1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdio.h>
#include "pico/stdlib.h"
// This test covers the single-precision functions in:
//
// src/pico_float/float_hazard3_single.S
//
// It assumes the canonical generated-NaN value and NaN sign rules used by
// those functions (which are unspecified by IEEE 754). It does not cover
// libgcc/libm functions from outside of that source file.
typedef struct {
uint32_t x;
uint32_t y;
uint32_t expect;
} test_t;
test_t add_directed_tests[] = {
// 1 + 1 = 2
{0x3f800000u, 0x3f800000u, 0x40000000u},
// 2 + 1 = 3
{0x40000000u, 0x3f800000u, 0x40400000u},
// 1 + 2 = 3
{0x3f800000u, 0x40000000u, 0x40400000u},
// 1 + -1 = +0 (exact cancellation)
{0x3f800000u, 0xbf800000u, 0x00000000u},
// -1 + 1 = +0 (exact cancellation)
{0xbf800000u, 0x3f800000u, 0x00000000u},
// 1 + <<1 ulp = 1
{0x3f800000u, 0x2f800000u, 0x3f800000u},
// <<1 ulp + 1 = 1
{0x2f800000u, 0x3f800000u, 0x3f800000u},
// -1 + 1.25 = 0.25
{0xbf800000u, 0x3fa00000u, 0x3e800000u},
// max normal + 0.5 ulp = +inf
{0x7f7fffffu, 0x73000000u, 0x7f800000u},
// max normal + max normal = +inf
{0x7f7fffffu, 0x7f7fffffu, 0x7f800000u},
// min normal - 0.5 ulp = -inf
{0xff7fffffu, 0xf3000000u, 0xff800000u},
// min normal + min_normal = -inf
{0xff7fffffu, 0xff7fffffu, 0xff800000u},
// max normal + 0.499... ulp = max normal
{0x7f7fffffu, 0x72ffffffu, 0x7f7fffffu},
// min normal - 0.499... ulp = min normal
{0xff7fffffu, 0xf2ffffffu, 0xff7fffffu},
// nan + 0 = same nan
{0xffff1234u, 0x00000000u, 0xffff1234u},
// 0 + nan = same nan
{0x00000000u, 0xffff1234u, 0xffff1234u},
// nan + 1 = same nan
{0xffff1234u, 0x3f800000u, 0xffff1234u},
// 1 + nan = same nan
{0x3f800000u, 0xffff1234u, 0xffff1234u},
// nan + inf = same nan
{0xffff1234u, 0x7f800000u, 0xffff1234u},
// inf + nan = same nan
{0x7f800000u, 0xffff1234u, 0xffff1234u},
// inf + inf = inf
{0x7f800000u, 0x7f800000u, 0x7f800000u},
// -inf + -inf = -inf
{0xff800000u, 0xff800000u, 0xff800000u},
// inf + -inf = nan (all-ones is our canonical cheap nan)
{0x7f800000u, 0xff800000u, 0xffffffffu},
// -inf + inf = nan
{0xff800000u, 0x7f800000u, 0xffffffffu},
// subnormal + subnormal = exactly 0
{0x007fffffu, 0x007fffffu, 0x00000000u},
// -subnormal + -subnormal = exactly -0
{0x807fffffu, 0x807fffffu, 0x80000000u},
// Even + 0.5 ulp: round down
{0x3f800002u, 0x33800000u, 0x3f800002u},
// Even - 0.5 ulp: round up
{0x3f800002u, 0xb3800000u, 0x3f800002u},
// Odd + 0.5 ulp: round up
{0x3f800001u, 0x33800000u, 0x3f800002u},
// Odd - 0.5 ulp: round down
{0x3f800001u, 0xb3800000u, 0x3f800000u},
// All-zeroes significand - 0.5 ulp: no rounding (exact)
{0x3f800000u, 0xb3800000u, 0x3f7fffffu},
// Very subnormal difference of normals: flushed to zero
{0x03800000u, 0x837fffffu, 0x00000000u},
// Barely subnormal difference of normals: also flushed (unflushed result is 2^(emin-1))
{0x03800000u, 0x837e0000u, 0x00000000u},
};
test_t mul_directed_tests[] = {
// -- directed tests --
// 1 * 1 = 1
{0x3f800000u, 0x3f800000u, 0x3f800000u},
// 1 * -1 = -1
{0x3f800000u, 0xbf800000u, 0xbf800000u},
// -1 * 1 = -1
{0xbf800000u, 0x3f800000u, 0xbf800000u},
// -1 * -1 = 1
{0xbf800000u, 0xbf800000u, 0x3f800000u},
// -0 * 0 = -0
{0x80000000u, 0x00000000u, 0x80000000u},
// 0 * -0 = - 0
{0x00000000u, 0x80000000u, 0x80000000u},
// 1 * 2 = 2
{0x3f800000u, 0x40000000u, 0x40000000u},
// 2 * 1 = 2
{0x40000000u, 0x3f800000u, 0x40000000u},
// inf * inf = inf
{0x7f800000u, 0x7f800000u, 0x7f800000u},
// inf * -inf = -inf
{0x7f800000u, 0xff800000u, 0xff800000u},
// inf * 0 = nan
{0x7f800000u, 0x00000000u, 0xffffffffu},
