1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
|
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <math.h>
#include "gd.h"
#include "gd_errors.h"
#include "gdhelpers.h"
#include "gd_intern.h"
#ifdef HAVE_LIBAVIF
#include <avif/avif.h>
/*
Define defaults for encoding images:
CHROMA_SUBSAMPLING_DEFAULT: 4:2:0 is commonly used for Chroma subsampling.
CHROMA_SUBAMPLING_HIGH_QUALITY: Use 4:4:4, or no subsampling, when a sufficient high quality is requested.
SUBAMPLING_HIGH_QUALITY_THRESHOLD: At or above this value, use CHROMA_SUBAMPLING_HIGH_QUALITY
QUANTIZER_DEFAULT:
We need more testing to really know what quantizer settings are optimal,
but teams at Google have been using maximum=30 as a starting point.
QUALITY_DEFAULT: following gd conventions, -1 indicates the default.
SPEED_DEFAULT:
AVIF_SPEED_DEFAULT is simply the default encoding speed of the AV1 codec.
This could be as slow as 0. So we use 6, which is currently considered to be a fine default.
*/
#define CHROMA_SUBSAMPLING_DEFAULT AVIF_PIXEL_FORMAT_YUV420
#define CHROMA_SUBAMPLING_HIGH_QUALITY AVIF_PIXEL_FORMAT_YUV444
#define HIGH_QUALITY_SUBSAMPLING_THRESHOLD 90
#define QUANTIZER_DEFAULT 30
#define QUALITY_DEFAULT -1
#define SPEED_DEFAULT 6
// This initial size for the gdIOCtx is standard among GD image conversion functions.
#define NEW_DYNAMIC_CTX_SIZE 2048
// Our quality param ranges from 0 to 100.
// To calculate quality, we convert from AVIF's quantizer scale, which runs from 63 to 0.
#define MAX_QUALITY 100
// These constants are for computing the number of tiles and threads to use during encoding.
// Maximum threads are from libavif/contrib/gkd-pixbuf/loader.c.
#define MIN_TILE_AREA (512 * 512)
#define MAX_TILES 8
#define MAX_THREADS 64
/*** Macros ***/
/*
From gd_png.c:
convert the 7-bit alpha channel to an 8-bit alpha channel.
We do a little bit-flipping magic, repeating the MSB
as the LSB, to ensure that 0 maps to 0 and
127 maps to 255. We also have to invert to match
PNG's convention in which 255 is opaque.
*/
#define alpha7BitTo8Bit(alpha7Bit) \
(alpha7Bit == 127 ? \
0 : \
255 - ((alpha7Bit << 1) + (alpha7Bit >> 6)))
#define alpha8BitTo7Bit(alpha8Bit) (gdAlphaMax - (alpha8Bit >> 1))
/*** Helper functions ***/
/* Convert the quality param we expose to the quantity params used by libavif.
The *Quantizer* params values can range from 0 to 63, with 0 = highest quality and 63 = worst.
We make the scale 0-100, and we reverse this, so that 0 = worst quality and 100 = highest.
Values below 0 are set to 0, and values below MAX_QUALITY are set to MAX_QUALITY.
*/
static int quality2Quantizer(int quality) {
int clampedQuality = CLAMP(quality, 0, MAX_QUALITY);
float scaleFactor = (float) AVIF_QUANTIZER_WORST_QUALITY / (float) MAX_QUALITY;
return round(scaleFactor * (MAX_QUALITY - clampedQuality));
}
/*
As of February 2021, this algorithm reflects the latest research on how many tiles
and threads to include for a given image size.
This is subject to change as research continues.
Returns false if there was an error, true if all was well.
