1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
|
<!--
# VIP @lib/vip/html.l
# 26oct23 Software Lab. Alexander Burger
-->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>PicoLisp Tutorial</title>
<link rel="stylesheet" href="doc.css" type="text/css">
</head>
<body>
<a href="mailto:abu@software-lab.de">abu@software-lab.de</a>
<h1>A PicoLisp Tutorial</h1>
<p style="text-align: right">(c) Software Lab. Alexander Burger
<p>This document demonstrates some aspects of the PicoLisp system in detail and
example. For a general description of the PicoLisp kernel please look at the <a
href="ref.html">PicoLisp Reference</a>.
<p>This is <i>not</i> a Lisp tutorial, as it assumes some basic knowledge of
programming, Lisp, and even PicoLisp. Please read these sections before coming
back here: <a href="ref.html#intro">Introduction</a> and <a
href="ref.html#vm">The PicoLisp Machine</a>. This tutorial concentrates on the
specificities of PicoLisp, and its differences with other Lisp dialects.
<h3>Now let's start</h3>
<p>If not stated otherwise, all examples assume that PicoLisp was started from a
global installation (see <a href="ref.html#inst">Installation</a>) from the
shell prompt as
<pre>
$ pil +
:
</pre>
<p>It loads the PicoLisp base system and the debugging environment, and waits
for you to enter input lines at the interpreter prompt (<code>:</code>). You can
terminate the interpreter and return to the shell at any time, by either hitting
the <code>Ctrl-D</code> key, or by executing the function <code><a
href="refB.html#bye">(bye)</a></code>.
<p>Input editing is done via the <code>readline(3)</code> library. You will want
to configure it according to your taste via your "~/.inputrc" file. Useful value
for PicoLisp are
<pre>
set keyseq-timeout 40
set blink-matching-paren on
TAB: menu-complete
C-y: menu-complete-backward
</pre>
In addition to the above, I (preferring vi-style) do also have
<pre>
set editing-mode vi
set keymap vi-command
v: ""
</pre>
<h3>Table of content</h3>
<p>If you are new to PicoLisp, you might want to read the following sections in
the given order, as some of them assume knowledge about previous ones. Otherwise
just jump anywhere you are interested in.
<p><ul>
<li><a href="#brw">Browsing</a>
<li><a href="#fun">Defining Functions</a>
<li><a href="#dbg">Debugging</a>
<li><a href="#funio">Functional I/O</a>
<li><a href="#script">Scripting</a>
</ul>
<p><hr>
<h2><a id="brw">Browsing</a></h2>
<p>PicoLisp provides some functionality for inspecting pieces of data and code
within the running system.
<h3>Basic tools</h3>
The really basic tools are of course available and their name alone is enough
to know:
<code><a href="refP.html#print">print</a></code>,
<code><a href="refS.html#size">size</a></code>
...
<p>But you will appreciate some more powerful tools like:
<p><ul><li><code><a href="refM.html#match">match</a></code>, a predicate which
compares S-expressions with bindable wildcards when matching,</li>
</ul>
<h3>Inspect a symbol with <i>show</i></h3>
<p>The most commonly used tool is probably the <code><a
href="refS.html#show">show</a></code> function. It takes a symbolic argument,
and shows the symbol's name (if any), followed by its value, and then the
contents of the property list on the following lines (assignment of such things
to a symbol can be done with <code><a href="refS.html#set">set</a></code>,
<code><a href="refS.html#setq">setq</a></code>, and <code><a
href="refP.html#put">put</a></code>).
<pre>
: (setq A '(This is the value)) # Set the value of 'A'
-> (This is the value)
: (put 'A 'key1 'val1) # Store property 'key1'
-> val1
: (put 'A 'key2 'val2) # and 'key2'
-> val2
: (show 'A) # Now 'show' the symbol 'A'
A (This is the value)
key2 val2
key1 val1
-> A
</pre>
<p><code>show</code> accepts an arbitrary number of arguments which are
processed according to the rules of <code><a
href="refG.html#get">get</a></code>, resulting in a symbol which is showed then.
