1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
/*
+----------------------------------------------------------------------+
| PHP HTML Embedded Scripting Language Version 3.0 |
+----------------------------------------------------------------------+
| Copyright (c) 1997-2000 PHP Development Team (See Credits file) |
+----------------------------------------------------------------------+
| This program is free software; you can redistribute it and/or modify |
| it under the terms of one of the following licenses: |
| |
| A) the GNU General Public License as published by the Free Software |
| Foundation; either version 2 of the License, or (at your option) |
| any later version. |
| |
| B) the PHP License as published by the PHP Development Team and |
| included in the distribution in the file: LICENSE |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of both licenses referred to here. |
| If you did not, or have any questions about PHP licensing, please |
| contact core@php.net. |
+----------------------------------------------------------------------+
| Authors: Rasmus Lerdorf <rasmus@lerdorf.on.ca> |
| Zeev Suraski <bourbon@netvision.net.il |
| Pedro Melo <melo@ip.pt> |
| |
| Based on code from: Shawn Cokus <Cokus@math.washington.edu> |
+----------------------------------------------------------------------+
*/
/* $Id: rand.c,v 1.39 2000/05/22 17:31:41 hholzgra Exp $ */
#include <stdlib.h>
#include "php.h"
#include "internal_functions.h"
#include "phpmath.h"
#ifndef RAND_MAX
#define RAND_MAX (1<<15)
#endif
/*
This is the ``Mersenne Twister'' random number generator MT19937, which
generates pseudorandom integers uniformly distributed in 0..(2^32 - 1)
starting from any odd seed in 0..(2^32 - 1). This version is a recode
by Shawn Cokus (Cokus@math.washington.edu) on March 8, 1998 of a version by
Takuji Nishimura (who had suggestions from Topher Cooper and Marc Rieffel in
July-August 1997).
Effectiveness of the recoding (on Goedel2.math.washington.edu, a DEC Alpha
running OSF/1) using GCC -O3 as a compiler: before recoding: 51.6 sec. to
generate 300 million random numbers; after recoding: 24.0 sec. for the same
(i.e., 46.5% of original time), so speed is now about 12.5 million random
number generations per second on this machine.
According to the URL <http://www.math.keio.ac.jp/~matumoto/emt.html>
(and paraphrasing a bit in places), the Mersenne Twister is ``designed
with consideration of the flaws of various existing generators,'' has
a period of 2^19937 - 1, gives a sequence that is 623-dimensionally
equidistributed, and ``has passed many stringent tests, including the
die-hard test of G. Marsaglia and the load test of P. Hellekalek and
S. Wegenkittl.'' It is efficient in memory usage (typically using 2506
to 5012 bytes of static data, depending on data type sizes, and the code
is quite short as well). It generates random numbers in batches of 624
at a time, so the caching and pipelining of modern systems is exploited.
It is also divide- and mod-free.
This library is free software; you can redistribute it and/or modify it
under the terms of the GNU Library General Public License as published by
the Free Software Foundation (either version 2 of the License or, at your
option, any later version). This library is distributed in the hope that
it will be useful, but WITHOUT ANY WARRANTY, without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Library General Public License for more details. You should have
received a copy of the GNU Library General Public License along with this
library; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307, USA.
The code as Shawn received it included the following notice:
Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. When
you use this, send an e-mail to <matumoto@math.keio.ac.jp> with
an appropriate reference to your work.
It would be nice to CC: <Cokus@math.washington.edu> when you write.
uint32 must be an unsigned integer type capable of holding at least 32
bits; exactly 32 should be fastest, but 64 is better on an Alpha with
GCC at -O3 optimization so try your options and see what's best for you
Melo: we should put some ifdefs here to catch those alphas...
*/
typedef unsigned int uint32;
#define N (624) /* length of state vector */
#define M (397) /* a period parameter */
#define K (0x9908B0DFU) /* a magic constant */
#define hiBit(u) ((u) & 0x80000000U) /* mask all but highest bit of u */
#define loBit(u) ((u) & 0x00000001U) /* mask all but lowest bit of u */
#define loBits(u) ((u) & 0x7FFFFFFFU) /* mask the highest bit of u */
#define mixBits(u, v) (hiBit(u)|loBits(v)) /* move hi bit of u to hi bit of v */
#define MT_RAND_MAX 2147483647
static uint32 state[N+1]; /* state vector + 1 extra to not violate ANSI C */
static uint32 *next; /* next random value is computed from here */
static int left = -1; /* can *next++ this many times before reloading */
static void seedMT(uint32 seed)
{
/*
We initialize state[0..(N-1)] via the generator
x_new = (69069 * x_old) mod 2^32
from Line 15 of Table 1, p. 106, Sec. 3.3.4 of Knuth's
_The Art of Computer Programming_, Volume 2, 3rd ed.