*/
static avifBool setEncoderTilesAndThreads(avifEncoder *encoder, avifRGBImage *rgb) {
int imageArea, tiles, tilesLog2, encoderTiles;
// _gdImageAvifCtx(), the calling function, checks this operation for overflow
imageArea = rgb->width * rgb->height;
tiles = (int) ceil((double) imageArea / MIN_TILE_AREA);
tiles = MIN(tiles, MAX_TILES);
tiles = MIN(tiles, MAX_THREADS);
// The number of tiles in any dimension will always be a power of 2. We can only specify log(2)tiles.
tilesLog2 = floor(log2(tiles));
// If the image's width is greater than the height, use more tile columns
// than tile rows to make the tile size close to a square.
if (rgb->width >= rgb->height) {
encoder->tileRowsLog2 = tilesLog2 / 2;
encoder->tileColsLog2 = tilesLog2 - encoder->tileRowsLog2;
} else {
encoder->tileColsLog2 = tilesLog2 / 2;
encoder->tileRowsLog2 = tilesLog2 - encoder->tileColsLog2;
}
// It's good to have one thread per tile.
encoderTiles = (1 << encoder->tileRowsLog2) * (1 << encoder->tileColsLog2);
encoder->maxThreads = encoderTiles;
return AVIF_TRUE;
}
/*
We can handle AVIF images whose color profile is sRGB, or whose color profile isn't set.
*/
static avifBool isAvifSrgbImage(avifImage *avifIm) {
return
(avifIm->colorPrimaries == AVIF_COLOR_PRIMARIES_BT709 ||
avifIm->colorPrimaries == AVIF_COLOR_PRIMARIES_UNSPECIFIED) &&
(avifIm->transferCharacteristics == AVIF_TRANSFER_CHARACTERISTICS_SRGB ||
avifIm->transferCharacteristics == AVIF_TRANSFER_CHARACTERISTICS_UNSPECIFIED)
;
}
/*
Check the result from an Avif function to see if it's an error.
If so, decode the error and output it, and return true.
Otherwise, return false.
*/
static avifBool isAvifError(avifResult result, const char *msg) {
if (result != AVIF_RESULT_OK) {
gd_error("avif error - %s: %s\n", msg, avifResultToString(result));
return AVIF_TRUE;
}
return AVIF_FALSE;
}
typedef struct avifIOCtxReader {
avifIO io; // this must be the first member for easy casting to avifIO*
avifROData rodata;
} avifIOCtxReader;
/*
<readfromCtx> implements the avifIOReadFunc interface by calling the relevant functions
in the gdIOCtx. Our logic is inspired by avifIOMemoryReaderRead() and avifIOFileReaderRead().
We don't know whether we're reading from a file or from memory. We don't have to know,
since we rely on the helper functions in the gdIOCtx.
We assume we've stashed the gdIOCtx in io->data, as we do in createAvifIOFromCtx().
We ignore readFlags, just as the avifIO*ReaderRead() functions do.
If there's a problem, this returns an avifResult error.
If things go well, return AVIF_RESULT_OK.
Of course these AVIF codes shouldn't be returned by any top-level GD function.
*/
static avifResult readFromCtx(avifIO *io, uint32_t readFlags, uint64_t offset, size_t size, avifROData *out)
{
gdIOCtx *ctx = (gdIOCtx *) io->data;
avifIOCtxReader *reader = (avifIOCtxReader *) io;
// readFlags is unsupported
if (readFlags != 0) {
return AVIF_RESULT_IO_ERROR;
}
// TODO: if we set sizeHint, this will be more efficient.
if (offset > INT_MAX || size > INT_MAX)
return AVIF_RESULT_IO_ERROR;
// Try to seek offset bytes forward. If we pass the end of the buffer, throw an error.
if (!ctx->seek(ctx, (int) offset))
return AVIF_RESULT_IO_ERROR;
if (size > reader->rodata.size) {
reader->rodata.data = gdRealloc((void *) reader->rodata.data, size);
reader->rodata.size = size;
}
if (!reader->rodata.data) {
gd_error("avif error - couldn't allocate memory");
return AVIF_RESULT_UNKNOWN_ERROR;
}
// Read the number of bytes requested.