<pre>
: (put 'B 'a 'A) # Put 'A' under the 'a'-property of 'B'
-> A
: (setq Lst '(A B C)) # Create a list with 'B' as second argument
-> (A B C)
: (show Lst 2 'a) # Show the property 'a of the 2nd element of 'Lst'
A (This is the value) # (which is 'A' again)
key2 val2
key1 val1
-> A
</pre>
<h3>Inspect and edit symbols in-memory</h3>
<p>If you pass one or more symbols as a list to <code><a
href="refV.html#vi">vi</a></code>, they are written to a temporary file in a
format similar to <code>show</code>, and <code>Vip</code> is started with that
file.
<pre>
: (vi '(A B))
</pre>
<p>The <code>Vip</code> window will look like
<pre>
A (This is the value)
key1 val1
key2 val2
(=======)
B NIL
a A # (This is the value)
(=======)
</pre>
<p>A convenient shortcut is the non-evaluating version <code>v</code> of
<code>vi</code>. An equivalent call to the above is:
<pre>
(v A B)
</pre>
<p>Now you can modify values or properties. You should not touch the
parenthesized hyphens, as they serve as delimiters. If you position the cursor
on the first character of a symbol name and type '<code>K</code>' ("Keyword
lookup"), the editor will be restarted with that symbol added to the editor
window. '<code>Q</code>' (for "Quit") will bring you back to the previous view.
<p>If you exit Vip with e.g. ":x", any changes you made in your editing session
will be communicated back to the REPL.
<p>In-memory editing is also very useful to browse in a database. You can follow
the links between objects with '<code>K</code>', and even - e.g. for low-level
repairs - modify the data (but only if you are really sure about what you are
doing, and don't forget to <code><a href="refC.html#commit">commit</a></code>
when you are done).
<h3>Built-in pretty print with <i>pp</i></h3>
<p>The <i>pretty-print</i> function <code><a href="refP.html#pp">pp</a></code>
takes a symbol that has a function defined (or two symbols that specify message
and class for a method definition), and displays that definition in a formatted
and indented way.
<pre>
: (pp 'pretty)
(de pretty (X N)
(setq N (abs (space (or N 0))))
(while (and (pair X) (== 'quote (car X)))
(prin "'")
(pop 'X) )
(cond
...
(T (prtty0 X N)) ) )
-> pretty
</pre>
<p>The style is the same as we use in source files:
<ul>
<li>The indentation level is three spaces
<li>If a list is too long (to be precise: if its <code><a
href="refS.html#size">size</a></code> is greater than 12), pretty-print the CAR
on the current line, and each element of the CDR recursively on its own line.
<li>A closing parenthesis a preceded by a space if the corresponding open
parenthesis is not on the same line
</ul>
<h3>Inspect elements one by one with <i>more</i></h3>
<p><code><a href="refM.html#more">more</a></code> is a simple tool that displays
the elements of a list one by one. It stops after each element and waits for
input. If you just hit ENTER, <code>more</code> continues with the next element,
otherwise (usually I type a dot (<code>.</code>) followed by ENTER) it
terminates.
<pre>
: (more (1 2 3 4 5 6))
1 # Hit ENTER
2 . # Hit '.' and ENTER
-> T # stopped
</pre>
<p>Optionally <code>more</code> takes a function as a second argument and
applies that function to each element (instead of the default <code><a
href="refP.html#print">print</a></code>). Here, often <code>show</code> or
<code>pp</code> (see below) is used.
<pre>
: (more '(A B)) # Step through 'A' and 'B'
A
B
-> NIL
: (more '(A B) show) # Step through 'A' and 'B' with 'show'
A (This is the value) # showing 'A'
key2 val2
key1 val1
# Hit ENTER
B NIL # showing 'B'
a A
-> NIL
</pre>
<h3>Search through available symbols with <i>what</i></h3>
<p>The <code><a href="refW.html#what">what</a></code> function returns a list of
all internal symbols in the system which match a given pattern (with
'<code>@</code>' wildcard characters).
<pre>
: (what "prin@")
-> (prin print prinl print> printsp println)
</pre>
<h3>Search through values or properties of symbols with <i>who</i></h3>
<p>The function <code><a href="refW.html#who">who</a></code> returns <i>"who
contains that"</i>, i.e. a list of symbols that contain a given argument
somewhere in their value or property list.
