1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
#include "gd.h"
#include <math.h>
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
/**
* Title: Matrix
* Group: Affine Matrix
*/
/**
* Function: gdAffineApplyToPointF
* Applies an affine transformation to a point (floating point
* gdPointF)
*
*
* Parameters:
* dst - Where to store the resulting point
* affine - Source Point
* flip_horz - affine matrix
*
* Returns:
* GD_TRUE if the affine is rectilinear or GD_FALSE
*/
int gdAffineApplyToPointF (gdPointFPtr dst, const gdPointFPtr src,
const double affine[6])
{
double x = src->x;
double y = src->y;
x = src->x;
y = src->y;
dst->x = x * affine[0] + y * affine[2] + affine[4];
dst->y = x * affine[1] + y * affine[3] + affine[5];
return GD_TRUE;
}
/**
* Function: gdAffineInvert
* Find the inverse of an affine transformation.
*
* All non-degenerate affine transforms are invertible. Applying the
* inverted matrix will restore the original values. Multiplying <src>
* by <dst> (commutative) will return the identity affine (rounding
* error possible).
*
* Parameters:
* dst - Where to store the resulting affine transform
* src_affine - Original affine matrix
* flip_horz - Whether or not to flip horizontally
* flip_vert - Whether or not to flip vertically
*
* See also:
* <gdAffineIdentity>
*
* Returns:
* GD_TRUE if the affine is rectilinear or GD_FALSE
*/
int gdAffineInvert (double dst[6], const double src[6])
{
double r_det = (src[0] * src[3] - src[1] * src[2]);
if (r_det <= 0.0) {
return GD_FALSE;
}
r_det = 1.0 / r_det;
dst[0] = src[3] * r_det;
dst[1] = -src[1] * r_det;
dst[2] = -src[2] * r_det;
dst[3] = src[0] * r_det;
dst[4] = -src[4] * dst[0] - src[5] * dst[2];
dst[5] = -src[4] * dst[1] - src[5] * dst[3];
return GD_TRUE;
}
/**
* Function: gdAffineFlip
* Flip an affine transformation horizontally or vertically.
*
* Flips the affine transform, giving GD_FALSE for <flip_horz> and
* <flip_vert> will clone the affine matrix. GD_TRUE for both will
* copy a 180° rotation.
*
* Parameters:
* dst - Where to store the resulting affine transform
* src_affine - Original affine matrix
* flip_h - Whether or not to flip horizontally
* flip_v - Whether or not to flip vertically
*
* Returns:
* GD_SUCCESS on success or GD_FAILURE
*/
int gdAffineFlip (double dst[6], const double src[6], const int flip_h, const int flip_v)
{
dst[0] = flip_h ? - src[0] : src[0];
dst[1] = flip_h ? - src[1] : src[1];
dst[2] = flip_v ? - src[2] : src[2];
dst[3] = flip_v ? - src[3] : src[3];
dst[4] = flip_h ? - src[4] : src[4];
dst[5] = flip_v ? - src[5] : src[5];
return GD_TRUE;
}
/**
* Function: gdAffineConcat
* Concat (Multiply) two affine transformation matrices.
*
* Concats two affine transforms together, i.e. the result
* will be the equivalent of doing first the transformation m1 and then
* m2. All parameters can be the same matrix (safe to call using
* the same array for all three arguments).
*
* Parameters:
* dst - Where to store the resulting affine transform
* m1 - First affine matrix
* m2 - Second affine matrix
*
* Returns:
* GD_SUCCESS on success or GD_FAILURE
*/
int gdAffineConcat (double dst[6], const double m1[6], const double m2[6])
{
double dst0, dst1, dst2, dst3, dst4, dst5;
dst0 = m1[0] * m2[0] + m1[1] * m2[2];
dst1 = m1[0] * m2[1] + m1[1] * m2[3];
dst2 = m1[2] * m2[0] + m1[3] * m2[2];
dst3 = m1[2] * m2[1] + m1[3] * m2[3];
dst4 = m1[4] * m2[0] + m1[5] * m2[2] + m2[4];
dst5 = m1[4] * m2[1] + m1[5] * m2[3] + m2[5];
dst[0] = dst0;
dst[1] = dst1;
dst[2] = dst2;
dst[3] = dst3;
dst[4] = dst4;
dst[5] = dst5;
return GD_TRUE;
}
/**
* Function: gdAffineIdentity
* Set up the identity matrix.
*
* Parameters:
* dst - Where to store the resulting affine transform
*
* Returns:
* GD_SUCCESS on success or GD_FAILURE
*/
int gdAffineIdentity (double dst[6])
{
dst[0] = 1;
dst[1] = 0;
dst[2] = 0;
dst[3] = 1;
dst[4] = 0;
dst[5] = 0;
return GD_TRUE;
}
/**
* Function: gdAffineScale
* Set up a scaling matrix.