// If getBuf() returns a negative value, that means there was an error.
int charsRead = ctx->getBuf(ctx, (void *) reader->rodata.data, (int) size);
if (charsRead < 0) {
return AVIF_RESULT_IO_ERROR;
}
out->data = reader->rodata.data;
out->size = charsRead;
return AVIF_RESULT_OK;
}
// avif.h says this is optional, but it seemed easy to implement.
static void destroyAvifIO(struct avifIO *io) {
avifIOCtxReader *reader = (avifIOCtxReader *) io;
if (reader->rodata.data != NULL) {
gdFree((void *) reader->rodata.data);
}
gdFree(reader);
}
/* Set up an avifIO object.
The functions in the gdIOCtx struct may point either to a file or a memory buffer.
To us, that's immaterial.
Our task is simply to assign avifIO functions to the proper functions from gdIOCtx.
The destroy function needs to destroy the avifIO object and anything else it uses.
Returns NULL if memory for the object can't be allocated.
*/
// TODO: can we get sizeHint somehow?
static avifIO *createAvifIOFromCtx(gdIOCtx *ctx) {
struct avifIOCtxReader *reader;
reader = gdMalloc(sizeof(*reader));
if (reader == NULL)
return NULL;
// TODO: setting persistent=FALSE is safe, but it's less efficient. Is it necessary?
reader->io.persistent = AVIF_FALSE;
reader->io.read = readFromCtx;
reader->io.write = NULL; // this function is currently unused; see avif.h
reader->io.destroy = destroyAvifIO;
reader->io.sizeHint = 0; // sadly, we don't get this information from the gdIOCtx.
reader->io.data = ctx;
reader->rodata.data = NULL;
reader->rodata.size = 0;
return (avifIO *) reader;
}
/*** Decoding functions ***/
/*
Function: gdImageCreateFromAvif
<gdImageCreateFromAvif> is called to load truecolor images from
AVIF format files. Invoke <gdImageCreateFromAvif> with an
already opened pointer to a file containing the desired
image. <gdImageCreateFromAvif> returns a <gdImagePtr> to the new
truecolor image, or NULL if unable to load the image (most often
because the file is corrupt or does not contain a AVIF
image). <gdImageCreateFromAvif> does not close the file.
This function creates a gdIOCtx struct from the file pointer it's passed.
And then it relies on <gdImageCreateFromAvifCtx> to do the real decoding work.
If the file contains an image sequence, we simply read the first one, discarding the rest.
Variants:
<gdImageCreateFromAvifPtr> creates an image from AVIF data
already in memory.
<gdImageCreateFromAvifCtx> reads data from the function
pointers in a <gdIOCtx> structure.
Parameters:
infile - pointer to the input file
Returns:
A pointer to the new truecolor image. This will need to be
destroyed with <gdImageDestroy> once it is no longer needed.
On error, returns 0.
*/
gdImagePtr gdImageCreateFromAvif(FILE *infile)
{
gdImagePtr im;
gdIOCtx *ctx = gdNewFileCtx(infile);
if (!ctx)
return NULL;
im = gdImageCreateFromAvifCtx(ctx);
ctx->gd_free(ctx);
return im;
}
/*
Function: gdImageCreateFromAvifPtr
See <gdImageCreateFromAvif>.
Parameters:
size - size of Avif data in bytes.
data - pointer to Avif data.
*/
gdImagePtr gdImageCreateFromAvifPtr(int size, void *data)
{
gdImagePtr im;
gdIOCtx *ctx = gdNewDynamicCtxEx(size, data, 0);
if (!ctx)
return 0;
im = gdImageCreateFromAvifCtx(ctx);
ctx->gd_free(ctx);
return im;
}
/*
Function: gdImageCreateFromAvifCtx
See <gdImageCreateFromAvif>.