<pre>
: (who 'print)
-> (query _pretty spPrt prtty1 prtty2 prtty3 pretty ("syms>" . "+Buffer")
msg more show view (print> . +Date) rules select (print> . +relation) pico)
</pre>
<p>A dotted pair indicates either a method definition or a property entry. So
<code>(print> . +relation)</code> denotes the <code>print></code> method of
the <code><a href="refR.html#+relation">+relation</a></code> class.
<p><code>who</code> can be conveniently combined with <code>more</code> and
<code>pp</code>:
<pre>
: (more (who 'print) pp)
(de query ("Q" "Dbg") # Pretty-print these functions one by one
(use "R"
(loop
(NIL (prove "Q" "Dbg"))
(T (=T (setq "R" @)) T)
(for X "R"
(space)
(print (car X))
(print '=)
(print (cdr X))
(flush) )
(T (line)) ) ) )
(de pretty (X N)
...
</pre>
<p>The argument to <code>who</code> may also be a pattern list (see <code><a
href="refM.html#match">match</a></code>):
<pre>
: (who '(print @ (less (val @))))
-> (show)
: (more (who '(% @ 7)) pp)
(de day (Dat Lst)
(when Dat
(get
(or Lst *DayFmt)
(inc (% (inc Dat) 7)) ) ) )
(de _week (Dat)
(/ (- Dat (% (inc Dat) 7)) 7) )
</pre>
<h3>Find what classes can accept a given message with <i>can</i></h3>
<p>The function <code><a href="refC.html#can">can</a></code> returns a list
which indicates which classes <i>can</i> accept a given message. Again, this
list is suitable for iteration with <code>pp</code>:
<pre>
: (can 'del>) # Which classes accept 'del>' ?
-> ((del> . +List) (del> . +Entity) (del> . +relation))
: (more (can 'del>) pp) # Inspect the methods with 'pp'
(dm (del> . +List) (Obj Old Val)
(and ((<> Old Val) (delete Val Old)) )
(dm (del> . +Entity) (Var Val)
(when
(and
Val
(has> (meta This Var) Val (get This Var)) )
(let Old (get This Var)
(rel>
(meta This Var)
This
Old
(put This Var (del> (meta This Var) This Old @)) )
(when (asoq Var (meta This 'Aux))
(relAux This Var Old (cdr @)) )
(upd> This Var Old) ) ) )
(dm (del> . +relation) (Obj Old Val)
(and ((<> Old Val) Val) )
</pre>
<h3>Inspect dependencies with <i>dep</i></h3>
<p><code><a href="refD.html#dep">dep</a></code> shows the dependencies in a
class hierarchy. That is, for a given class it displays the tree of its
(super)class(es) above it, and the tree of its subclasses below it.
<p>To view the complete hierarchy of input fields, we start with the root class
<code><a href="refR.html#+relation">+relation</a></code>:
<pre>
: (dep '+relation)
+relation
+Bag
+Any
+Blob
+Link
+Joint
+Bool
+Symbol
+String
+Number
+Time
+Date
-> +relation
</pre>
<p>If we are interested in <code>+Link</code>:
<pre>
: (dep '+Link)
+relation
+Link
+Joint
-> +Link
</pre>
<p>This says that <code>+Link</code> is a subclass of <code><a
href="refR.html#+relation">+relation</a></code>, and has a single subclass
(<code>+Joint</code>).
<p><hr>
<h2><a id="fun">Defining Functions</a></h2>
<p>Most of the time during programming is spent defining functions (or methods).
In the following we will concentrate on functions, but most will be true for
methods as well except for using <code><a href="refD.html#dm">dm</a></code>
instead of <code><a href="refD.html#de">de</a></code>.
<h3>Functions with no argument</h3>
<p>The notorious "Hello world" function must be defined:
<pre>
: (de hello ()
(prinl "Hello world") )
-> hello
</pre>
<p>The <code>()</code> in the first line indicates a function without arguments.
The body of the function is in the second line, consisting of a single
statement. The last line is the return value of <code>de</code>, which here is
the defined symbol. From now on we will omit the return values of examples when
they are unimportant.
<p>Now you can call this function this way:
<pre>
: (hello)
Hello world
</pre>
<h3>Functions with one argument</h3>
<p>A function with an argument might be defined this way:
<pre>
: (de hello (X)
(prinl "Hello " X) )
# hello redefined
-> hello
</pre>
<p>PicoLisp informs you that you have just redefined the function. This might be
a useful warning in case you forgot that a bound symbol with that name already
existed.
