1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
/* Rijndael Block Cipher - rijndael.c
Written by Mike Scott 21st April 1999
mike@compapp.dcu.ie
An alternative faster version is implemented in MIRACL
ftp://ftp.computing.dcu.ie/pub/crypto/miracl.zip
Copyright (c) 1999 Mike Scott
Simply compile and run, e.g.
cl /O2 rijndael.c (Microsoft C)
bcc32 /O2 rijndael.c (Borland C)
gcc -O2 rijndael.c -o rijndael (Gnu C)
Compiles and runs fine as a C++ program also.
See rijndael documentation. The code follows the documentation as closely
as possible, and where possible uses the same function and variable names.
Permission for free direct or derivative use is granted subject
to compliance with any conditions that the originators of the
algorithm place on its exploitation.
Inspiration from Brian Gladman's implementation is acknowledged.
Written for clarity, rather than speed.
Assumes long is 32 bit quantity.
Full implementation.
Endian indifferent.
*/
#include "php.h"
#include "php_suhosin.h"
/* rotates x one bit to the left */
#define ROTL(x) (((x)>>7)|((x)<<1))
/* Rotates 32-bit word left by 1, 2 or 3 byte */
#define ROTL8(x) (((x)<<8)|((x)>>24))
#define ROTL16(x) (((x)<<16)|((x)>>16))
#define ROTL24(x) (((x)<<24)|((x)>>8))
/* Fixed Data */
static BYTE InCo[4]={0xB,0xD,0x9,0xE}; /* Inverse Coefficients */
static BYTE fbsub[256];
static BYTE rbsub[256];
static BYTE ptab[256],ltab[256];
static WORD ftable[256];
static WORD rtable[256];
static WORD rco[30];
/* Parameter-dependent data */
static int Nk,Nb,Nr;
static WORD pack(BYTE *b)
{ /* pack bytes into a 32-bit Word */
return ((WORD)b[3]<<24)|((WORD)b[2]<<16)|((WORD)b[1]<<8)|(WORD)b[0];
}
static void unpack(WORD a,BYTE *b)
{ /* unpack bytes from a word */
b[0]=(BYTE)a;
b[1]=(BYTE)(a>>8);
b[2]=(BYTE)(a>>16);
b[3]=(BYTE)(a>>24);
}
static BYTE xtime(BYTE a)
{
BYTE b;
if (a&0x80) b=0x1B;
else b=0;
a<<=1;
a^=b;
return a;
}
static BYTE bmul(BYTE x,BYTE y)
{ /* x.y= AntiLog(Log(x) + Log(y)) */
if (x && y) return ptab[(ltab[x]+ltab[y])%255];
else return 0;
}
static WORD SubByte(WORD a)
{
BYTE b[4];
unpack(a,b);
b[0]=fbsub[b[0]];
b[1]=fbsub[b[1]];
b[2]=fbsub[b[2]];
b[3]=fbsub[b[3]];
return pack(b);
}
static BYTE product(WORD x,WORD y)
{ /* dot product of two 4-byte arrays */
BYTE xb[4],yb[4];
unpack(x,xb);
unpack(y,yb);
return bmul(xb[0],yb[0])^bmul(xb[1],yb[1])^bmul(xb[2],yb[2])^bmul(xb[3],yb[3]);
}
static WORD InvMixCol(WORD x)
{ /* matrix Multiplication */
WORD y,m;
BYTE b[4];
m=pack(InCo);
b[3]=product(m,x);
m=ROTL24(m);
b[2]=product(m,x);
m=ROTL24(m);
b[1]=product(m,x);
m=ROTL24(m);
b[0]=product(m,x);
y=pack(b);
return y;
}
static BYTE ByteSub(BYTE x)
{
BYTE y=ptab[255-ltab[x]]; /* multiplicative inverse */