Additional details: the AVIF library comes with functions to create an IO object from
a file and from a memory pointer. Of course, it doesn't have a way to create an IO object
from a gdIOCtx. So, here, we use our own helper function, <createAvifIOfromCtx>.
Otherwise, we create the image by calling AVIF library functions in order:
* avifDecoderCreate(), to create the decoder
* avifDecoderSetIO(), to tell libavif how to read from our data structure
* avifDecoderParse(), to parse the image
* avifDecoderNextImage(), to read the first image from the decoder
* avifRGBImageSetDefaults(), to create the avifRGBImage
* avifRGBImageAllocatePixels(), to allocate memory for the pixels
* avifImageYUVToRGB(), to convert YUV to RGB
Finally, we create a new gd image and copy over the pixel data.
Parameters:
ctx - a gdIOCtx struct
*/
gdImagePtr gdImageCreateFromAvifCtx (gdIOCtx *ctx)
{
uint32_t x, y;
gdImage *im = NULL;
avifResult result;
avifIO *io;
avifDecoder *decoder;
avifRGBImage rgb;
// this lets us know that memory hasn't been allocated yet for the pixels
rgb.pixels = NULL;
decoder = avifDecoderCreate();
// Check if libavif version is >= 0.9.1
// If so, allow the PixelInformationProperty ('pixi') to be missing in AV1 image
// items. libheif v1.11.0 or older does not add the 'pixi' item property to
// AV1 image items. (This issue has been corrected in libheif v1.12.0.)
#if AVIF_VERSION >= 90100
decoder->strictFlags &= ~AVIF_STRICT_PIXI_REQUIRED;
#endif
io = createAvifIOFromCtx(ctx);
if (!io) {
gd_error("avif error - Could not allocate memory");
goto cleanup;
}
avifDecoderSetIO(decoder, io);
result = avifDecoderParse(decoder);
if (isAvifError(result, "Could not parse image"))
goto cleanup;
// Note again that, for an image sequence, we read only the first image, ignoring the rest.
result = avifDecoderNextImage(decoder);
if (isAvifError(result, "Could not decode image"))
goto cleanup;
if (!isAvifSrgbImage(decoder->image))
gd_error_ex(GD_NOTICE, "Image's color profile is not sRGB");
// Set up the avifRGBImage, and convert it from YUV to an 8-bit RGB image.
// (While AVIF image pixel depth can be 8, 10, or 12 bits, GD truecolor images are 8-bit.)
avifRGBImageSetDefaults(&rgb, decoder->image);
rgb.depth = 8;
#if AVIF_VERSION >= 1000000
result = avifRGBImageAllocatePixels(&rgb);
if (isAvifError(result, "Allocating RGB pixels failed"))
goto cleanup;
#else
avifRGBImageAllocatePixels(&rgb);
#endif
result = avifImageYUVToRGB(decoder->image, &rgb);
if (isAvifError(result, "Conversion from YUV to RGB failed"))
goto cleanup;
im = gdImageCreateTrueColor(decoder->image->width, decoder->image->height);
if (!im) {
gd_error("avif error - Could not create GD truecolor image");
goto cleanup;
}
im->saveAlphaFlag = 1;
// Read the pixels from the AVIF image and copy them into the GD image.
uint8_t *p = rgb.pixels;
for (y = 0; y < decoder->image->height; y++) {
for (x = 0; x < decoder->image->width; x++) {
uint8_t r = *(p++);
uint8_t g = *(p++);
uint8_t b = *(p++);
uint8_t a = alpha8BitTo7Bit(*(p++));
im->tpixels[y][x] = gdTrueColorAlpha(r, g, b, a);
}
}
cleanup:
// if io has been allocated, this frees it
avifDecoderDestroy(decoder);
if (rgb.pixels)
avifRGBImageFreePixels(&rgb);
return im;
}
/*** Encoding functions ***/
/*
Function: gdImageAvifEx
<gdImageAvifEx> outputs the specified image to the specified file in
AVIF format. The file must be open for writing. Under MSDOS and
all versions of Windows, it is important to use "wb" as opposed to
simply "w" as the mode when opening the file, and under Unix there
is no penalty for doing so. <gdImageAvifEx> does not close the file;
your code must do so.