<pre>
: (hello "world")
Hello world
</pre>
<pre>
: (hello "Alex")
Hello Alex
</pre>
<h3>Preventing arguments evaluation and variable number of arguments</h3>
<p>Normally, PicoLisp evaluates the arguments before it passes them to a
function:
<pre>
: (hello (+ 1 2 3))
Hello 6
</pre>
<pre>
: (setq A 1 B 2) # Set 'A' to 1 and 'B' to 2
-> 2
: (de foo (X Y) # 'foo' returns the list of its arguments
(list X Y) )
-> foo
: (foo A B) # Now call 'foo' with 'A' and 'B'
-> (1 2) # -> We get a list of 1 and 2, the values of 'A' and 'B'
</pre>
<p>In some cases you don't want that. For some functions (<code><a
href="refS.html#setq">setq</a></code> for example) it is better if the function
gets all arguments unevaluated, and can decide for itself what to do with them.
<p>For such cases you do not define the function with a <i>list</i> of
parameters, but give it a <i>single atomic</i> parameter instead. PicoLisp will
then bind all (unevaluated) arguments as a list to that parameter.
<pre>
: (de foo X
(list (car X) (cadr X)) ) # 'foo' lists the first two arguments
: (foo A B) # Now call it again
-> (A B) # -> We don't get '(1 2)', but '(A B)'
: (de foo X
(list (car X) (eval (cadr X))) ) # Now evaluate only the second argument
: (foo A B)
-> (A 2) # -> We get '(A 2)'
</pre>
<h3>Mixing evaluated arguments and variable number of unevaluated arguments</h3>
<p>As a logical consequence, you can combine these principles. To define a
function with 2 evaluated and an arbitrary number of unevaluated arguments:
<pre>
: (de foo (X Y . Z) # Evaluate only the first two args
(list X Y Z) )
: (foo A B C D E)
-> (1 2 (C D E)) # -> Get the value of 'A' and 'B' and the remaining list
</pre>
<h3>Variable number of evaluated arguments</h3>
<p>More common, in fact, is the case where you want to pass an arbitrary number
of <i>evaluated</i> arguments to a function. For that, PicoLisp recognizes the
symbol <code>@</code> as a single atomic parameter and remembers all evaluated
arguments in an internal frame. This frame can then be accessed sequentially
with the <code><a href="refA.html#args">args</a></code>, <code><a
href="refN.html#next">next</a></code>, <code><a
href="refA.html#arg">arg</a></code> and <code><a
href="refR.html#rest">rest</a></code> functions.
<pre>
: (de foo @
(list (next) (next)) ) # Get the first two arguments
: (foo A B)
-> (1 2)
</pre>
<p>Again, this can be combined:
<pre>
: (de foo (X Y . @)
(list X Y (next) (next)) ) # 'X' and 'Y' are fixed arguments
: (foo A B (+ 3 4) (* 3 4))
-> (1 2 7 12) # All arguments are evaluated
</pre>
<p>These examples are not very useful, because the advantage of a variable
number of arguments is not used. A function that prints all its evaluated
numeric arguments, each on a line followed by its squared value:
<pre>
: (de foo @
(while (args) # Check if there are some args left
(let N (next)
(println N (* N N)) ) ) )
: (foo (+ 2 3) (- 7 1) 1234 (* 9 9))
5 25
6 36
1234 1522756
81 6561
-> 6561
</pre>
<p>This next example shows the behaviour of <code>args</code> and
<code>rest</code>:
<pre>
: (de foo @
(while (args)
(println (next) (args) (rest)) ) )
: (foo 1 2 3)
1 T (2 3)
2 T (3)
3 NIL NIL
</pre>
<p>Finally, it is possible to pass all these evaluated arguments to another
function, using <code><a href="refP.html#pass">pass</a></code>:
<pre>
: (de foo @
(pass println 9 8 7) # First print all arguments preceded by 9, 8, 7
(pass + 9 8 7) ) # Then add all these values
: (foo (+ 2 3) (- 7 1) 1234 (* 9 9))
9 8 7 5 6 1234 81 # Printing ...
