1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
// Copyright 2018 Ulf Adams
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
// (See accompanying file LICENSE-Apache or copy at
// http://www.apache.org/licenses/LICENSE-2.0)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
// (See accompanying file LICENSE-Boost or copy at
// https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
#ifndef RYU_D2S_INTRINSICS_H
#define RYU_D2S_INTRINSICS_H
#include <stdint.h>
// Defines RYU_32_BIT_PLATFORM if applicable.
#include "common.h"
// ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined.
// Let's do the same for now.
#if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS)
#define HAS_UINT128
#elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64)
#define HAS_64_BIT_INTRINSICS
#endif
#if defined(HAS_UINT128)
typedef __uint128_t uint128_t;
#endif
#if defined(HAS_64_BIT_INTRINSICS)
#include <intrin.h>
static inline uint64_t umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi) {
return _umul128(a, b, productHi);
}
static inline uint64_t shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist) {
// For the __shiftright128 intrinsic, the shift value is always
// modulo 64.
// In the current implementation of the double-precision version
// of Ryu, the shift value is always < 64. (In the case
// RYU_OPTIMIZE_SIZE == 0, the shift value is in the range [49, 58].
// Otherwise in the range [2, 59].)
// However, this function is now also called by s2d, which requires supporting
// the larger shift range (TODO: what is the actual range?).
// Check this here in case a future change requires larger shift
// values. In this case this function needs to be adjusted.
assert(dist < 64);
return __shiftright128(lo, hi, (unsigned char) dist);
}
#else // defined(HAS_64_BIT_INTRINSICS)
uint64_t __umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi);
#define umul128(a,b,hi) __umul128(a,b,hi)
uint64_t __shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist);
#define shiftright128(lo,hi,dist) __shiftright128(lo,hi,dist)
#endif // defined(HAS_64_BIT_INTRINSICS)
#if defined(RYU_32_BIT_PLATFORM)
// Returns the high 64 bits of the 128-bit product of a and b.
static inline uint64_t umulh(const uint64_t a, const uint64_t b) {
// Reuse the umul128 implementation.
// Optimizers will likely eliminate the instructions used to compute the
// low part of the product.
uint64_t hi;
umul128(a, b, &hi);
return hi;
}
// On 32-bit platforms, compilers typically generate calls to library
// functions for 64-bit divisions, even if the divisor is a constant.
//
// E.g.:
// https://bugs.llvm.org/show_bug.cgi?id=37932
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=17958
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=37443
//
// The functions here perform division-by-constant using multiplications
// in the same way as 64-bit compilers would do.
//
// NB:
// The multipliers and shift values are the ones generated by clang x64
// for expressions like x/5, x/10, etc.
static inline uint64_t div5(const uint64_t x) {
return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 2;
}
static inline uint64_t div10(const uint64_t x) {
return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 3;
}
static inline uint64_t div100(const uint64_t x) {
return umulh(x >> 2, 0x28F5C28F5C28F5C3u) >> 2;
}
static inline uint64_t div1e8(const uint64_t x) {
return umulh(x, 0xABCC77118461CEFDu) >> 26;
}
static inline uint64_t div1e9(const uint64_t x) {
return umulh(x >> 9, 0x44B82FA09B5A53u) >> 11;
}
static inline uint32_t mod1e9(const uint64_t x) {
// Avoid 64-bit math as much as possible.
// Returning (uint32_t) (x - 1000000000 * div1e9(x)) would
// perform 32x64-bit multiplication and 64-bit subtraction.
// x and 1000000000 * div1e9(x) are guaranteed to differ by
// less than 10^9, so their highest 32 bits must be identical,
// so we can truncate both sides to uint32_t before subtracting.
// We can also simplify (uint32_t) (1000000000 * div1e9(x)).
