File: big.l

package info (click to toggle)
picolisp 3.1.0.7-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,100 kB
  • sloc: ansic: 14,205; lisp: 795; makefile: 290; sh: 13
file content (3053 lines) | stat: -rw-r--r-- 72,413 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
# 07jun12abu
# (c) Software Lab. Alexander Burger

### Destructive primitives ###
# Remove leading zeroes
(code 'zapZeroA_A 0)
   push A  # Save number
   ld C S  # Short-tail in C
   ld E C  # Null-tail in E
   do
      cnt (A BIG)  # Last cell?
   while z  # No
      null (A DIG)  # Null digit?
      if nz  # No
         ld E C  # New null-tail
      end
      lea C (A BIG)  # New short-tail
      ld A (C)  # Next cell
   loop
   cmp (A BIG) ZERO  # Trailing short zero?
   if eq  # Yes
      ld A (A DIG)
      null A  # Null digit?
      if nz  # No
         test A (hex "F000000000000000")  # Fit in short number?
         if z  # Yes
            shl A 4  # Make short number
            or A CNT
            ld (C) A  # Store in short-tail
         end
      else
         ld A ((E) DIG)  # Digit in null-tail
         test A (hex "F000000000000000")  # Fit in short number?
         if nz  # No
            ld ((E) BIG) ZERO  # Trim null-tail
         else
            shl A 4  # Make short number
            or A CNT
            ld (E) A  # Store in null-tail
         end
      end
   end
   pop A  # Result
   ret

# Multiply (unsigned) number by 2
(code 'twiceA_A 0)
   cnt A  # A short?
   if nz  # Yes
      xor A 3  # Prepare tag bit
      shl A 1  # Shift left
      jnc Ret  # Done
      rcr A 1  # Else normalize
      shr A 3
      jmp boxNumA_A  # Return bignum
   end
: twiceBigA_A
   push A  # Save bignum
   ld C (A DIG)  # Lowest digit
   shl C 1  # Shift left
   do
      push F  # Save carry
      ld (A DIG) C  # Store digit
      ld E (A BIG)  # Next cell
      cnt E  # End of bignum?
   while z  # No
      ld A E
      ld C (A DIG)  # Next digit
      pop F
      rcl C 1  # Rotate left
   loop
   shr E 4  # Normalize
   pop F
   rcl E 1  # Rotate left
   test E (hex "F000000000000000")  # Fit in short number?
   if z  # Yes
      shl E 4  # Make short number
      or E CNT
   else
      call boxNumE_E  # New cell
   end
   ld (A BIG) E  # Store in final cell
   pop A  # Return bignum
   ret

# Divide (unsigned) number by 2
(code 'halfA_A 0)
   cnt A  # A short?
   if nz  # Yes
      shr A 1  # Shift right
      off A 9  # Clear lowest bit and tag
      or A CNT  # Make short number
      ret
   end
   ld C (A DIG)  # Lowest digit
   ld E (A BIG)  # Next cell
   cnt E  # Any?
   if nz  # No
      shr E 5  # Normalize and shift right
      if nz  # Non-empty
         rcr C 1  # Rotate right
      else
         rcr C 1  # Rotate right
         test C (hex "F000000000000000")  # Fit in short number?
         if z  # Yes
            shl C 4  # Return short number
            or C CNT
            ld A C
            ret
         end
      end
      ld (A DIG) C  # Store lowest digit
      shl E 4  # Make short number
      or E CNT
      ld (A BIG) E  # Store in the cell
      ret
   end
   push A  # Save bignum
   do
      test (E DIG) 1  # Shift bit?
      if nz  # Yes
         setc
      end
      rcr C 1  # Rotate right with carry
      ld (A DIG) C  # Store digit
      ld C (E BIG)  # More cells?
      cnt C
   while z  # Yes
      ld A E  # Advance pointers
      ld E C
      ld C (A DIG)  # Next digit
   loop
   shr C 5  # Normalize and shift right
   if nz  # Non-empty
      rcr (E DIG) 1  # Shift previous digit
      shl C 4  # Make short number
      or C CNT
   else
      ld C (E DIG)  # Shift previous digit
      rcr C 1
      test C (hex "F000000000000000")  # Fit in short number?
      if z  # Yes
         shl C 4  # Make short number
         or C CNT
         ld (A BIG) C
         pop A  # Return bignum
         ret
      end
      ld (E DIG) C
      ld C ZERO
   end
   ld (E BIG) C  # Store in the cell
   pop A  # Return bignum
   ret