*
* Parameters:
* scale_x - X scale factor
* scale_y - Y scale factor
*
* Returns:
* GD_SUCCESS on success or GD_FAILURE
*/
int gdAffineScale (double dst[6], const double scale_x, const double scale_y)
{
dst[0] = scale_x;
dst[1] = 0;
dst[2] = 0;
dst[3] = scale_y;
dst[4] = 0;
dst[5] = 0;
return GD_TRUE;
}
/**
* Function: gdAffineRotate
* Set up a rotation affine transform.
*
* Like the other angle in libGD, in which increasing y moves
* downward, this is a counterclockwise rotation.
*
* Parameters:
* dst - Where to store the resulting affine transform
* angle - Rotation angle in degrees
*
* Returns:
* GD_SUCCESS on success or GD_FAILURE
*/
int gdAffineRotate (double dst[6], const double angle)
{
const double sin_t = sin (angle * M_PI / 180.0);
const double cos_t = cos (angle * M_PI / 180.0);
dst[0] = cos_t;
dst[1] = sin_t;
dst[2] = -sin_t;
dst[3] = cos_t;
dst[4] = 0;
dst[5] = 0;
return GD_TRUE;
}
/**
* Function: gdAffineShearHorizontal
* Set up a horizontal shearing matrix || becomes \\.
*
* Parameters:
* dst - Where to store the resulting affine transform
* angle - Shear angle in degrees
*
* Returns:
* GD_SUCCESS on success or GD_FAILURE
*/
int gdAffineShearHorizontal(double dst[6], const double angle)
{
dst[0] = 1;
dst[1] = 0;
dst[2] = tan(angle * M_PI / 180.0);
dst[3] = 1;
dst[4] = 0;
dst[5] = 0;
return GD_TRUE;
}
/**
* Function: gdAffineShearVertical
* Set up a vertical shearing matrix, columns are untouched.
*
* Parameters:
* dst - Where to store the resulting affine transform
* angle - Shear angle in degrees
*
* Returns:
* GD_SUCCESS on success or GD_FAILURE
*/
int gdAffineShearVertical(double dst[6], const double angle)
{
dst[0] = 1;
dst[1] = tan(angle * M_PI / 180.0);;
dst[2] = 0;
dst[3] = 1;
dst[4] = 0;
dst[5] = 0;
return GD_TRUE;
}
/**
* Function: gdAffineTranslate
* Set up a translation matrix.
*
* Parameters:
* dst - Where to store the resulting affine transform
* offset_x - Horizontal translation amount
* offset_y - Vertical translation amount
*
* Returns:
* GD_SUCCESS on success or GD_FAILURE
*/
int gdAffineTranslate (double dst[6], const double offset_x, const double offset_y)
{
dst[0] = 1;
dst[1] = 0;
dst[2] = 0;
dst[3] = 1;
dst[4] = offset_x;
dst[5] = offset_y;
return GD_TRUE;
}
/**
* gdAffineexpansion: Find the affine's expansion factor.
* @src: The affine transformation.
*
* Finds the expansion factor, i.e. the square root of the factor
* by which the affine transform affects area. In an affine transform
* composed of scaling, rotation, shearing, and translation, returns
* the amount of scaling.
*
* GD_SUCCESS on success or GD_FAILURE
**/
double gdAffineExpansion (const double src[6])
{
return sqrt (fabs (src[0] * src[3] - src[1] * src[2]));
}
/**
* Function: gdAffineRectilinear
* Determines whether the affine transformation is axis aligned. A
* tolerance has been implemented using GD_EPSILON.
*
* Parameters:
* m - The affine transformation
*
* Returns:
* GD_TRUE if the affine is rectilinear or GD_FALSE
*/
int gdAffineRectilinear (const double m[6])
{
return ((fabs (m[1]) < GD_EPSILON && fabs (m[2]) < GD_EPSILON) ||
(fabs (m[0]) < GD_EPSILON && fabs (m[3]) < GD_EPSILON));
}
/**
* Function: gdAffineEqual
* Determines whether two affine transformations are equal. A tolerance
* has been implemented using GD_EPSILON.
*
* Parameters:
* m1 - The first affine transformation
* m2 - The first affine transformation
*
* Returns:
* GD_SUCCESS on success or GD_FAILURE
*/
int gdAffineEqual (const double m1[6], const double m2[6])
{
return (fabs (m1[0] - m2[0]) < GD_EPSILON &&
fabs (m1[1] - m2[1]) < GD_EPSILON &&
fabs (m1[2] - m2[2]) < GD_EPSILON &&
fabs (m1[3] - m2[3]) < GD_EPSILON &&
fabs (m1[4] - m2[4]) < GD_EPSILON &&
fabs (m1[5] - m2[5]) < GD_EPSILON);
}
|