-> 1350 # Return the result
</pre>
<h3>Anonymous functions without the <i>lambda</i> keyword</h3>
There's no distinction between code and data in PicoLisp,
<code><a href="refQ.html#quote">quote</a></code> will do what you want (see
also <a href="faq.html#lambda">this FAQ entry</a>).
<pre>
: ((quote (X) (* X X)) 9)
-> 81
</pre>
<pre>
: (setq f '((X) (* X X))) # This is equivalent to (de f (X) (* X X))
-> ((X) (* X X))
: f
-> ((X) (* X X))
: (f 3)
-> 9
</pre>
<p><hr>
<h2><a id="dbg">Debugging</a></h2>
<p>There are two major ways to debug functions (and methods) at runtime:
<i>Tracing</i> and <i>single-stepping</i>.
<p>In this section we will use the REPL to explore the debugging facilities, but
in the <a href="#script">Scripting</a> section, you will learn how to launch
PicoLisp scripts with some selected functions debugged:
<pre>
$ pil app/file1.l -"trace 'foo" -main -"debug 'bar" app/file2.l +
</pre>
<h3>Tracing</h3>
<p><i>Tracing</i> means letting functions of interest print their name and arguments
when they are entered, and their name again and the return value when they are
exited.
<p>For demonstration, let's define the unavoidable factorial function:
<pre>
(de fact (N)
(if (=0 N)
1
(* N (fact (dec N))) ) )
</pre>
<p>With <code><a href="refT.html#trace">trace</a></code> we can put it in trace
mode:
<pre>
: (trace 'fact)
-> fact
</pre>
<p>Calling <code>fact</code> now will display its execution trace.
<pre>
: (fact 3)
fact : 3
fact : 2
fact : 1
fact : 0
fact = 1
fact = 1
fact = 2
fact = 6
-> 6
</pre>
<p>As can be seen here, each level of function call will indent by an additional
space. Upon function entry, the name is separated from the arguments with a
colon (<code>:</code>), and upon function exit with an equals sign
(<code>=</code>) from the return value.
<p><code>trace</code> works by modifying the function body, so generally it
works only for functions defined as lists (lambda expressions, see <a
href="ref.html#ev">Evaluation</a>). Tracing a built-in function (SUBR) is
possible, however, when it is a function that evaluates all its arguments.
<p>So let's trace the functions <code><a href="ref_.html#=0">=0</a></code> and
<code><a href="ref_.html#*">*</a></code>:
<pre>
: (trace '=0)
-> =0
: (trace '*)
-> *
</pre>
<p>If we call <code>fact</code> again, we see the additional output:
<pre>
: (fact 3)
fact : 3
=0 : 3
=0 = NIL
fact : 2
=0 : 2
=0 = NIL
fact : 1
=0 : 1
=0 = NIL
fact : 0
=0 : 0
=0 = 0
fact = 1
* : 1 1
* = 1
fact = 1
* : 2 1
* = 2
fact = 2
* : 3 2
* = 6
fact = 6
-> 6
</pre>
<p>To reset a function to its untraced state, call <code><a
href="refU.html#untrace">untrace</a></code>:
<pre>
: (untrace 'fact)
-> fact
: (untrace '=0)
-> =0
: (untrace '*)
-> *
</pre>
<p>or simply use <code><a href="refM.html#mapc">mapc</a></code>:
<pre>
: (mapc untrace '(fact =0 *))
-> *
</pre>
<h3>Single-stepping</h3>
<p><i>Single-stepping</i> means to execute a function step by step, giving the
programmer an opportunity to look more closely at what is happening. The
function <code><a href="refD.html#debug">debug</a></code> inserts a breakpoint
into each top-level expression of a function. When the function is called, it
stops at each breakpoint, displays the expression it is about to execute next
(this expression is also stored into the global variable <code><a
href="ref_.html#%5E">^</a></code>) and enters a read-eval-loop. The programmer
can then
<ul>
<li>inspect the current environment by typing variable names or calling
functions
<li>execute <code>(<a href="refD.html#d">d</a>)</code> to recursively debug the
next expression (looping through subexpressions of this expression)
<li>execute <code>(<a href="refE.html#e">e</a>)</code> to evaluate the next
expression, to see what will happen without actually advancing on
<li>type ENTER (that is, enter an empty line) to leave the read-eval loop and
continue with the next expression
</ul>
<p>Thus, in the simplest case, single-stepping consists of just hitting ENTER
repeatedly to step through the function.