# Multiply (unsigned) number by 10
(code 'tenfoldA_A 0)
   cnt A  # A short?
   if nz  # Yes
      shr A 4  # Normalize
      mul 10  # Multiply by 10
      test A (hex "F000000000000000")  # Fit in short number?
      jnz boxNumA_A  # No: Return bignum
      shl A 4  # Make short number
      or A CNT
      ret
   end
   push X
   push A  # Save bignum
   ld X A  # Bignum in X
   ld A (X DIG)  # Multiply lowest digit by 10
   mul 10
   do
      ld (X DIG) A  # Store lower word
      ld E C  # Keep upper word in E
      ld A (X BIG)  # Next cell
      cnt A  # End of bignum?
   while z  # No
      ld X A
      ld A (X DIG)  # Next digit
      mul 10  # Multiply by 10
      add D E  # Add previous upper word
   loop
   shr A 4  # Normalize
   mul 10  # Multiply by 10
   add A E  # Add previous upper word
   test A (hex "F000000000000000")  # Fit in short number?
   if z  # Yes
      shl A 4  # Make short number
      or A CNT
   else
      call boxNumA_A  # Return bignum
   end
   ld (X BIG) A  # Store in final cell
   pop A  # Return bignum
   pop X
   ret

### Non-destructive primitives ###
# Multiply (unsigned) number by 2
(code 'shluA_A 0)
   cnt A  # A short?
   if nz  # Yes
      xor A 3  # Prepare tag bit
      shl A 1  # Shift left
      jnc Ret  # Done
      rcr A 1  # Else normalize
      shr A 3
      jmp boxNumA_A  # Return bignum
   end
   call boxNum_E  # Build new head
   ld (E DIG) (A DIG)  # Lowest digit
   link
   push E  # <L I> Result
   link
   shl (E DIG) 1  # Shift left
   push F  # Save carry
   do
      ld A (A BIG)  # Next cell
      cnt A  # End of bignum?
   while z  # No
      call boxNum_C  # Build next cell
      ld (E BIG) C
      ld E (A DIG)  # Next digit
      pop F
      rcl E 1  # Rotate left
      push F  # Save carry
      ld (C DIG) E
      ld E C
   loop
   shr A 4  # Normalize
   pop F
   rcl A 1  # Rotate left
   test A (hex "F000000000000000")  # Fit in short number?
   if z  # Yes
      shl A 4  # Make short number
      or A CNT
   else
      call boxNumA_A  # New cell
   end
   ld (E BIG) A  # Store in final cell
   ld A (L I)  # Return bignum
   drop
   ret

# Divide (unsigned) number by 2
(code 'shruA_A 0)
   cnt A  # A short?
   if nz  # Yes
      shr A 1  # Shift right
      off A 9  # Clear lowest bit and tag
      or A CNT  # Make short number
      ret
   end
   ld E (A BIG)  # Next cell
   cnt E  # Any?
   if nz  # No
      ld C (A DIG)  # Lowest digit
      shr E 5  # Normalize and shift right
      if nz  # Non-empty
         rcr C 1  # Rotate right
      else
         rcr C 1  # Rotate right
         test C (hex "F000000000000000")  # Fit in short number?
         if z  # Yes
            shl C 4  # Return short number
            or C CNT
            ld A C
            ret
         end
      end
      shl E 4  # Make short number
      or E CNT
      jmp consNumCE_A  # Return bignum
   end
   call boxNum_C  # Build new head
   ld (C DIG) (A DIG)  # Lowest digit
   link
   push C  # <L I> Result
   link
   do
      test (E DIG) 1  # Shift bit?
      if nz  # Yes
         setc
      end
      rcr (C DIG) 1  # Rotate right with carry
      cnt (E BIG)  # More cells?
   while z  # Yes
      call boxNum_A  # Build next digit
      ld (A DIG) (E DIG)
      ld (C BIG) A
      ld E (E BIG)  # Advance pointers
      ld C A
   loop
   ld A (E BIG)  # Final short number
   shr A 5  # Normalize and shift right
   if nz  # Non-empty
      ld E (E DIG)  # Shift previous digit
      rcr E 1
      shl A 4  # Make short number
      or A CNT
      call consNumEA_E  # Last cell
      ld (C BIG) E  # Store in the cell
   else
      ld E (E DIG)  # Shift previous digit
      rcr E 1
      test E (hex "F000000000000000")  # Fit in short number?
      if z  # Yes
         shl E 4  # Make short number
         or E CNT
         ld (C BIG) E
         ld A (L I)  # Return bignum
         drop
         ret
      end
      call boxNum_A  # New cell
      ld (A DIG) E
      ld (C BIG) A
   end
   ld A (L I)  # Return bignum
   drop
   ret