// We can truncate before multiplying instead of after, as multiplying
// the highest 32 bits of div1e9(x) can't affect the lowest 32 bits.
return ((uint32_t) x) - 1000000000 * ((uint32_t) div1e9(x));
}
#else // defined(RYU_32_BIT_PLATFORM)
static inline uint64_t div5(const uint64_t x) {
return x / 5;
}
static inline uint64_t div10(const uint64_t x) {
return x / 10;
}
static inline uint64_t div100(const uint64_t x) {
return x / 100;
}
static inline uint64_t div1e8(const uint64_t x) {
return x / 100000000;
}
static inline uint64_t div1e9(const uint64_t x) {
return x / 1000000000;
}
static inline uint32_t mod1e9(const uint64_t x) {
return (uint32_t) (x - 1000000000 * div1e9(x));
}
#endif // defined(RYU_32_BIT_PLATFORM)
uint32_t __pow5Factor(uint64_t value);
#define pow5Factor(v) __pow5Factor(v)
// Returns true if value is divisible by 5^p.
static inline bool multipleOfPowerOf5(const uint64_t value, const uint32_t p) {
// I tried a case distinction on p, but there was no performance difference.
return pow5Factor(value) >= p;
}
// Returns true if value is divisible by 2^p.
static inline bool multipleOfPowerOf2(const uint64_t value, const uint32_t p) {
assert(value != 0);
assert(p < 64);
// __builtin_ctzll doesn't appear to be faster here.
return (value & ((1ull << p) - 1)) == 0;
}
// We need a 64x128-bit multiplication and a subsequent 128-bit shift.
// Multiplication:
// The 64-bit factor is variable and passed in, the 128-bit factor comes
// from a lookup table. We know that the 64-bit factor only has 55
// significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
// factor only has 124 significant bits (i.e., the 4 topmost bits are
// zeros).
// Shift:
// In principle, the multiplication result requires 55 + 124 = 179 bits to
// represent. However, we then shift this value to the right by j, which is
// at least j >= 115, so the result is guaranteed to fit into 179 - 115 = 64
// bits. This means that we only need the topmost 64 significant bits of
// the 64x128-bit multiplication.
//
// There are several ways to do this:
// 1. Best case: the compiler exposes a 128-bit type.
// We perform two 64x64-bit multiplications, add the higher 64 bits of the
// lower result to the higher result, and shift by j - 64 bits.
//
// We explicitly cast from 64-bit to 128-bit, so the compiler can tell
// that these are only 64-bit inputs, and can map these to the best
// possible sequence of assembly instructions.
// x64 machines happen to have matching assembly instructions for
// 64x64-bit multiplications and 128-bit shifts.
//
// 2. Second best case: the compiler exposes intrinsics for the x64 assembly
// instructions mentioned in 1.
//
// 3. We only have 64x64 bit instructions that return the lower 64 bits of
// the result, i.e., we have to use plain C.
// Our inputs are less than the full width, so we have three options:
// a. Ignore this fact and just implement the intrinsics manually.
// b. Split both into 31-bit pieces, which guarantees no internal overflow,
// but requires extra work upfront (unless we change the lookup table).
// c. Split only the first factor into 31-bit pieces, which also guarantees
// no internal overflow, but requires extra work since the intermediate
// results are not perfectly aligned.
#if defined(HAS_UINT128)
// Best case: use 128-bit type.
