File: math2.c

package info (click to toggle)
picolibc 1.5.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 27,124 kB
  • sloc: ansic: 266,005; asm: 22,255; perl: 2,388; sh: 1,016; python: 994; exp: 282; makefile: 94; xml: 39
file content (248 lines) | stat: -rw-r--r-- 4,249 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
 * Copyright (c) 1994 Cygnus Support.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms are permitted
 * provided that the above copyright notice and this paragraph are
 * duplicated in all such forms and that any documentation,
 * and/or other materials related to such
 * distribution and use acknowledge that the software was developed
 * at Cygnus Support, Inc.  Cygnus Support, Inc. may not be used to
 * endorse or promote products derived from this software without
 * specific prior written permission.
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 */

#include "test.h"
#include <errno.h>


int
randi (void)
{
  static int next;
  next = (next * 1103515245) + 12345;
  return ((next >> 16) & 0xffff);
}

double randx (void)
{
  double res;

  do
  {
    union {
	short parts[4];
	double res;
      } u;

    u.parts[0] = randi();
    u.parts[1] = randi();
    u.parts[2] = randi();
    u.parts[3] = randi();
    res = u.res;

  } while (!finite(res));

  return res ;
}

/* Return a random double, but bias for numbers closer to 0 */
double randy (void)
{
  int pow;
  double r= randx();
  r = frexp(r, &pow);
  return ldexp(r, randi() & 0x1f);
}

void
test_frexp (void)
{
  int i;
  double r;
  int t;

  float xf;
  double gives;

  int pow;


  /* Frexp of x return a and n, where a * 2**n == x, so test this with a
     set of random numbers */
  for (t = 0; t < 2; t++)
  {
    for (i = 0; i < 1000; i++)
    {

      double x = randx();
      line(i);
      switch (t)
      {
      case 0:
	newfunc("frexp/ldexp");
	r = frexp(x, &pow);
	if (r > 1.0 || r < -1.0)
	{
	  /* Answer can never be > 1 or < 1 */
	  test_iok(0,1);
	}

	gives = ldexp(r ,pow);
	test_mok(gives,x,62);
	break;
      case 1:
	newfunc("frexpf/ldexpf");
	if (x > (double) FLT_MIN && x < (double) FLT_MAX)
	{
	  /* test floats too, but they have a smaller range so make sure x
	     isn't too big. Also x can get smaller than a float can
	     represent to make sure that doesn't happen too */
	  xf = x;
	  r = (double) frexpf(xf, &pow);
	  if (r > 1.0 || r < -1.0)
	  {
	    /* Answer can never be > 1 or < -1 */
	    test_iok(0,1);
	  }

	  gives = (double) ldexpf(r ,pow);
	  test_mok(gives,x, 32);

	}
      }

    }

  }

  /* test a few numbers manually to make sure frexp/ldexp are not
     testing as ok because both are broken */

  r = frexp(64.0, &i);

  test_mok(r, 0.5,64);
  test_iok(i, 7);

  r = frexp(96.0, &i);

  test_mok(r, 0.75, 64);
  test_iok(i, 7);

}

/* Test mod - this is given a real hammering by the strtod type
   routines, here are some more tests.

   By definition

   modf = func(value, &iptr)

      (*iptr + modf) == value

   we test this

*/
void
test_mod (void)
{
  int i;

  newfunc("modf");


  for (i = 0; i < 1000; i++)
  {
    double intpart;
    double n;
    line(i);
    n  = randx();
    if (finite(n) && n != 0.0 )
    {
      double r = modf(n, &intpart);
      line(i);
      test_mok(intpart + r, n, 63);
    }

  }
  newfunc("modff");

  for (i = 0; i < 1000; i++)
  {
    float intpart;
    double nd;
    line(i);
    nd  = randx() ;
    if (nd < (double) FLT_MAX && finitef(nd) && nd != 0.0)
    {
      float n = nd;
      double r = (double) modff(n, &intpart);
      line(i);
      test_mok((double) intpart + r, (double) n, 32);
    }
  }


}

/*
Test pow by multiplying logs
*/
void
test_pow (void)
{
  unsigned int i;
  newfunc("pow");

  for (i = 0; i < 1000; i++)
  {
    double n1;
    double n2;
    double res;
    double shouldbe;

    line(i);
    n1 = fabs(randy());
    n2 = fabs(randy()/100.0);
    res = pow(n1, n2);
    shouldbe = exp(log(n1) * n2);
    test_mok(shouldbe, res,55);
  }

  newfunc("powf");

  for (i = 0; i < 1000; i++)
  {
    float n1;
    float n2;
    float res;
    float shouldbe;

    errno = 0;

    line(i);
    n1 = fabs(randy());
    n2 = fabs(randy()/100.0);
    res = powf(n1, n2);
    shouldbe = expf(logf(n1) * n2);
    if (!errno)
      test_mok((double) shouldbe, (double) res,28);
  }




}



void
test_math2 (void)
{
  test_mod();
  test_frexp();
  test_pow();
}