# Bitwise AND of two (unsigned) numbers
(code 'anduAE_A 0)
   cnt A  # A short?
   if nz  # Yes
      cnt E  # E also short?
      if z  # No
         ld E (E DIG)  # Get digit
         shl E 4  # Make short number
         or E CNT
      end
      and A E  # Return short number
      ret
   end
   # A is big
   cnt E  # E short?
   if nz  # Yes
      ld A (A DIG)  # Get digit
      shl A 4  # Make short number
      or A CNT
      and A E  # Return short number
      ret
   end
   # Both are big
   push X
   link
   push ZERO  # <L I> Result
   link
   ld C (A DIG)  # AND first digits
   and C (E DIG)
   call boxNum_X  # Make bignum
   ld (X DIG) C
   ld (L I) X  # Init result
   do
      ld A (A BIG)  # Get tails
      ld E (E BIG)
      cnt A  # End of A?
      if nz  # Yes
         cnt E  # Also end of E?
         if z  # No
            ld E (E DIG)  # Get digit
            shl E 4  # Make short number
            or E CNT
         end
         and A E  # Concat short
         ld (X BIG) A
         ld A (L I)  # Return bignum
         drop
         pop X
         jmp zapZeroA_A  # Remove leading zeroes
      end
      cnt E  # End of E?
      if nz  # Yes
         ld A (A DIG)  # Get digit
         shl A 4  # Make short number
         or A CNT
         and A E  # Concat short
         ld (X BIG) A
         ld A (L I)  # Return bignum
         drop
         pop X
         jmp zapZeroA_A  # Remove leading zeroes
      end
      ld C (A DIG)  # AND digits
      and C (E DIG)
      call consNumCE_C  # New bignum cell
      ld (X BIG) C  # Concat to result
      ld X C
   loop

# Bitwise OR of two (unsigned) numbers
(code 'oruAE_A 0)
   cnt A  # A short?
   if nz  # Yes
      cnt E  # E also short?
      if nz  # Yes
         or A E  # Return short number
         ret
      end
      shr A 4  # Normalize
      or A (E DIG)  # OR digit
      ld E (E BIG)  # Rest of E
      jmp consNumAE_A  # Append rest
   end
   # A is big
   cnt E  # E short?
   if nz  # Yes
      shr E 4  # Normalize
      or E (A DIG)  # OR digit
      ld A (A BIG)  # Rest of A
      jmp consNumEA_A  # Append rest
   end
   # Both are big
   push X
   link
   push ZERO  # <L I> Result
   link
   ld C (A DIG)  # OR first digits
   or C (E DIG)
   call boxNum_X  # Make bignum
   ld (X DIG) C
   ld (L I) X  # Init result
   do
      ld A (A BIG)  # Get tails
      ld E (E BIG)
      cnt A  # End of A?
      if nz  # Yes
         cnt E  # Also end of E?
         if nz  # Yes
            or A E  # Concat short number
         else
            shr A 4  # Normalize
            or A (E DIG)  # OR digit
            ld E (E BIG)  # Rest of E
            call consNumAE_A  # Append rest
         end
         ld (X BIG) A
         ld A (L I)  # Return bignum
         drop
         pop X
         ret
      end
      cnt E  # End of E?
      if nz  # Yes
         shr E 4  # Normalize
         or E (A DIG)  # OR digit
         ld A (A BIG)  # Rest of A
         call consNumEA_A  # Append rest
         ld (X BIG) A
         ld A (L I)  # Return bignum
         drop
         pop X
         ret
      end
      ld C (A DIG)  # OR digits
      or C (E DIG)
      call consNumCE_C  # New bignum cell
      ld (X BIG) C  # Concat to result
      ld X C
   loop