Notes (SJC): I do not know what the initial state requirements
of the Mersenne Twister are, but it seems this seeding generator
could be better. It achieves the maximum period for its modulus
(2^30) iff x_initial is odd (p. 20-21, Sec. 3.2.1.2, Knuth); if
x_initial can be even, you have sequences like 0, 0, 0, ...;
2^31, 2^31, 2^31, ...; 2^30, 2^30, 2^30, ...; 2^29, 2^29 + 2^31,
2^29, 2^29 + 2^31, ..., etc. so I force seed to be odd below.
Even if x_initial is odd, if x_initial is 1 mod 4 then
the lowest bit of x is always 1,
the next-to-lowest bit of x is always 0,
the 2nd-from-lowest bit of x alternates ... 0 1 0 1 0 1 0 1 ... ,
the 3rd-from-lowest bit of x 4-cycles ... 0 1 1 0 0 1 1 0 ... ,
the 4th-from-lowest bit of x has the 8-cycle ... 0 0 0 1 1 1 1 0 ... ,
...
and if x_initial is 3 mod 4 then
the lowest bit of x is always 1,
the next-to-lowest bit of x is always 1,
the 2nd-from-lowest bit of x alternates ... 0 1 0 1 0 1 0 1 ... ,
the 3rd-from-lowest bit of x 4-cycles ... 0 0 1 1 0 0 1 1 ... ,
the 4th-from-lowest bit of x has the 8-cycle ... 0 0 1 1 1 1 0 0 ... ,
...
The generator's potency (min. s>=0 with (69069-1)^s = 0 mod 2^32) is
16, which seems to be alright by p. 25, Sec. 3.2.1.3 of Knuth. It
also does well in the dimension 2..5 spectral tests, but it could be
better in dimension 6 (Line 15, Table 1, p. 106, Sec. 3.3.4, Knuth).
Note that the random number user does not see the values generated
here directly since reloadMT() will always munge them first, so maybe
none of all of this matters. In fact, the seed values made here could
even be extra-special desirable if the Mersenne Twister theory says
so-- that's why the only change I made is to restrict to odd seeds.
*/
register uint32 x = (seed | 1U) & 0xFFFFFFFFU, *s = state;
register int j;
for(left=0, *s++=x, j=N; --j;
*s++ = (x*=69069U) & 0xFFFFFFFFU);
}
static uint32 reloadMT(void)
{
register uint32 *p0=state, *p2=state+2, *pM=state+M, s0, s1;
register int j;
if(left < -1)
seedMT(4357U);
left=N-1, next=state+1;
for(s0=state[0], s1=state[1], j=N-M+1; --j; s0=s1, s1=*p2++)
*p0++ = *pM++ ^ (mixBits(s0, s1) >> 1) ^ (loBit(s1) ? K : 0U);
for(pM=state, j=M; --j; s0=s1, s1=*p2++)
*p0++ = *pM++ ^ (mixBits(s0, s1) >> 1) ^ (loBit(s1) ? K : 0U);
s1=state[0], *p0 = *pM ^ (mixBits(s0, s1) >> 1) ^ (loBit(s1) ? K : 0U);
s1 ^= (s1 >> 11);
s1 ^= (s1 << 7) & 0x9D2C5680U;
s1 ^= (s1 << 15) & 0xEFC60000U;
return(s1 ^ (s1 >> 18));
}
static inline uint32 randomMT(void)
{
uint32 y;
if(--left < 0)
return(reloadMT());
y = *next++;
y ^= (y >> 11);
y ^= (y << 7) & 0x9D2C5680U;
y ^= (y << 15) & 0xEFC60000U;
return(y ^ (y >> 18));
}
#if HAVE_LRAND48 || (OS2 && HAVE_RANDOM)
#define PHP_RAND_MAX 2147483647
#else
#define PHP_RAND_MAX RAND_MAX
#endif
/* {{{ proto void srand(int seed)
Seeds random number generator */
void php3_srand(INTERNAL_FUNCTION_PARAMETERS)
{
pval *arg;
if (ARG_COUNT(ht) != 1 || getParameters(ht, 1, &arg) == FAILURE) {
WRONG_PARAM_COUNT;
}
convert_to_long(arg);
#ifdef HAVE_SRAND48
srand48((unsigned int) arg->value.lval);
#else
#ifdef HAVE_SRANDOM
srandom((unsigned int) arg->value.lval);
#else
srand((unsigned int) arg->value.lval);
#endif
#endif
}
/* }}} */
/* {{{ proto void mt_srand(int seed)
Seeds Mersenne Twister random number generator */
void php3_mt_srand(INTERNAL_FUNCTION_PARAMETERS)
{
pval *arg;
if (ARG_COUNT(ht) != 1 || getParameters(ht, 1, &arg) == FAILURE) {
WRONG_PARAM_COUNT;
}
convert_to_long(arg);
seedMT(arg->value.lval);
}
/* }}} */
/* {{{ proto int rand([int min, int max])
Returns a random number */
void php3_rand(INTERNAL_FUNCTION_PARAMETERS)
{
pval *p_min=NULL, *p_max=NULL;
switch (ARG_COUNT(ht)) {
case 0:
break;
case 2:
if (getParameters(ht, 2, &p_min, &p_max)==FAILURE) {
RETURN_FALSE;
}
convert_to_long(p_min);
convert_to_long(p_max);
if (p_max->value.lval-p_min->value.lval <= 0) {
php3_error(E_WARNING,"rand(): Invalid range: %ld..%ld", p_min->value.lval, p_max->value.lval);
} else if (p_max->value.lval-p_min->value.lval > RAND_MAX){
php3_error(E_WARNING,"rand(): Invalid range: %ld..%ld", p_min->value.lval, p_max->value.lval);
}
break;
default:
WRONG_PARAM_COUNT;
break;
}
return_value->type = IS_LONG;
#ifdef HAVE_LRAND48
return_value->value.lval = lrand48();
#else
#ifdef HAVE_RANDOM
return_value->value.lval = random();
#else
return_value->value.lval = rand();
#endif
#endif
/*
* A bit of tricky math here. We want to avoid using a modulus because
* that simply tosses the high-order bits and might skew the distribution
* of random values over the range. Instead we map the range directly.
