File: atod_ryu.c

package info (click to toggle)
picolibc 1.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 31,616 kB
  • sloc: ansic: 312,308; asm: 22,739; perl: 2,414; sh: 1,619; python: 1,019; pascal: 329; exp: 287; makefile: 164; xml: 40; cpp: 10
file content (161 lines) | stat: -rw-r--r-- 5,632 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// Copyright 2019 Ulf Adams
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
//    (See accompanying file LICENSE-Apache or copy at
//     http://www.apache.org/licenses/LICENSE-2.0)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE-Boost or copy at
//     https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.

#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

#ifdef RYU_DEBUG
#include <inttypes.h>
#include <stdio.h>
#endif

#include "ryu/common.h"
#include "ryu/d2s_intrinsics.h"

#define DOUBLE_MANTISSA_BITS 52
#define DOUBLE_EXPONENT_BITS 11
#define DOUBLE_EXPONENT_BIAS 1023

#if defined(_MSC_VER)
#include <intrin.h>

static inline uint32_t floor_log2(const uint64_t value) {
  long index;
  return _BitScanReverse64(&index, value) ? index : 64;
}

#else

static inline uint32_t floor_log2(const uint64_t value) {
  return 63 - __builtin_clzll(value);
}

#endif

// The max function is already defined on Windows.
static inline int32_t max32(int32_t a, int32_t b) {
  return a < b ? b : a;
}

static inline double int64Bits2Double(uint64_t bits) {
  double f;
  memcpy(&f, &bits, sizeof(double));
  return f;
}

double
__atod_engine(uint64_t m10, int e10)
{
#ifdef RYU_DEBUG
    printf("m10 = %ld\n", m10);
    printf("e10 = %d\n", e10);
    printf("m10 * 10^e10 = %" PRIu64 " * 10^%d\n", m10, e10);
#endif

    // Convert to binary float m2 * 2^e2, while retaining information about whether the conversion
    // was exact (trailingZeros).
    int32_t e2;
    uint64_t m2;
    bool trailingZeros;
    if (e10 >= 0) {
	// The length of m * 10^e in bits is:
	//   log2(m10 * 10^e10) = log2(m10) + e10 log2(10) = log2(m10) + e10 + e10 * log2(5)
	//
	// We want to compute the DOUBLE_MANTISSA_BITS + 1 top-most bits (+1 for the implicit leading
	// one in IEEE format). We therefore choose a binary output exponent of
	//   log2(m10 * 10^e10) - (DOUBLE_MANTISSA_BITS + 1).
	//
	// We use floor(log2(5^e10)) so that we get at least this many bits; better to
	// have an additional bit than to not have enough bits.
	e2 = floor_log2(m10) + e10 + log2pow5(e10) - (DOUBLE_MANTISSA_BITS + 1);

	// We now compute [m10 * 10^e10 / 2^e2] = [m10 * 5^e10 / 2^(e2-e10)].
	// To that end, we use the DOUBLE_POW5_SPLIT table.
	int j = e2 - e10 - ceil_log2pow5(e10) + DOUBLE_POW5_BITCOUNT;
	assert(j >= 0);
	uint64_t pow5[2];
	__double_computePow5(e10, pow5);
	m2 = mulShift64(m10, pow5, j);

	// We also compute if the result is exact, i.e.,
	//   [m10 * 10^e10 / 2^e2] == m10 * 10^e10 / 2^e2.
	// This can only be the case if 2^e2 divides m10 * 10^e10, which in turn requires that the
	// largest power of 2 that divides m10 + e10 is greater than e2. If e2 is less than e10, then
	// the result must be exact. Otherwise we use the existing multipleOfPowerOf2 function.
	trailingZeros = e2 < e10 || (e2 - e10 < 64 && multipleOfPowerOf2(m10, e2 - e10));
    } else {
	e2 = floor_log2(m10) + e10 - ceil_log2pow5(-e10) - (DOUBLE_MANTISSA_BITS + 1);
	int j = e2 - e10 + ceil_log2pow5(-e10) - 1 + DOUBLE_POW5_INV_BITCOUNT;
	uint64_t pow5[2];
	__double_computeInvPow5(-e10, pow5);
	m2 = mulShift64(m10, pow5, j);
	trailingZeros = multipleOfPowerOf5(m10, -e10);
#ifdef RYU_DEBUG
	printf("pow5 %016lx_%016lx j %d trailingZeros %d\n", pow5[0], pow5[1], j, trailingZeros);
#endif
    }

#ifdef RYU_DEBUG
    printf("m2 * 2^e2 = %" PRIu64 " * 2^%d\n", m2, e2);
#endif

    // Compute the final IEEE exponent.
    uint32_t ieee_e2 = (uint32_t) max32(0, e2 + DOUBLE_EXPONENT_BIAS + floor_log2(m2));

    if (ieee_e2 > 0x7fe) {
	// Final IEEE exponent is larger than the maximum representable; return +/-Infinity.
	uint64_t ieee = (0x7ffull << DOUBLE_MANTISSA_BITS);
	return int64Bits2Double(ieee);
    }

    // We need to figure out how much we need to shift m2. The tricky part is that we need to take
    // the final IEEE exponent into account, so we need to reverse the bias and also special-case
    // the value 0.
    int32_t shift = (ieee_e2 == 0 ? 1 : ieee_e2) - e2 - DOUBLE_EXPONENT_BIAS - DOUBLE_MANTISSA_BITS;
    assert(shift >= 0);
#ifdef RYU_DEBUG
    printf("ieee_e2 = %d\n", ieee_e2);
    printf("shift = %d\n", shift);
#endif
  
    // We need to round up if the exact value is more than 0.5 above the value we computed. That's
    // equivalent to checking if the last removed bit was 1 and either the value was not just
    // trailing zeros or the result would otherwise be odd.
    //
    // We need to update trailingZeros given that we have the exact output exponent ieee_e2 now.
    trailingZeros &= (m2 & ((1ull << (shift - 1)) - 1)) == 0;
    uint64_t lastRemovedBit = (m2 >> (shift - 1)) & 1;
    bool roundUp = (lastRemovedBit != 0) && (!trailingZeros || (((m2 >> shift) & 1) != 0));

#ifdef RYU_DEBUG
    printf("roundUp = %d\n", roundUp);
    printf("ieee_m2 = %" PRIu64 "\n", (m2 >> shift) + roundUp);
#endif
    uint64_t ieee_m2 = (m2 >> shift) + roundUp;
    assert(ieee_m2 <= (1ull << (DOUBLE_MANTISSA_BITS + 1)));
    ieee_m2 &= (1ull << DOUBLE_MANTISSA_BITS) - 1;
    if (ieee_m2 == 0 && roundUp) {
	// Due to how the IEEE represents +/-Infinity, we don't need to check for overflow here.
	ieee_e2++;
    }
    uint64_t ieee = (((uint64_t)ieee_e2) << DOUBLE_MANTISSA_BITS) | ieee_m2;
    return int64Bits2Double(ieee);
}