Variants:
<gdImageAvifEx> writes the image to a file, encoding with the default quality and speed.
<gdImageAvifPtrEx> stores the image in RAM.
<gdImageAvifPtr> stores the image in RAM, encoding with the default quality and speed.
<gdImageAvifCtx> stores the image using a <gdIOCtx> struct.
Parameters:
im - The image to save.
outFile - The FILE pointer to write to.
quality - Compression quality (0-100). 0 is lowest-quality, 100 is highest.
speed - The speed of compression (0-10). 0 is slowest, 10 is fastest.
Notes on parameters:
quality - If quality = -1, we use a default quality as defined in QUALITY_DEFAULT.
For information on how we convert this quality to libavif's quantity param, see <quality2Quantizer>.
speed - At slower speeds, encoding may be quite slow. Use judiciously.
Qualities or speeds that are lower than the minimum value get clamped to the minimum value,
and qualities or speeds that are lower than the maximum value get clamped to the maxmum value.
Note that AVIF_SPEED_DEFAULT is -1. If we ever set SPEED_DEFAULT = AVIF_SPEED_DEFAULT,
we'd want to add a conditional to ensure that value doesn't get clamped.
Returns:
* for <gdImageAvifEx>, <gdImageAvif>, and <gdImageAvifCtx>, nothing.
* for <gdImageAvifPtrEx> and <gdImageAvifPtr>, a pointer to the image in memory.
*/
/*
If we're passed the QUALITY_DEFAULT of -1, set the quantizer params to QUANTIZER_DEFAULT.
*/
void gdImageAvifCtx(gdImagePtr im, gdIOCtx *outfile, int quality, int speed)
{
avifResult result;
avifRGBImage rgb;
avifRWData avifOutput = AVIF_DATA_EMPTY;
avifBool lossless = quality == 100;
avifEncoder *encoder = NULL;
uint32_t val;
uint8_t *p;
uint32_t x, y;
if (im == NULL)
return;
if (!gdImageTrueColor(im)) {
gd_error("avif error - avif doesn't support palette images");
return;
}
if (!gdImageSX(im) || !gdImageSY(im)) {
gd_error("avif error - image dimensions must not be zero");
return;
}
if (overflow2(gdImageSX(im), gdImageSY(im))) {
gd_error("avif error - image dimensions are too large");
return;
}
speed = CLAMP(speed, AVIF_SPEED_SLOWEST, AVIF_SPEED_FASTEST);
avifPixelFormat subsampling = quality >= HIGH_QUALITY_SUBSAMPLING_THRESHOLD ?
CHROMA_SUBAMPLING_HIGH_QUALITY : CHROMA_SUBSAMPLING_DEFAULT;
// Create the AVIF image.
// Set the ICC to sRGB, as that's what gd supports right now.
// Note that MATRIX_COEFFICIENTS_IDENTITY enables lossless conversion from RGB to YUV.
avifImage *avifIm = avifImageCreate(gdImageSX(im), gdImageSY(im), 8, subsampling);
#if AVIF_VERSION >= 1000000
if (avifIm == NULL) {
gd_error("avif error - Creating image failed\n");
goto cleanup;
}
#endif
avifIm->colorPrimaries = AVIF_COLOR_PRIMARIES_BT709;
avifIm->transferCharacteristics = AVIF_TRANSFER_CHARACTERISTICS_SRGB;
avifIm->matrixCoefficients = lossless ? AVIF_MATRIX_COEFFICIENTS_IDENTITY : AVIF_MATRIX_COEFFICIENTS_BT709;
avifRGBImageSetDefaults(&rgb, avifIm);
// this allocates memory, and sets rgb.rowBytes and rgb.pixels.
