File: rsa.l

package info (click to toggle)
picolisp 3.1.0.7-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,100 kB
  • sloc: ansic: 14,205; lisp: 795; makefile: 290; sh: 13
file content (109 lines) | stat: -rw-r--r-- 2,621 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# 10nov04abu
# (c) Software Lab. Alexander Burger

# *InND

# Generate long random number
(de longRand (N)
   (use (R D)
      (while (=0 (setq R (abs (rand)))))
      (until (> R N)
         (unless (=0 (setq D (abs (rand))))
            (setq R (* R D)) ) )
      (% R N) ) )

# X power Y modulus N
(de **Mod (X Y N)
   (let M 1
      (loop
         (when (bit? 1 Y)
            (setq M (% (* M X) N)) )
         (T (=0 (setq Y (>> 1 Y)))
            M )
         (setq X (% (* X X) N)) ) ) )

# Probabilistic prime check
(de prime? (N)
   (and
      (> N 1)
      (bit? 1 N)
      (let (Q (dec N)  K 0)
         (until (bit? 1 Q)
            (setq
               Q  (>> 1 Q)
               K  (inc K) ) )
         (do 50
            (NIL (_prim? N Q K))
            T ) ) ) )

# (Knuth Vol.2, p.379)
(de _prim? (N Q K)
   (use (X J Y)
      (while (> 2 (setq X (longRand N))))
      (setq
         J 0
         Y (**Mod X Q N) )
      (loop
         (T
            (or
               (and (=0 J) (= 1 Y))
               (= Y (dec N)) )
            T )
         (T
            (or
               (and (> J 0) (= 1 Y))
               (<= K (inc 'J)) )
            NIL )
         (setq Y (% (* Y Y) N)) ) ) )

# Find a prime number with `Len' digits
(de prime (Len)
   (let P (longRand (** 10 (*/ Len 2 3)))
      (unless (bit? 1 P)
         (inc 'P) )
      (until (prime? P)  # P: Prime number of size 2/3 Len
         (inc 'P 2) )
      # R: Random number of size 1/3 Len
      (let (R (longRand (** 10 (/ Len 3)))  K (+ R (% (- P R) 3)))
         (when (bit? 1 K)
            (inc 'K 3) )
         (until (prime? (setq R (inc (* K P))))
            (inc 'K 6) )
         R ) ) )

# Generate RSA key
(de rsaKey (N)  #> (Encrypt . Decrypt)
   (let (P (prime (*/ N 5 10))  Q (prime (*/ N 6 10)))
      (cons
         (* P Q)
         (/
            (inc (* 2 (dec P) (dec Q)))
            3 ) ) ) )

# Encrypt a list of characters
(de encrypt (Key Lst)
   (let Siz (>> 1 (size Key))
      (make
         (while Lst
            (let N (char (pop 'Lst))
               (while (> Siz (size N))
                  (setq N (>> -16 N))
                  (inc 'N (char (pop 'Lst))) )
               (link (**Mod N 3 Key)) ) ) ) ) )

# Decrypt a list of numbers
(de decrypt (Keys Lst)
   (mapcan
      '((N)
         (let Res NIL
            (setq N (**Mod N (cdr Keys) (car Keys)))
            (until (=0 N)
               (push 'Res (char (& `(dec (** 2 16)) N)))
               (setq N (>> 16 N)) )
            Res ) )
      Lst ) )

# Init crypt
(de rsa (N)
   (seed (in "/dev/urandom" (rd 20)))
   (setq *InND (rsaKey N)) )