1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
// Copyright 2018 Ulf Adams
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
// (See accompanying file LICENSE-Apache or copy at
// http://www.apache.org/licenses/LICENSE-2.0)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
// (See accompanying file LICENSE-Boost or copy at
// https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
// Runtime compiler options:
// -DRYU_DEBUG Generate verbose debugging output to stdout.
#include "ryu/ryu.h"
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#ifdef RYU_DEBUG
#include <stdio.h>
#endif
#include "ryu/common.h"
#include "ryu/f2s_intrinsics.h"
#include "ryu/digit_table.h"
#define FLOAT_MANTISSA_BITS 23
#define FLOAT_EXPONENT_BITS 8
#define FLOAT_BIAS 127
// Returns the number of decimal digits in v, which must not contain more than 9 digits.
static int decimalLength9(const uint32_t v) {
int len = 1;
uint32_t c = 10;
while (c <= v) {
len++;
c = (c << 3) + (c << 1);
}
return len;
}
// A floating decimal representing m * 10^e.
typedef struct floating_decimal_32 {
uint32_t mantissa;
// Decimal exponent's range is -45 to 38
// inclusive, and can fit in a short if needed.
int16_t exponent;
int16_t olength;
} floating_decimal_32;
static inline floating_decimal_32
f2d(const uint32_t ieeeMantissa, const uint32_t ieeeExponent, int max_digits, bool fmode, int max_decimals)
{
int32_t e2;
uint32_t m2;
if (ieeeExponent == 0) {
// We subtract 2 so that the bounds computation has 2 additional bits.
e2 = 1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2;
m2 = ieeeMantissa;
} else {
e2 = (int32_t) ieeeExponent - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2;
m2 = ((uint32_t)1u << FLOAT_MANTISSA_BITS) | ieeeMantissa;
}
const bool even = (m2 & 1) == 0;
const bool acceptBounds = even;
bool truncate_max = false;
#ifdef RYU_DEBUG
printf("-> %u * 2^%d\n", m2, e2 + 2);
#endif
// Step 2: Determine the interval of valid decimal representations.
const uint32_t mv = 4 * m2;
const uint32_t mp = 4 * m2 + 2;
// Implicit bool -> int conversion. True is 1, false is 0.
const uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
const uint32_t mm = 4 * m2 - 1 - mmShift;
// Step 3: Convert to a decimal power base using 64-bit arithmetic.
uint32_t vr, vp, vm;
int32_t e10;
bool vmIsTrailingZeros = false;
bool vrIsTrailingZeros = false;
uint8_t lastRemovedDigit = 0;
if (e2 >= 0) {
const uint32_t q = log10Pow2(e2);
e10 = (int32_t) q;
const int32_t k = FLOAT_POW5_INV_BITCOUNT + pow5bits((int32_t) q) - 1;
const int32_t i = -e2 + (int32_t) q + k;
vr = mulPow5InvDivPow2(mv, q, i);
vp = mulPow5InvDivPow2(mp, q, i);
vm = mulPow5InvDivPow2(mm, q, i);
#ifdef RYU_DEBUG
printf("%u * 2^%d / 10^%u\n", mv, e2, q);
printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
#endif
if (q != 0 && (vp - 1) / 10 <= vm / 10) {
// We need to know one removed digit even if we are not going to loop below. We could use
// q = X - 1 above, except that would require 33 bits for the result, and we've found that
// 32-bit arithmetic is faster even on 64-bit machines.
const int32_t l = FLOAT_POW5_INV_BITCOUNT + pow5bits((int32_t) (q - 1)) - 1;
lastRemovedDigit = (uint8_t) (mulPow5InvDivPow2(mv, q - 1, -e2 + (int32_t) q - 1 + l) % 10);
}
if (q <= 9) {
// The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be safe as well.
// Only one of mp, mv, and mm can be a multiple of 5, if any.
if (mv % 5 == 0) {
vrIsTrailingZeros = multipleOfPowerOf5_32(mv, q);
} else if (acceptBounds) {
vmIsTrailingZeros = multipleOfPowerOf5_32(mm, q);
} else {
vp -= multipleOfPowerOf5_32(mp, q);
}
}
} else {
const uint32_t q = log10Pow5(-e2);
e10 = (int32_t) q + e2;
const int32_t i = -e2 - (int32_t) q;
const int32_t k = pow5bits(i) - FLOAT_POW5_BITCOUNT;
int32_t j = (int32_t) q - k;
vr = mulPow5divPow2(mv, (uint32_t) i, j);
vp = mulPow5divPow2(mp, (uint32_t) i, j);
vm = mulPow5divPow2(mm, (uint32_t) i, j);
#ifdef RYU_DEBUG
printf("%u * 5^%d / 10^%u\n", mv, -e2, q);
printf("%u %d %d %d\n", q, i, k, j);
printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
#endif
if (q != 0 && (vp - 1) / 10 <= vm / 10) {
j = (int32_t) q - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT);
lastRemovedDigit = (uint8_t) (mulPow5divPow2(mv, (uint32_t) (i + 1), j) % 10);
}
if (q <= 1) {
// {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
// mv = 4 * m2, so it always has at least two trailing 0 bits.
vrIsTrailingZeros = true;
if (acceptBounds) {
// mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
vmIsTrailingZeros = mmShift == 1;
} else {
// mp = mv + 2, so it always has at least one trailing 0 bit.