<p>To try it out, let's look at the <code><a
href="refS.html#stamp">stamp</a></code> system function. You may need to have a
look at
<ul>
<li><code><a href="ref_.html#=T">=T</a></code> (T test),</li>
<li><code><a href="refD.html#date">date</a></code> and <code><a
href="refT.html#time">time</a></code> (grab system date and time)
<li><code><a href="refD.html#default">default</a></code> (conditional
assignments)
<li><code><a href="refP.html#pack">pack</a></code> (kind of concatenation), and
<li><code><a href="refD.html#dat$">dat$</a></code> and <code><a
href="refT.html#tim$">tim$</a></code> (date and time formats)</li>
</ul>
to understand this definition.
<pre>
: (pp 'stamp)
(de stamp (Dat Tim)
(and (=T Dat) (setq Dat (date T)))
(default Dat (date) Tim (time T))
(pack (dat$ Dat "-") " " (tim$ Tim T)) )
-> stamp
</pre>
<pre>
: (debug 'stamp) # Debug it
-> T
: (stamp) # Call it again
(and (=T Dat) (setq Dat (date T))) # stopped at first expression
! # ENTER
(default Dat (date) Tim (time T)) # second expression
! # ENTER
(pack (dat$ Dat "-") " " (tim$ ... # third expression
! Tim # inspect 'Tim' variable
-> 41908
! (time Tim) # convert it
-> (11 38 28)
! # ENTER
-> "2004-10-29 11:38:28" # done, as there are only 3 expressions
</pre>
<p>Now we execute it again, but this time we want to look at what's happening
inside the second expression.
<pre>
: (stamp) # Call it again
(and (=T Dat) (setq Dat (date T)))
! # ENTER
(default Dat (date) Tim (time T))
! # ENTER
(pack (dat$ Dat "-") " " (tim$ ... # here we want to look closer
! (d) # debug this expression
-> T
! # ENTER
(dat$ Dat "-") # stopped at first subexpression
! (e) # evaluate it
-> "2004-10-29"
! # ENTER
(tim$ Tim T) # stopped at second subexpression
! (e) # evaluate it
-> "11:40:44"
! # ENTER
-> "2004-10-29 11:40:44" # done
</pre>
<p>The breakpoints still remain in the function body. We can see them when we
pretty-print it:
<pre>
: (pp 'stamp)
(de stamp (Dat Tim)
(! and (=T Dat) (setq Dat (date T)))
(! default Dat (date) Tim (time T))
(! pack
(! dat$ Dat "-")
" "
(! tim$ Tim T) ) )
-> stamp
</pre>
<p>To reset the function to its normal state, call <code><a
href="refU.html#unbug">unbug</a></code>:
<pre>
: (unbug 'stamp)
</pre>
<p>Often, you will not want to single-step a whole function. Just use
<code>v</code> (see above) to insert a single breakpoint (the exclamation mark
followed by a space) as CAR of an expression, and run your program. Execution
will then stop there as described above; you can inspect the environment and
continue execution with ENTER when you are done.
<p><hr>
<h2><a id="funio">Functional I/O</a></h2>
<p>Input and output in PicoLisp is functional, in the sense that there are not
variables assigned to file descriptors, which need then to be passed to I/O
functions for reading, writing and closing. Instead, these functions operate on
implicit input and output channels, which are created and maintained as dynamic
environments.
<p>Standard input and standard output are the default channels. Try reading a
single expression:
<pre>
: (read)
(a b c) # Console input
-> (a b c)
</pre>
<p>To read from a file, we redirect the input with <code><a
href="refI.html#in">in</a></code>. Note that comments and whitespace are
automatically skipped by <code>read</code>:
<pre>
: (in "@lib.l" (read))
-> (de task (Key . Prg) (nond (...
