contains the
* "common residue". If the remainder would be positive, the "common residue" and the remainder are the
* same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder
* and the divisor (basically, the "common residue" is the first positive modulo).
*
* @param GMP $y
* @return array{GMP, GMP}
*/
public function divide(GMP $y)
{
$quotient = new self();
$remainder = new self();
list($quotient->value, $remainder->value) = gmp_div_qr($this->value, $y->value);
if (gmp_sign($remainder->value) < 0) {
$remainder->value = $remainder->value + gmp_abs($y->value);
}
return [$this->normalize($quotient), $this->normalize($remainder)];
}
/**
* Compares two numbers.
*
* Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite. The reason for this
* is demonstrated thusly:
*
* $x > $y: $x->compare($y) > 0
* $x < $y: $x->compare($y) < 0
* $x == $y: $x->compare($y) == 0
*
* Note how the same comparison operator is used. If you want to test for equality, use $x->equals($y).
*
* {@internal Could return $this->subtract($x), but that's not as fast as what we do do.}
*
* @param GMP $y
* @return int in case < 0 if $this is less than $y; > 0 if $this is greater than $y, and 0 if they are equal.
* @see self::equals()
*/
public function compare(GMP $y)
{
$r = gmp_cmp($this->value, $y->value);
if ($r < -1) {
$r = -1;
}
if ($r > 1) {
$r = 1;
}
return $r;
}
/**
* Tests the equality of two numbers.
*
* If you need to see if one number is greater than or less than another number, use BigInteger::compare()
*
* @param GMP $x
* @return bool
*/
public function equals(GMP $x)
{
return $this->value == $x->value;
}
/**
* Calculates modular inverses.
*
* Say you have (30 mod 17 * x mod 17) mod 17 == 1. x can be found using modular inverses.
*
* @param GMP $n
* @return false|GMP
*/
public function modInverse(GMP $n)
{
$temp = new self();
$temp->value = gmp_invert($this->value, $n->value);
return $temp->value === false ? false : $this->normalize($temp);
}
/**
* Calculates the greatest common divisor and Bezout's identity.
*
* Say you have 693 and 609. The GCD is 21. Bezout's identity states that there exist integers x and y such that
* 693*x + 609*y == 21. In point of fact, there are actually an infinite number of x and y combinations and which
* combination is returned is dependent upon which mode is in use. See
* {@link http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity Bezout's identity - Wikipedia} for more information.
*
* @param GMP $n
* @return GMP[]
*/
public function extendedGCD(GMP $n)
{
extract(gmp_gcdext($this->value, $n->value));
return [
'gcd' => $this->normalize(new self($g)),
'x' => $this->normalize(new self($s)),
'y' => $this->normalize(new self($t))
];
}
/**
* Calculates the greatest common divisor
*
* Say you have 693 and 609. The GCD is 21.
*
* @param GMP $n
* @return GMP
*/
public function gcd(GMP $n)
{
$r = gmp_gcd($this->value, $n->value);
return $this->normalize(new self($r));
}
/**
* Absolute value.
*
* @return GMP
*/
public function abs()
{
$temp = new self();
$temp->value = gmp_abs($this->value);
return $temp;
}
/**
* Logical And
*
* @param GMP $x
* @return GMP
*/
public function bitwise_and(GMP $x)
{
$temp = new self();
$temp->value = $this->value & $x->value;
return $this->normalize($temp);
}
/**
* Logical Or
*
* @param GMP $x
* @return GMP
*/
public function bitwise_or(GMP $x)
{
$temp = new self();
$temp->value = $this->value | $x->value;
return $this->normalize($temp);
}
/**
* Logical Exclusive Or
*
* @param GMP $x
* @return GMP
*/
public function bitwise_xor(GMP $x)
{
$temp = new self();
$temp->value = $this->value ^ $x->value;
return $this->normalize($temp);
}
/**
* Logical Right Shift
*
* Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift.
*
* @param int $shift
* @return GMP
*/
public function bitwise_rightShift($shift)
{
// 0xFFFFFFFF >> 2 == -1 (on 32-bit systems)
// gmp_init('0xFFFFFFFF') >> 2 == gmp_init('0x3FFFFFFF')
$temp = new self();
$temp->value = $this->value >> $shift;
return $this->normalize($temp);
}
/**
* Logical Left Shift
*
* Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift.
*
* @param int $shift
* @return GMP
*/
public function bitwise_leftShift($shift)
{
$temp = new self();
$temp->value = $this->value << $shift;
return $this->normalize($temp);
}
/**
* Performs modular exponentiation.
*
* @param GMP $e
* @param GMP $n
* @return GMP
*/
public function modPow(GMP $e, GMP $n)
{
return $this->powModOuter($e, $n);
}
/**
* Performs modular exponentiation.
*
* Alias for modPow().
*
* @param GMP $e
* @param GMP $n
* @return GMP
*/
public function powMod(GMP $e, GMP $n)
{
return $this->powModOuter($e, $n);
}
/**
* Performs modular exponentiation.