--vp;
}
} else if (q < 31) { // TODO(ulfjack): Use a tighter bound here.
vrIsTrailingZeros = multipleOfPowerOf2_32(mv, q - 1);
#ifdef RYU_DEBUG
printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
}
}
#ifdef RYU_DEBUG
printf("e10=%d\n", e10);
printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
// Step 4: Find the shortest decimal representation in the interval of valid representations.
int32_t removed = 0;
uint32_t output;
/* If limiting decimals, then limit the max digits
* to no more than the number of digits left of the decimal
* plus the number of digits right of the decimal
*
* exp: exponent value. If negative, there are
* -exp - 1 zeros left of the first non-zero
* digit in 'f' format. If non-negative,
* there are exp digits to the left of
* the decimal point
*
* max_decimals: Only used in 'f' format. Round to this many
* digits to the right of the decimal point
* (left if negative)
*
* max_digits: We can't convert more than this number of digits given
* the limits of the buffer
*/
int save_max_digits = max_digits;
if(fmode) {
int exp = e10 + decimalLength9(vr) - 1;
/*
* This covers two cases:
*
* When exp is < 0, there are -exp-1 zeros taking up
* space before we can display any of the real digits,
* so we have to subtract those off max_decimals before
* we round that (max_decimals - (-exp - 1)). This
* may end up less than zero, in which case we have
* no digits to display.
*
* When exp >= 0, there are exp + 1 digits left of the
* decimal point *plus* max_decimals right of the
* decimal point that need to be generated
*
* A single expression gives the right answer in both
* cases, which is kinda cool
*/
max_digits = min_int(max_digits, max_int(1, max_decimals + exp + 1));
}
for (;;) {
if (vp / 10 <= vm / 10) {
if (decimalLength9(vr) <= max_digits || (max_digits == 0 && vr == 0))
break;
else
truncate_max = true;
}
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=23106
// The compiler does not realize that vm % 10 can be computed from vm / 10
// as vm - (vm / 10) * 10.
vmIsTrailingZeros &= vm - (vm / 10) * 10 == 0;
#else
vmIsTrailingZeros &= vm % 10 == 0;
#endif
vrIsTrailingZeros &= lastRemovedDigit == 0;
lastRemovedDigit = (uint8_t) (vr % 10);
vr /= 10;
vp /= 10;
vm /= 10;
++removed;
}
#ifdef RYU_DEBUG
printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
#endif
if (vmIsTrailingZeros) {
while (vm % 10 == 0) {
vrIsTrailingZeros &= lastRemovedDigit == 0;
lastRemovedDigit = (uint8_t) (vr % 10);
vr /= 10;
vp /= 10;
vm /= 10;
++removed;
}
}
#ifdef RYU_DEBUG
printf("%u %d\n", vr, lastRemovedDigit);
printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
#endif
if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) {
// Round even if the exact number is .....50..0.
lastRemovedDigit = 4;
}
// We need to take vr + 1 if vr is outside bounds or we need to round up.
output = vr;
e10 += removed;
uint8_t carry = ((!truncate_max && vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
output += carry;
int len = decimalLength9(output);
if (carry) {
/* This can only happen if output has carried out of the top digit */
if (len > max_digits) {
/* Recompute max digits in this case */
if(fmode) {
int exp = e10 + len - 1;
max_digits = min_int(save_max_digits, max_int(1, max_decimals + exp + 1));
}
if (len > max_digits) {
output += 5;
output /= 10;
e10++;
len--;
}
}
}
if (len > max_digits)
len = max_digits;
#ifdef RYU_DEBUG
printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
printf("O=%u\n", output);
printf("EXP=%d\n", exp);
#endif
floating_decimal_32 fd;
fd.exponent = e10;
fd.olength = len;
fd.mantissa = output;
return fd;
}
#include "ftoa_engine.h"
int
__ftoa_engine(float x, struct ftoa *ftoa, int max_digits, bool fmode, int max_decimals)
{
// Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
const uint32_t bits = float_to_bits(x);
// Decode bits into sign, mantissa, and exponent.
const bool ieeeSign = ((bits >> (FLOAT_MANTISSA_BITS + FLOAT_EXPONENT_BITS)) & 1) != 0;
const uint64_t ieeeMantissa = bits & ((1ull << FLOAT_MANTISSA_BITS) - 1);
const uint32_t ieeeExponent = (uint32_t) ((bits >> FLOAT_MANTISSA_BITS) & ((1u << FLOAT_EXPONENT_BITS) - 1));
uint8_t flags = 0;
if (ieeeSign)
flags |= FTOA_MINUS;
if (ieeeExponent == 0 && ieeeMantissa == 0) {
flags |= FTOA_ZERO;
ftoa->digits[0] = '0';
ftoa->digits[1] = '\0';
ftoa->flags = flags;
ftoa->exp = 0;
return 1;
}
if (ieeeExponent == ((1u << FLOAT_EXPONENT_BITS) - 1u)) {
if (ieeeMantissa) {
flags |= FTOA_NAN;
} else {
flags |= FTOA_INF;
}
ftoa->flags = flags;
return 0;
}
floating_decimal_32 v;
v = f2d(ieeeMantissa, ieeeExponent, max_digits, fmode, max_decimals);
uint32_t mant = v.mantissa;
int32_t olength = v.olength;
int32_t exp = v.exponent + olength - 1;
int i;
for (i = 0; i < olength; i++) {
ftoa->digits[olength - i - 1] = (mant % 10) + '0';
mant /= 10;
}
ftoa->digits[olength] = '\0';
ftoa->exp = exp;
ftoa->flags = flags;
return olength;
}
|