*
* We need to map the range from 0...M evenly to the range a...b
* Let n = the random number and n' = the mapped random number
*
* Then we have: n' = a + n(b-a)/M
*
* We have a problem here in that only n==M will get mapped to b which
# means the chances of getting b is much much less than getting any of
# the other values in the range. We can fix this by increasing our range
# artifically and using:
#
# n' = a + n(b-a+1)/M
*
# Now we only have a problem if n==M which would cause us to produce a
# number of b+1 which would be bad. So we bump M up by one to make sure
# this will never happen, and the final algorithm looks like this:
#
# n' = a + n(b-a+1)/(M+1)
*
* -RL
*/
if (p_min && p_max) { /* implement range */
return_value->value.lval = p_min->value.lval +
(int)((double)(p_max->value.lval - p_min->value.lval + 1.0) * return_value->value.lval/(PHP_RAND_MAX+1.0));
}
}
/* }}} */
/* {{{ proto int mt_rand([int min, int max])
Returns a random number from Mersenne Twister */
void php3_mt_rand(INTERNAL_FUNCTION_PARAMETERS)
{
pval *p_min=NULL, *p_max=NULL;
switch (ARG_COUNT(ht)) {
case 0:
break;
case 2:
if (getParameters(ht, 2, &p_min, &p_max)==FAILURE) {
RETURN_FALSE;
}
convert_to_long(p_min);
convert_to_long(p_max);
if (p_max->value.lval-p_min->value.lval <=0) {
php3_error(E_WARNING,"mt_rand(): Invalid range: %ld..%ld", p_min->value.lval, p_max->value.lval);
}else if (p_max->value.lval-p_min->value.lval > MT_RAND_MAX){
php3_error(E_WARNING,"mt_rand(): Invalid range: %ld..%ld", p_min->value.lval, p_max->value.lval);
}
break;
default:
WRONG_PARAM_COUNT;
break;
}
return_value->type = IS_LONG;
/*
* Melo: hmms.. randomMT() returns 32 random bits...
* Yet, the previous php3_rand only returns 31 at most.
* So I put a right shift to loose the lsb. It *seems*
* better than clearing the msb.
* Update:
* I talked with Cokus via email and it won't ruin the algorithm
*/
return_value->value.lval = (long)(randomMT() >> 1);
/* see the comment in the php3_rand() function about this ugly algorithm */
if (p_min && p_max) { /* implement range */
return_value->value.lval = p_min->value.lval +
(int)((double)(p_max->value.lval - p_min->value.lval + 1.0) * return_value->value.lval/(MT_RAND_MAX+1.0));
}
}
/* }}} */
/* {{{ proto int getrandmax(void)
Returns the maximum value a random number can have */
void php3_getrandmax(INTERNAL_FUNCTION_PARAMETERS)
{
return_value->type = IS_LONG;
return_value->value.lval = PHP_RAND_MAX;
}
/* }}} */
/* {{{ proto int mt_getrandmax(void)
Returns the maximum value a random number from Mersenne Twister can have */
void php3_mt_getrandmax(INTERNAL_FUNCTION_PARAMETERS)
{
return_value->type = IS_LONG;
/*
* Melo: it could be 2^^32 but we only use 2^^31 to maintain
* compatibility with the previous php3_rand
*/
return_value->value.lval = MT_RAND_MAX; /* 2^^31 */
}
/* }}} */
/*
* Local variables:
* tab-width: 4
* c-basic-offset: 4
* End:
*/
|