# Bitwise XOR of two (unsigned) numbers
(code 'xoruAE_A 0)
   cnt A  # A short?
   if nz  # Yes
      cnt E  # E also short?
      if nz  # Yes
         xor A E  # Return short number
         or A CNT
         ret
      end
      shr A 4  # Normalize
      xor A (E DIG)  # XOR digit
      ld E (E BIG)  # Rest of E
      call consNumAE_A  # Append rest
      jmp zapZeroA_A  # Remove leading zeroes
   end
   # A is big
   cnt E  # E short?
   if nz  # Yes
      shr E 4  # Normalize
      xor E (A DIG)  # XOR digit
      ld A (A BIG)  # Rest of A
      call consNumEA_A  # Append rest
      jmp zapZeroA_A  # Remove leading zeroes
   end
   # Both are big
   push X
   link
   push ZERO  # <L I> Result
   link
   ld C (A DIG)  # XOR first digits
   xor C (E DIG)
   call boxNum_X  # Make bignum
   ld (X DIG) C
   ld (L I) X  # Init result
   do
      ld A (A BIG)  # Get tails
      ld E (E BIG)
      cnt A  # End of A?
      if nz  # Yes
         cnt E  # Also end of E?
         if nz  # Yes
            xor A E  # Concat short number
            or A CNT
         else
            shr A 4  # Normalize
            xor A (E DIG)  # XOR digit
            ld E (E BIG)  # Rest of E
            call consNumAE_A  # Append rest
         end
         ld (X BIG) A
         ld A (L I)  # Return bignum
         drop
         pop X
         jmp zapZeroA_A  # Remove leading zeroes
      end
      cnt E  # End of E?
      if nz  # Yes
         shr E 4  # Normalize
         xor E (A DIG)  # XOR digit
         ld A (A BIG)  # Rest of A
         call consNumEA_A  # Append rest
         ld (X BIG) A
         ld A (L I)  # Return bignum
         drop
         pop X
         jmp zapZeroA_A  # Remove leading zeroes
      end
      ld C (A DIG)  # XOR digits
      xor C (E DIG)
      call consNumCE_C  # New bignum cell
      ld (X BIG) C  # Concat to result
      ld X C
   loop

# Add two (unsigned) numbers
(code 'adduAE_A 0)
   cnt A  # A short?
   if nz  # Yes
      cnt E  # E also short?
      jz 10  # No: Jump
      off E CNT  # Else clear tag
      add A E  # Add short numbers
      jnc Ret  # Done
      rcr A 1  # Get top bit
      shr A 3  # Normalize
      jmp boxNumA_A  # Return bignum
   end
   # A is big
   cnt E  # E short?
   if nz  # Yes
      xchg A E  # Exchange args
10    shr A 4  # Normalize short
      add A (E DIG)  # Add first digit
      ld E (E BIG)  # Tail in E
      jnc consNumAE_A  # Cons new cell if no carry
      call consNumAE_A  # Else build new head
      link
      push A  # <L I> Result
      link
      do
         cnt E  # Short number?
         if nz  # Yes
            add E (hex "10")  # Add carry
            if nc  # No further carry
               ld (A BIG) E  # Append it
            else  # Again carry
               rcr E 1  # Get top bit
               shr E 3  # Normalize
               call boxNum_C  # New cell
               ld (C DIG) E
               ld (A BIG) C  # Append it
            end
            ld A (L I)  # Return bignum
            drop
            ret
         end
         ld C (E DIG)  # Next digit
         ld E (E BIG)
         add C 1  # Add carry
         if nc  # None
            call consNumCE_E  # New last cell
            ld (A BIG) E
            ld A (L I)  # Return bignum
            drop
            ret
         end
         call consNumCE_C  # New cell
         ld (A BIG) C  # Append it
         ld A C  # Tail of result
      loop
   end
   # Both are big
   push X
   link
   push ZERO  # <L I> Result
   link
   ld C (A DIG)  # Add first digits
   add C (E DIG)
   push F  # Save carry
   call boxNum_X  # Make bignum
   ld (X DIG) C
   ld (L I) X  # Init result
   do
      ld A (A BIG)  # Get tails
      ld E (E BIG)
      cnt A  # End of A?
      if nz  # Yes
         cnt E  # Also end of E?
         jz 20  # No: Jump
         shr A 4  # Normalize A
         shr E 4  # Normalize E
         pop F
         addc A E  # Add final shorts with carry
         shl A 4
         if nc
            or A CNT  # Make short number
         else  # Again carry
            rcr A 1  # Get top bit
            shr A 3  # Normalize
            call boxNumA_A  # Make bignum
         end
         ld (X BIG) A
         ld A (L I)  # Return bignum
         drop
         pop X
         ret
      end
      cnt E  # End of E?
      if nz  # Yes
         xchg A E  # Exchange args
20       shr A 4  # Normalize A
         pop F
         addc A (E DIG)  # Add next digit with carry
         do
            ld E (E BIG)
            if nc  # No carry
               call consNumAE_A  # Append rest
               ld (X BIG) A
               ld A (L I)  # Return bignum
               drop
               pop X
               ret
            end
            call consNumAE_A  # New cell
            ld (X BIG) A  # Concat to result
            ld X A  # Pointer to last cell
            cnt E  # End of E?
            if nz  # Yes
               add E (hex "10")  # Add carry
               if nc  # No further carry
                  ld (X BIG) E  # Append it
               else  # Again carry
                  rcr E 1  # Get top bit
                  shr E 3  # Normalize
                  call boxNum_C  # New cell
                  ld (C DIG) E
                  ld (X BIG) C  # Append it
               end
               ld A (L I)  # Return bignum
               drop
               pop X
               ret
            end
            ld A (E DIG)  # Add carry to next digit
            add A 1
         loop
      end
      ld C (A DIG)  # Add digits
      pop F
      addc C (E DIG)
      push F
      call consNumCE_C  # New bignum cell
      ld (X BIG) C  # Concat to result
      ld X C
   loop