*
* @param GMP $e
* @param GMP $n
* @return GMP
*/
protected function powModInner(GMP $e, GMP $n)
{
$class = static::$modexpEngine[static::class];
return $class::powModHelper($this, $e, $n);
}
/**
* Normalize
*
* Removes leading zeros and truncates (if necessary) to maintain the appropriate precision
*
* @param GMP $result
* @return GMP
*/
protected function normalize(GMP $result)
{
$result->precision = $this->precision;
$result->bitmask = $this->bitmask;
if ($result->bitmask !== false) {
$flip = $result->value < 0;
if ($flip) {
$result->value = -$result->value;
}
$result->value = $result->value & $result->bitmask->value;
if ($flip) {
$result->value = -$result->value;
}
}
return $result;
}
/**
* Performs some post-processing for randomRangePrime
*
* @param Engine $x
* @param Engine $min
* @param Engine $max
* @return GMP
*/
protected static function randomRangePrimeInner(Engine $x, Engine $min, Engine $max)
{
$p = gmp_nextprime($x->value);
if ($p <= $max->value) {
return new self($p);
}
if ($min->value != $x->value) {
$x = new self($x->value - 1);
}
return self::randomRangePrime($min, $x);
}
/**
* Generate a random prime number between a range
*
* If there's not a prime within the given range, false will be returned.
*
* @param GMP $min
* @param GMP $max
* @return false|GMP
*/
public static function randomRangePrime(GMP $min, GMP $max)
{
return self::randomRangePrimeOuter($min, $max);
}
/**
* Generate a random number between a range
*
* Returns a random number between $min and $max where $min and $max
* can be defined using one of the two methods:
*
* BigInteger::randomRange($min, $max)
* BigInteger::randomRange($max, $min)
*
* @param GMP $min
* @param GMP $max
* @return GMP
*/
public static function randomRange(GMP $min, GMP $max)
{
return self::randomRangeHelper($min, $max);
}
/**
* Make the current number odd
*
* If the current number is odd it'll be unchanged. If it's even, one will be added to it.
*
* @see self::randomPrime()
*/
protected function make_odd()
{
gmp_setbit($this->value, 0);
}
/**
* Tests Primality
*
* @param int $t
* @return bool
*/
protected function testPrimality($t)
{
return gmp_prob_prime($this->value, $t) != 0;
}
/**
* Calculates the nth root of a biginteger.
*
* Returns the nth root of a positive biginteger, where n defaults to 2
*
* @param int $n
* @return GMP
*/
protected function rootInner($n)
{
$root = new self();
$root->value = gmp_root($this->value, $n);
return $this->normalize($root);
}
/**
* Performs exponentiation.
*
* @param GMP $n
* @return GMP
*/
public function pow(GMP $n)
{
$temp = new self();
$temp->value = $this->value ** $n->value;
return $this->normalize($temp);
}
/**
* Return the minimum BigInteger between an arbitrary number of BigIntegers.
*
* @param GMP ...$nums
* @return GMP
*/
public static function min(GMP ...$nums)
{
return self::minHelper($nums);
}
/**
* Return the maximum BigInteger between an arbitrary number of BigIntegers.
*
* @param GMP ...$nums
* @return GMP
*/
public static function max(GMP ...$nums)
{
return self::maxHelper($nums);
}
/**
* Tests BigInteger to see if it is between two integers, inclusive
*
* @param GMP $min
* @param GMP $max
* @return bool
*/
public function between(GMP $min, GMP $max)
{
return $this->compare($min) >= 0 && $this->compare($max) <= 0;
}
/**
* Create Recurring Modulo Function
*
* Sometimes it may be desirable to do repeated modulos with the same number outside of
* modular exponentiation
*
* @return callable
*/
public function createRecurringModuloFunction()
{
$temp = $this->value;
return function (GMP $x) use ($temp) {
return new GMP($x->value % $temp);
};
}
/**
* Scan for 1 and right shift by that amount
*
* ie. $s = gmp_scan1($n, 0) and $r = gmp_div_q($n, gmp_pow(gmp_init('2'), $s));
*
* @param GMP $r
* @return int
*/
public static function scan1divide(GMP $r)
{
$s = gmp_scan1($r->value, 0);
$r->value >>= $s;
return $s;
}
/**
* Is Odd?
*
* @return bool
*/
public function isOdd()
{
return gmp_testbit($this->value, 0);
}
/**
* Tests if a bit is set
*
* @return bool
*/
public function testBit($x)
{
return gmp_testbit($this->value, $x);
}
/**
* Is Negative?
*
* @return bool
*/
public function isNegative()
{
return gmp_sign($this->value) == -1;
}
/**
* Negate
*
* Given $k, returns -$k
*
* @return GMP
*/
public function negate()
{
$temp = clone $this;
$temp->value = -$this->value;
return $temp;
}
}
|