</pre>
<p>The <code><a href="refS.html#skip">skip</a></code> function can also be used
directly. To get the first non-white character in the file with <code><a
href="refC.html#char">char</a></code>:
<pre>
: (in "@lib.l" (skip "#") (char))
-> "("
</pre>
<p><code><a href="refF.html#from">from</a></code> searches through the input
stream for given patterns. Typically, this is not done with Lisp source files
(there are better ways), but for a simple example let's extract all items
immediately following <code>fact</code> in the file,
<pre>
: (in "@lib.l" (while (from "nond") (println (read))))
(Prg (del (assoc Key *Run) '*Run))
((pair "X") (or (pair (getd "X")) (expr "X")))
("Prg" (caar (idx "Var" "K")))
</pre>
<p>or the word following "(de " with <code><a
href="refT.html#till">till</a></code>:
<pre>
: (in "@lib.l" (from "(de ") (till " " T))
-> "task"
</pre>
<p> To read the contents of a whole file (or the rest of it starting from the
current position):
<pre>
: (in "f.l" (till NIL T))
-> "... file contents ..."
</pre>
<p>With <code><a href="refL.html#line">line</a></code>, a line of characters is
read, either into a single <a href="ref.html#transient-io">transient</a> symbol
(the type used by PicoLisp for strings),
<pre>
: (in "@doc/tut.html" (line T))
-> "<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://..."
</pre>
<p>or into a list of symbols (characters):
<pre>
: (in "@doc/tut.html" (line))
-> ("<" "!" "D" "O" "C" "T" "Y" "P" "E" " " "H" "T" "M" "L" ...
</pre>
<p><code>line</code> is typically used to read tabular data from a file.
Additional arguments can split the line into fixed-width fields, as described in
the <code><a href="refL.html#line">reference manual</a></code>. If, however, the
data are of variable width, delimited by some special character, the <code><a
href="refS.html#split">split</a></code> function can be used to extract the
fields. A typical way to import the contents of such a file is:
<pre>
(in '("bin/utf2" "importFile.txt") # Pipe: Convert to UTF-8
(until (eof) # Process whole file
(let L (split (line) "\t") # TAB-delimited data
... # process them
</pre>
<p>Some more examples with <code><a href="refE.html#echo">echo</a></code>:
<pre>
(in "a" # Copy the first 40 Bytes
(out "b" # from file "a" to file "b"
(echo 40) ) )
(in "@doc/tut.html" # Show the HTTP-header
(line)
(echo "<body>") )
(out "file.mac" # Convert to Macintosh
(in "file.txt" # from Unix or DOS format:
(while (char)
(prin
(case @
("\r" NIL) # ignore CR
("\n" "\r") # convert LF to CR
(T @) ) ) ) ) ) # otherwise no change
(out "c" # Merge the contents of "a"
(in "b" # and "b" into "c"
(in "a"
(while (read) # Read an item from "a",
(println @ (in -1 (read))) ) ) ) ) # print it with an item from "b"
</pre>
<p><hr>
<h2><a id="script">Scripting</a></h2>
<p>There are two possibilities to get the PicoLisp interpreter into doing useful
work: via command line arguments, or as a stand-alone script.
<h3>Command line arguments for the PicoLisp interpreter</h3>
<p>The command line can specify either files for execution, or arbitrary Lisp
expressions for direct evaluation (see <a href="ref.html#invoc">Invocation</a>):
if an argument starts with a hyphen, it is evaluated, otherwise it is <code><a
href="refL.html#load">load</a></code>ed as a file. A typical invocation might
look like:
<pre>
$ pil app/file1.l -main app/file2.l +
</pre>
<p>It loads the debugging environment, an application source file, calls the
main function, and then loads another application source. In a typical
development and debugging session, this line is often modified using the shell's
history mechanisms, e.g. by inserting debugging statements:
<pre>
$ pil app/file1.l -"trace 'foo" -main -"debug 'bar" app/file2.l +
</pre>
<p>Another convenience during debugging and testing is to put things into the
command line (shell history) which would otherwise have to be done each time in
the application's user interface:
<pre>
$ pil app/file1.l -main app/file2.l -go -'login "name" "password"' +
</pre>
<p>The final production release of an application usually includes a shell
script, which initializes the environment, does some bookkeeping and cleanup,
and calls the application with a proper command line. It is no problem if the
command line is long and complicated.
<p>For small utility programs, however, this is overkill. Enter full PicoLisp
scripts.