static inline uint64_t mulShift64(const uint64_t m, const uint64_t* const mul, const int32_t j) {
const uint128_t b0 = ((uint128_t) m) * mul[0];
const uint128_t b2 = ((uint128_t) m) * mul[1];
return (uint64_t) (((b0 >> 64) + b2) >> (j - 64));
}
static inline uint64_t mulShiftAll64(const uint64_t m, const uint64_t* const mul, const int32_t j,
uint64_t* const vp, uint64_t* const vm, const uint32_t mmShift) {
// m <<= 2;
// uint128_t b0 = ((uint128_t) m) * mul[0]; // 0
// uint128_t b2 = ((uint128_t) m) * mul[1]; // 64
//
// uint128_t hi = (b0 >> 64) + b2;
// uint128_t lo = b0 & 0xffffffffffffffffull;
// uint128_t factor = (((uint128_t) mul[1]) << 64) + mul[0];
// uint128_t vpLo = lo + (factor << 1);
// *vp = (uint64_t) ((hi + (vpLo >> 64)) >> (j - 64));
// uint128_t vmLo = lo - (factor << mmShift);
// *vm = (uint64_t) ((hi + (vmLo >> 64) - (((uint128_t) 1ull) << 64)) >> (j - 64));
// return (uint64_t) (hi >> (j - 64));
*vp = mulShift64(4 * m + 2, mul, j);
*vm = mulShift64(4 * m - 1 - mmShift, mul, j);
return mulShift64(4 * m, mul, j);
}
#elif defined(HAS_64_BIT_INTRINSICS)
static inline uint64_t mulShift64(const uint64_t m, const uint64_t* const mul, const int32_t j) {
// m is maximum 55 bits
uint64_t high1; // 128
const uint64_t low1 = umul128(m, mul[1], &high1); // 64
uint64_t high0; // 64
umul128(m, mul[0], &high0); // 0
const uint64_t sum = high0 + low1;
if (sum < high0) {
++high1; // overflow into high1
}
return shiftright128(sum, high1, j - 64);
}
static inline uint64_t mulShiftAll64(const uint64_t m, const uint64_t* const mul, const int32_t j,
uint64_t* const vp, uint64_t* const vm, const uint32_t mmShift) {
*vp = mulShift64(4 * m + 2, mul, j);
*vm = mulShift64(4 * m - 1 - mmShift, mul, j);
return mulShift64(4 * m, mul, j);
}
#else // !defined(HAS_UINT128) && !defined(HAS_64_BIT_INTRINSICS)
static inline uint64_t mulShift64(const uint64_t m, const uint64_t* const mul, const int32_t j) {
// m is maximum 55 bits
uint64_t high1; // 128
const uint64_t low1 = umul128(m, mul[1], &high1); // 64
uint64_t high0; // 64
umul128(m, mul[0], &high0); // 0
const uint64_t sum = high0 + low1;
if (sum < high0) {
++high1; // overflow into high1
}
return shiftright128(sum, high1, j - 64);
}
// This is faster if we don't have a 64x64->128-bit multiplication.
static inline uint64_t mulShiftAll64(uint64_t m, const uint64_t* const mul, const int32_t j,
uint64_t* const vp, uint64_t* const vm, const uint32_t mmShift) {
m <<= 1;
// m is maximum 55 bits
uint64_t tmp;
const uint64_t lo = umul128(m, mul[0], &tmp);
uint64_t hi;
const uint64_t mid = tmp + umul128(m, mul[1], &hi);
hi += mid < tmp; // overflow into hi
const uint64_t lo2 = lo + mul[0];
const uint64_t mid2 = mid + mul[1] + (lo2 < lo);
const uint64_t hi2 = hi + (mid2 < mid);
*vp = shiftright128(mid2, hi2, (uint32_t) (j - 64 - 1));
if (mmShift == 1) {
const uint64_t lo3 = lo - mul[0];
const uint64_t mid3 = mid - mul[1] - (lo3 > lo);
const uint64_t hi3 = hi - (mid3 > mid);
*vm = shiftright128(mid3, hi3, (uint32_t) (j - 64 - 1));
} else {
const uint64_t lo3 = lo + lo;
const uint64_t mid3 = mid + mid + (lo3 < lo);
const uint64_t hi3 = hi + hi + (mid3 < mid);
const uint64_t lo4 = lo3 - mul[0];
const uint64_t mid4 = mid3 - mul[1] - (lo4 > lo3);
const uint64_t hi4 = hi3 - (mid4 > mid3);
*vm = shiftright128(mid4, hi4, (uint32_t) (j - 64));
}
return shiftright128(mid, hi, (uint32_t) (j - 64 - 1));
}
#endif // HAS_64_BIT_INTRINSICS
#endif // RYU_D2S_INTRINSICS_H
|