1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
// Copyright 2019 Ulf Adams
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
// (See accompanying file LICENSE-Apache or copy at
// http://www.apache.org/licenses/LICENSE-2.0)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
// (See accompanying file LICENSE-Boost or copy at
// https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#ifdef RYU_DEBUG
#include <inttypes.h>
#include <stdio.h>
#endif
#include "ryu/common.h"
#include "ryu/d2s_intrinsics.h"
#define DOUBLE_MANTISSA_BITS 52
#define DOUBLE_EXPONENT_BITS 11
#define DOUBLE_EXPONENT_BIAS 1023
#if defined(_MSC_VER)
#include <intrin.h>
static inline uint32_t floor_log2(const uint64_t value) {
long index;
return _BitScanReverse64(&index, value) ? index : 64;
}
#else
static inline uint32_t floor_log2(const uint64_t value) {
return 63 - __builtin_clzll(value);
}
#endif
// The max function is already defined on Windows.
static inline int32_t max32(int32_t a, int32_t b) {
return a < b ? b : a;
}
static inline double int64Bits2Double(uint64_t bits) {
double f;
memcpy(&f, &bits, sizeof(double));
return f;
}
double
__atod_engine(uint64_t m10, int e10)
{
#ifdef RYU_DEBUG
printf("m10 = %ld\n", m10);
printf("e10 = %d\n", e10);
printf("m10 * 10^e10 = %" PRIu64 " * 10^%d\n", m10, e10);
#endif
// Convert to binary float m2 * 2^e2, while retaining information about whether the conversion
// was exact (trailingZeros).
int32_t e2;
uint64_t m2;
bool trailingZeros;
if (e10 >= 0) {
// The length of m * 10^e in bits is:
// log2(m10 * 10^e10) = log2(m10) + e10 log2(10) = log2(m10) + e10 + e10 * log2(5)
//
// We want to compute the DOUBLE_MANTISSA_BITS + 1 top-most bits (+1 for the implicit leading
// one in IEEE format). We therefore choose a binary output exponent of
// log2(m10 * 10^e10) - (DOUBLE_MANTISSA_BITS + 1).
//
// We use floor(log2(5^e10)) so that we get at least this many bits; better to
// have an additional bit than to not have enough bits.
e2 = floor_log2(m10) + e10 + log2pow5(e10) - (DOUBLE_MANTISSA_BITS + 1);
// We now compute [m10 * 10^e10 / 2^e2] = [m10 * 5^e10 / 2^(e2-e10)].
// To that end, we use the DOUBLE_POW5_SPLIT table.
int j = e2 - e10 - ceil_log2pow5(e10) + DOUBLE_POW5_BITCOUNT;
assert(j >= 0);
uint64_t pow5[2];
__double_computePow5(e10, pow5);
m2 = mulShift64(m10, pow5, j);
// We also compute if the result is exact, i.e.,
// [m10 * 10^e10 / 2^e2] == m10 * 10^e10 / 2^e2.
// This can only be the case if 2^e2 divides m10 * 10^e10, which in turn requires that the
// largest power of 2 that divides m10 + e10 is greater than e2. If e2 is less than e10, then
// the result must be exact. Otherwise we use the existing multipleOfPowerOf2 function.
trailingZeros = e2 < e10 || (e2 - e10 < 64 && multipleOfPowerOf2(m10, e2 - e10));
} else {
e2 = floor_log2(m10) + e10 - ceil_log2pow5(-e10) - (DOUBLE_MANTISSA_BITS + 1);
int j = e2 - e10 + ceil_log2pow5(-e10) - 1 + DOUBLE_POW5_INV_BITCOUNT;
uint64_t pow5[2];
__double_computeInvPow5(-e10, pow5);
m2 = mulShift64(m10, pow5, j);
trailingZeros = multipleOfPowerOf5(m10, -e10);
#ifdef RYU_DEBUG
printf("pow5 %016lx_%016lx j %d trailingZeros %d\n", pow5[0], pow5[1], j, trailingZeros);
#endif
}
#ifdef RYU_DEBUG
printf("m2 * 2^e2 = %" PRIu64 " * 2^%d\n", m2, e2);
#endif
// Compute the final IEEE exponent.
uint32_t ieee_e2 = (uint32_t) max32(0, e2 + DOUBLE_EXPONENT_BIAS + floor_log2(m2));
if (ieee_e2 > 0x7fe) {
// Final IEEE exponent is larger than the maximum representable; return +/-Infinity.
uint64_t ieee = (0x7ffull << DOUBLE_MANTISSA_BITS);
return int64Bits2Double(ieee);
}
// We need to figure out how much we need to shift m2. The tricky part is that we need to take
// the final IEEE exponent into account, so we need to reverse the bias and also special-case
// the value 0.
int32_t shift = (ieee_e2 == 0 ? 1 : ieee_e2) - e2 - DOUBLE_EXPONENT_BIAS - DOUBLE_MANTISSA_BITS;
assert(shift >= 0);
#ifdef RYU_DEBUG
printf("ieee_e2 = %d\n", ieee_e2);
printf("shift = %d\n", shift);
#endif
// We need to round up if the exact value is more than 0.5 above the value we computed. That's
// equivalent to checking if the last removed bit was 1 and either the value was not just
// trailing zeros or the result would otherwise be odd.
//
// We need to update trailingZeros given that we have the exact output exponent ieee_e2 now.
trailingZeros &= (m2 & ((1ull << (shift - 1)) - 1)) == 0;
uint64_t lastRemovedBit = (m2 >> (shift - 1)) & 1;
bool roundUp = (lastRemovedBit != 0) && (!trailingZeros || (((m2 >> shift) & 1) != 0));
#ifdef RYU_DEBUG
printf("roundUp = %d\n", roundUp);
printf("ieee_m2 = %" PRIu64 "\n", (m2 >> shift) + roundUp);
#endif
uint64_t ieee_m2 = (m2 >> shift) + roundUp;
assert(ieee_m2 <= (1ull << (DOUBLE_MANTISSA_BITS + 1)));
ieee_m2 &= (1ull << DOUBLE_MANTISSA_BITS) - 1;
if (ieee_m2 == 0 && roundUp) {
// Due to how the IEEE represents +/-Infinity, we don't need to check for overflow here.
ieee_e2++;
}
uint64_t ieee = (((uint64_t)ieee_e2) << DOUBLE_MANTISSA_BITS) | ieee_m2;
return int64Bits2Double(ieee);
}
|