<h3>PicoLisp scripts</h3>
It is better to write
a single executable file using the mechanisms of "interpreter files". If the
first two characters in an executable file are "<code>#!</code>", the operating
system kernel will pass this file to an interpreter program whose pathname is
given in the first line (optionally followed by a single argument). This is fast
and efficient, because the overhead of a subshell is avoided.
<p>Let's assume you installed PicoLisp in the directory "/home/foo/pil21/",
and put links to the executable and the installation directory as:
<pre>
$ ln -s /home/foo/pil21 /usr/lib/picolisp
$ ln -s /usr/lib/picolisp/bin/picolisp /usr/bin
</pre>
Then a simple hello-world script might look like:
<pre>
#!/usr/bin/picolisp /usr/lib/picolisp/lib.l
(prinl "Hello world!")
(bye)
</pre>
<p>If you write this into a text file, and use <code>chmod</code> to set it to
"executable", it can be executed like any other command. Note that (because
<code>#</code> is the comment character in PicoLisp) the first line will not be
interpreted, and you can still use that file as a normal command line argument
to PicoLisp (useful during debugging).
<h3>Grab command line arguments from PicoLisp scripts</h3>
<p>The fact that a hyphen causes evaluation of command line arguments can be
used to implement command line options. The following script defines two
functions <code>a</code> and <code>f</code>, and then calls <code>(<a
href="refL.html#load">load</a> T)</code> to process the rest of the command line
(which otherwise would be ignored because of the <code>(<a
href="refB.html#bye">bye</a>)</code> statement):
<pre>
#!/usr/bin/picolisp /usr/lib/picolisp/lib.l
(de a ()
(println '-a '-> (opt)) )
(de f ()
(println '-f '-> (opt)) )
(load T)
(bye)
</pre>
(<code><a href="refO.html#opt">opt</a></code> retrieves the next command line
option)
<p>Calling this script (let's say we named it "testOpts") gives:
<pre>
$ ./testOpts -f abc
-f -> "abc"
$ ./testOpts -a xxx -f yyy
-a -> "xxx"
-f -> "yyy"
</pre>
<p>We have to be aware of the fact, however, that the aggregation of arguments
like
<pre>
$ ./testOpts -axxx -fyyy
</pre>
<p>or
<pre>
$ ./testOpts -af yyy
</pre>
<p>cannot be achieved with this simple and general mechanism of command line
processing.
<h3>Run scripts from arbitrary places on the host file system</h3>
<p>Utilities are typically used outside the context of the PicoLisp environment.
All examples above assumed that the current working directory is the PicoLisp
installation directory, which is usually all right for applications developed in
that environment. Command line file arguments like "app/file1.l" will be
properly found.
<p>To allow utilities to run in arbitrary places on the host file system, the
concept of <i>home directory substitution</i> was introduced. The interpreter
remembers internally at start-up the pathname of its first argument (usually
"lib.l"), and substitutes any leading "<code>@</code>" character in subsequent
file names with that pathname. Thus, to run the above example in some other
place, simply write:
<pre>
$ /home/foo/pil21/pil @app/file1.l -main @app/file2.l +
</pre>
<p>that is, supply a full path name to the initial command (here 'pil'), or put
it into your <code>PATH</code> variable, and prefix each file which has to be
loaded from the PicoLisp home directory with a <code>@</code> character.
"Normal" files (not prefixed by <code>@</code>) will be opened or created
relative to the current working directory as usual.
<p>Stand-alone scripts will often want to load additional modules from the
PicoLisp environment, beyond the "lib.l" we provided in the first line of the
hello-world script. Typically, at least a call to
<pre>
(load "@lib/misc.l")
</pre>
<p>(note the home directory substitution) will be included near the beginning of
the script.
<p>As a more complete example, here is a script which extracts the date, name
and size of the latest official PicoLisp release version from the download web
site, and prints it to standard output:
<pre>
#!/usr/bin/picolisp /usr/lib/picolisp/lib.l
(load "@lib/misc.l" "@lib/http.l")
(use (@Date @Name @Size)
(when
(match
'(@Date ~(chop " - <a href=\"") @Name "\"" ">"
@Name ~(chop "</a> (") @Size )
(client "software-lab.de" 80 "down.html"
(from "Release Archive")
(from "<li>")
(till ",") ) )
(prinl @Name)
(prinl @Date " -- " @Size) ) )
(bye)
</pre>
</body>
</html>
|