x=y; x=ROTL(x);
y^=x; x=ROTL(x);
y^=x; x=ROTL(x);
y^=x; x=ROTL(x);
y^=x; y^=0x63;
return y;
}
void suhosin_aes_gentables()
{ /* generate tables */
int i;
BYTE y,b[4];
/* use 3 as primitive root to generate power and log tables */
ltab[0]=0;
ptab[0]=1; ltab[1]=0;
ptab[1]=3; ltab[3]=1;
for (i=2;i<256;i++)
{
ptab[i]=ptab[i-1]^xtime(ptab[i-1]);
ltab[ptab[i]]=i;
}
/* affine transformation:- each bit is xored with itself shifted one bit */
fbsub[0]=0x63;
rbsub[0x63]=0;
for (i=1;i<256;i++)
{
y=ByteSub((BYTE)i);
fbsub[i]=y; rbsub[y]=i;
}
for (i=0,y=1;i<30;i++)
{
rco[i]=y;
y=xtime(y);
}
/* calculate forward and reverse tables */
for (i=0;i<256;i++)
{
y=fbsub[i];
b[3]=y^xtime(y); b[2]=y;
b[1]=y; b[0]=xtime(y);
ftable[i]=pack(b);
y=rbsub[i];
b[3]=bmul(InCo[0],y); b[2]=bmul(InCo[1],y);
b[1]=bmul(InCo[2],y); b[0]=bmul(InCo[3],y);
rtable[i]=pack(b);
}
}
void suhosin_aes_gkey(int nb,int nk,char *key TSRMLS_DC)
{ /* blocksize=32*nb bits. Key=32*nk bits */
/* currently nb,bk = 4, 6 or 8 */
/* key comes as 4*Nk bytes */
/* Key Scheduler. Create expanded encryption key */
int i,j,k,m,N;
int C1,C2,C3;
WORD CipherKey[8];
Nb=nb; Nk=nk;
/* Nr is number of rounds */
if (Nb>=Nk) Nr=6+Nb;
else Nr=6+Nk;
C1=1;
if (Nb<8) { C2=2; C3=3; }
else { C2=3; C3=4; }
/* pre-calculate forward and reverse increments */
for (m=j=0;j<nb;j++,m+=3)
{
SUHOSIN_G(fi)[m]=(j+C1)%nb;
SUHOSIN_G(fi)[m+1]=(j+C2)%nb;
SUHOSIN_G(fi)[m+2]=(j+C3)%nb;
SUHOSIN_G(ri)[m]=(nb+j-C1)%nb;
SUHOSIN_G(ri)[m+1]=(nb+j-C2)%nb;
SUHOSIN_G(ri)[m+2]=(nb+j-C3)%nb;
}
N=Nb*(Nr+1);
for (i=j=0;i<Nk;i++,j+=4)
{
CipherKey[i]=pack((BYTE *)&key[j]);
}
for (i=0;i<Nk;i++) SUHOSIN_G(fkey)[i]=CipherKey[i];
for (j=Nk,k=0;j<N;j+=Nk,k++)
{
SUHOSIN_G(fkey)[j]=SUHOSIN_G(fkey)[j-Nk]^SubByte(ROTL24(SUHOSIN_G(fkey)[j-1]))^rco[k];
if (Nk<=6)
{
for (i=1;i<Nk && (i+j)<N;i++)
SUHOSIN_G(fkey)[i+j]=SUHOSIN_G(fkey)[i+j-Nk]^SUHOSIN_G(fkey)[i+j-1];
}
else
{
for (i=1;i<4 &&(i+j)<N;i++)
SUHOSIN_G(fkey)[i+j]=SUHOSIN_G(fkey)[i+j-Nk]^SUHOSIN_G(fkey)[i+j-1];
if ((j+4)<N) SUHOSIN_G(fkey)[j+4]=SUHOSIN_G(fkey)[j+4-Nk]^SubByte(SUHOSIN_G(fkey)[j+3]);
for (i=5;i<Nk && (i+j)<N;i++)
SUHOSIN_G(fkey)[i+j]=SUHOSIN_G(fkey)[i+j-Nk]^SUHOSIN_G(fkey)[i+j-1];
}
}
/* now for the expanded decrypt key in reverse order */
for (j=0;j<Nb;j++) SUHOSIN_G(rkey)[j+N-Nb]=SUHOSIN_G(fkey)[j];
for (i=Nb;i<N-Nb;i+=Nb)
{
k=N-Nb-i;
for (j=0;j<Nb;j++) SUHOSIN_G(rkey)[k+j]=InvMixCol(SUHOSIN_G(fkey)[i+j]);
}
for (j=N-Nb;j<N;j++) SUHOSIN_G(rkey)[j-N+Nb]=SUHOSIN_G(fkey)[j];
}
/* There is an obvious time/space trade-off possible here. *
* Instead of just one ftable[], I could have 4, the other *
* 3 pre-rotated to save the ROTL8, ROTL16 and ROTL24 overhead */
void suhosin_aes_encrypt(char *buff TSRMLS_DC)