// 0 * inf = nan
{0x00000000u, 0x7f800000u, 0xffffffffu},
// 1 * -inf = -inf
{0x3f800000u, 0xff800000u, 0xff800000u},
// -inf * 1 = -inf
{0xff800000u, 0x3f800000u, 0xff800000u},
// -1 * inf = -inf
{0xbf800000u, 0x7f800000u, 0xff800000u},
// inf * -1 = -inf
{0x7f800000u, 0xbf800000u, 0xff800000u},
// 1 * nonzero subnormal = exactly 0
{0x3f800000u, 0x007fffffu, 0x00000000u},
// nonzero subnormal * -1 = exactly -0
{0x007fffffu, 0xbf800000u, 0x80000000u},
// nan * 0 = same nan
{0xffff1234u, 0x00000000u, 0xffff1234u},
// 0 * nan = same nan
{0x00000000u, 0xffff1234u, 0xffff1234u},
// nan * 1 = same nan
{0xffff1234u, 0x3f800000u, 0xffff1234u},
// 1 * nan = same nan
{0x3f800000u, 0xffff1234u, 0xffff1234u},
// nan * inf = same nan
{0xffff1234u, 0x7f800000u, 0xffff1234u},
// inf * nan = same nan
{0x7f800000u, 0xffff1234u, 0xffff1234u},
// (2 - 0.5 ulp) x (2 - 0.5 ulp) = 4 - 0.5 ulp
{0x3fffffffu, 0x3fffffffu, 0x407ffffeu},
// (2 - 0.5 ulp) x (1 + 1 ulp) = 2 exactly
{0xbfffffffu, 0x3f800001u, 0xc0000000u},
// 1.666... * 1.333.. = 2.222...
{0x3fd55555u, 0x3faaaaaau, 0x400e38e3u},
// 1.25 x 2^-63 x 1.25 x 2^-64 = 0
// (normal inputs with subnormal output, and we claim to be FTZ)
{0x20200000u, 0x1fa00000u, 0x00000000u},
// 1.333333 (rounded down) x 1.5 = 2 - 1 ulp
{0x3faaaaaau, 0x3fc00000u, 0x3fffffffu},
// 1.333333 (rounded down) x (1.5 + 1 ulp) = 2 exactly
{0x3faaaaaau, 0x3fc00001u, 0x40000000u},
// (1.333333 (rounded down) + 1 ulp) x 1.5 = 2 exactly
{0x3faaaaabu, 0x3fc00000u, 0x40000000u},
// (1.25 - 1 ulp) x (0.8 + 1 ulp) = 1 exactly (exponent increases after rounding)
{0x3f9fffffu, 0x3f4cccceu, 0x3f800000u},
// as above, but overflow on exponent increase -> +inf
{0x3f9fffffu, 0x7f4cccceu, 0x7f800000u},
// subtract 1 ulp from rhs -> largest normal
{0x3f9fffffu, 0x7f4ccccdu, 0x7f7fffffu},
};
#define N_RANDOM_TESTS 1000
extern test_t add_random_tests[N_RANDOM_TESTS];
extern test_t mul_random_tests[N_RANDOM_TESTS];
uint32_t __addsf3(uint32_t x, uint32_t y);
uint32_t __mulsf3(uint32_t x, uint32_t y);
int run_tests(test_t *tests, int n_tests, const char *op_str, uint32_t (*func)(uint32_t, uint32_t)) {
int failed = 0;
for (int i = 0; i < n_tests; ++i) {
uint32_t actual = func(tests[i].x, tests[i].y);
if (tests[i].expect != actual) {
printf("%08x %s %08x -> %08x", tests[i].x, op_str, tests[i].y, tests[i].expect);
printf(" FAIL: got %08x\n", actual);
++failed;
}
}
printf("Passed: %d / %d\n", n_tests - failed, n_tests);
return failed;
}
int main() {
stdio_init_all();
int failed = 0;
sleep_ms(3000);
printf("Testing: __addsf3 (directed tests)\n");
failed += run_tests(add_directed_tests, count_of(add_directed_tests), "+", __addsf3);
printf("Testing: __mulsf3 (directed tests)\n");
failed += run_tests(mul_directed_tests, count_of(mul_directed_tests), "*", __mulsf3);
if (failed) {
printf("Skipping random tests due to %d test failures\n", failed);
goto done;
}
printf("Testing: __addsf3 (random tests)\n");
failed += run_tests(add_random_tests, N_RANDOM_TESTS, "+", __addsf3);
printf("Testing: __mulsf3 (random tests)\n");
failed += run_tests(mul_random_tests, N_RANDOM_TESTS, "*", __mulsf3);
printf("%d tests failed.\n", failed);
if (failed == 0) {
printf("Well done, you can relax now\n");
}
done:
while (true) {asm volatile ("wfi\n");} // keep USB stdout alive
return 0;
}
// Generated using the FPU on my machine (Zen 4) plus FTZ on inputs/outputs
// See hazard3_test_gen.c
test_t add_random_tests[N_RANDOM_TESTS] = {
#include "vectors/hazard3_addsf.inc"
};
test_t mul_random_tests[N_RANDOM_TESTS] = {
#include "vectors/hazard3_mulsf.inc"
};
|