#if AVIF_VERSION >= 1000000
result = avifRGBImageAllocatePixels(&rgb);
if (isAvifError(result, "Allocating RGB pixels failed"))
goto cleanup;
#else
avifRGBImageAllocatePixels(&rgb);
#endif
// Parse RGB data from the GD image, and copy it into the AVIF RGB image.
// Convert 7-bit GD alpha channel values to 8-bit AVIF values.
p = rgb.pixels;
for (y = 0; y < rgb.height; y++) {
for (x = 0; x < rgb.width; x++) {
val = im->tpixels[y][x];
*(p++) = gdTrueColorGetRed(val);
*(p++) = gdTrueColorGetGreen(val);
*(p++) = gdTrueColorGetBlue(val);
*(p++) = alpha7BitTo8Bit(gdTrueColorGetAlpha(val));
}
}
// Convert the RGB image to YUV.
result = avifImageRGBToYUV(avifIm, &rgb);
if (isAvifError(result, "Could not convert image to YUV"))
goto cleanup;
// Encode the image in AVIF format.
encoder = avifEncoderCreate();
#if AVIF_VERSION >= 1000000
if (encoder == NULL) {
gd_error("avif error - Creating encoder failed\n");
goto cleanup;
}
#endif
int quantizerQuality = quality == QUALITY_DEFAULT ?
QUANTIZER_DEFAULT : quality2Quantizer(quality);
encoder->minQuantizer = quantizerQuality;
encoder->maxQuantizer = quantizerQuality;
encoder->minQuantizerAlpha = quantizerQuality;
encoder->maxQuantizerAlpha = quantizerQuality;
encoder->speed = speed;
if (!setEncoderTilesAndThreads(encoder, &rgb))
goto cleanup;
//TODO: is there a reason to use timeSscales != 1?
result = avifEncoderAddImage(encoder, avifIm, 1, AVIF_ADD_IMAGE_FLAG_SINGLE);
if (isAvifError(result, "Could not encode image"))
goto cleanup;
result = avifEncoderFinish(encoder, &avifOutput);
if (isAvifError(result, "Could not finish encoding"))
goto cleanup;
// Write the AVIF image bytes to the GD ctx.
gdPutBuf(avifOutput.data, avifOutput.size, outfile);
cleanup:
if (rgb.pixels)
avifRGBImageFreePixels(&rgb);
if (encoder)
avifEncoderDestroy(encoder);
if (avifOutput.data)
avifRWDataFree(&avifOutput);
if (avifIm)
avifImageDestroy(avifIm);
}
void gdImageAvifEx(gdImagePtr im, FILE *outFile, int quality, int speed)
{
gdIOCtx *out = gdNewFileCtx(outFile);
if (out != NULL) {
gdImageAvifCtx(im, out, quality, speed);
out->gd_free(out);
}
}
void gdImageAvif(gdImagePtr im, FILE *outFile)
{
gdImageAvifEx(im, outFile, QUALITY_DEFAULT, SPEED_DEFAULT);
}
void * gdImageAvifPtrEx(gdImagePtr im, int *size, int quality, int speed)
{
void *rv;
gdIOCtx *out = gdNewDynamicCtx(NEW_DYNAMIC_CTX_SIZE, NULL);
if (out == NULL) {
return NULL;
}
gdImageAvifCtx(im, out, quality, speed);
rv = gdDPExtractData(out, size);
out->gd_free(out);
return rv;
}
void * gdImageAvifPtr(gdImagePtr im, int *size)
{
return gdImageAvifPtrEx(im, size, QUALITY_DEFAULT, AVIF_SPEED_DEFAULT);
}
#endif /* HAVE_LIBAVIF */
|