{
int i,j,k,m;
WORD a[8],b[8],*x,*y,*t;
for (i=j=0;i<Nb;i++,j+=4)
{
a[i]=pack((BYTE *)&buff[j]);
a[i]^=SUHOSIN_G(fkey)[i];
}
k=Nb;
x=a; y=b;
/* State alternates between a and b */
for (i=1;i<Nr;i++)
{ /* Nr is number of rounds. May be odd. */
/* if Nb is fixed - unroll this next
loop and hard-code in the values of fi[] */
for (m=j=0;j<Nb;j++,m+=3)
{ /* deal with each 32-bit element of the State */
/* This is the time-critical bit */
y[j]=SUHOSIN_G(fkey)[k++]^ftable[(BYTE)x[j]]^
ROTL8(ftable[(BYTE)(x[SUHOSIN_G(fi)[m]]>>8)])^
ROTL16(ftable[(BYTE)(x[SUHOSIN_G(fi)[m+1]]>>16)])^
ROTL24(ftable[x[SUHOSIN_G(fi)[m+2]]>>24]);
}
t=x; x=y; y=t; /* swap pointers */
}
/* Last Round - unroll if possible */
for (m=j=0;j<Nb;j++,m+=3)
{
y[j]=SUHOSIN_G(fkey)[k++]^(WORD)fbsub[(BYTE)x[j]]^
ROTL8((WORD)fbsub[(BYTE)(x[SUHOSIN_G(fi)[m]]>>8)])^
ROTL16((WORD)fbsub[(BYTE)(x[SUHOSIN_G(fi)[m+1]]>>16)])^
ROTL24((WORD)fbsub[x[SUHOSIN_G(fi)[m+2]]>>24]);
}
for (i=j=0;i<Nb;i++,j+=4)
{
unpack(y[i],(BYTE *)&buff[j]);
x[i]=y[i]=0; /* clean up stack */
}
return;
}
void suhosin_aes_decrypt(char *buff TSRMLS_DC)
{
int i,j,k,m;
WORD a[8],b[8],*x,*y,*t;
for (i=j=0;i<Nb;i++,j+=4)
{
a[i]=pack((BYTE *)&buff[j]);
a[i]^=SUHOSIN_G(rkey)[i];
}
k=Nb;
x=a; y=b;
/* State alternates between a and b */
for (i=1;i<Nr;i++)
{ /* Nr is number of rounds. May be odd. */
/* if Nb is fixed - unroll this next
loop and hard-code in the values of ri[] */
for (m=j=0;j<Nb;j++,m+=3)
{ /* This is the time-critical bit */
y[j]=SUHOSIN_G(rkey)[k++]^rtable[(BYTE)x[j]]^
ROTL8(rtable[(BYTE)(x[SUHOSIN_G(ri)[m]]>>8)])^
ROTL16(rtable[(BYTE)(x[SUHOSIN_G(ri)[m+1]]>>16)])^
ROTL24(rtable[x[SUHOSIN_G(ri)[m+2]]>>24]);
}
t=x; x=y; y=t; /* swap pointers */
}
/* Last Round - unroll if possible */
for (m=j=0;j<Nb;j++,m+=3)
{
y[j]=SUHOSIN_G(rkey)[k++]^(WORD)rbsub[(BYTE)x[j]]^
ROTL8((WORD)rbsub[(BYTE)(x[SUHOSIN_G(ri)[m]]>>8)])^
ROTL16((WORD)rbsub[(BYTE)(x[SUHOSIN_G(ri)[m+1]]>>16)])^
ROTL24((WORD)rbsub[x[SUHOSIN_G(ri)[m+2]]>>24]);
}
for (i=j=0;i<Nb;i++,j+=4)
{
unpack(y[i],(BYTE *)&buff[j]);
x[i]=y[i]=0; /* clean up stack */
}
return;
}
/*
static int main()
{
int i,nb,nk;
char key[32];
char block[32];
gentables();
for (i=0;i<32;i++) key[i]=0;
key[0]=1;
for (i=0;i<32;i++) block[i]=i;
for (nb=4;nb<=8;nb+=2)
for (nk=4;nk<=8;nk+=2)
{
printf("\nBlock Size= %d bits, Key Size= %d bits\n",nb*32,nk*32);
gkey(nb,nk,key);
printf("Plain= ");
for (i=0;i<nb*4;i++) printf("%02x",block[i]);
printf("\n");
encrypt(block);
printf("Encrypt= ");
for (i=0;i<nb*4;i++) printf("%02x",(unsigned char)block[i]);
printf("\n");
decrypt(block);
printf("Decrypt= ");
for (i=0;i<nb*4;i++) printf("%02x",block[i]);
printf("\n");
}
return 0;
}
*/
|