# Subtract two (unsigned) numbers
(code 'subuAE_A 0)
   cnt A  # A short?
   if nz  # Yes
      cnt E  # E also short?
      if nz  # Yes
         off E CNT  # Clear tag
         sub A E  # Subtract short numbers
         jnc Ret  # Done
         xor A -16  # 2-complement
         add A (hex "18")
         ret
      end
      xchg A E  # Exchange args
      call 10  # Subtract short from big
      cmp A ZERO  # Zero?
      if ne  # No
         or A SIGN  # Set negative
      end
      ret
   end
   # A is big
   cnt E  # E short?
   if nz  # Yes
10    shr E 4  # Normalize short
      ld C (A DIG)
      sub C E  # Subtract from first digit
      ld E (A BIG)  # Tail in E
      if nc  # No borrow
         cmp E ZERO  # Leading zero?
         jne consNumCE_A  # No: Cons new cell
         test C (hex "F000000000000000")  # Fit in short number?
         jnz consNumCE_A  # No: Cons new cell
         ld A C  # Get digit
         shl A 4  # Make short number
         or A CNT
         ret
      end
      call consNumCE_A  # Else build new head
      link
      push A  # <L I> Result
      link
      do
         cnt E  # Short number?
         if nz  # Yes
            sub E (hex "10")  # Subtract borrow
            if c  # Again borrow: Must be the first pass
               ld A C  # C still has lowest digit
               neg A  # Negate
               shl A 4
               or A (| SIGN CNT)  # Make short negative number
               drop
               ret
            end
            ld (A BIG) E  # Append it
            ld A (L I)  # Return bignum
            drop
            jmp zapZeroA_A  # Remove leading zeroes
         end
         ld C (E DIG)  # Next digit
         ld E (E BIG)
         sub C 1  # Subtract borrow
         if nc  # None
            call consNumCE_E  # New last cell
            ld (A BIG) E  # Append it
            ld A (L I)  # Return bignum
            drop
            jmp zapZeroA_A  # Remove leading zeroes
         end
         call consNumCE_C  # New cell
         ld (A BIG) C  # Append it
         ld A C  # Tail of result
      loop
   end
   # Both are big
   push X
   link
   push ZERO  # <L I> Result
   link
   ld C (A DIG)  # Subtract first digits
   sub C (E DIG)
   push F  # Save borrow
   ld A (A BIG)  # Get tail
   call consNumCA_C  # First bignum cell
   ld (L I) C  # Init result
   do
      ld X C  # Keep last cell in X
      ld E (E BIG)  # Get tail
      cnt E  # End of E?
      if nz  # Yes
         shr E 4  # Normalize E
         do
            cnt A  # Also end of A?
         while z  # No
            ld C (A DIG)  # Subtract final digit with borrow
            ld A (A BIG)  # Next cell
            pop F
            subc C E  # Borrow again?
            if nc  # No
               call consNumCA_C  # Final new bignum tail
               ld (X BIG) C  # Concat to result
20             ld A (L I)  # Return bignum
               drop
               pop X
               jmp zapZeroA_A  # Remove leading zeroes
            end
            push F  # Save borrow
            call consNumCA_C  # New bignum tail
            ld (X BIG) C  # Concat to result
            ld X C  # Keep last cell
            ld E 0
         loop
         shr A 4  # Normalize A
         break T
      end
      cnt A  # End of A?
      if nz  # Yes
         shr A 4  # Normalize A
         do
            pop F
            subc A (E DIG)  # Subtract next digit with borrow
            push F
            call boxNum_C  # New bignum tail
            ld (C DIG) A
            ld (X BIG) C  # Concat to result
            ld X C  # Keep last cell
            ld E (E BIG)  # Next cell
            ld A 0
            cnt E  # Also end of E?
         until nz  # Yes
         shr E 4  # Normalize E
         break T
      end
      ld C (A DIG)  # Subtract digits
      pop F
      subc C (E DIG)
      push F  # Save borrow
      ld A (A BIG)
      call consNumCA_C  # New bignum cell
      ld (X BIG) C  # Concat to result
   loop
   pop F
   subc A E  # Subtract final shorts with borrow
   push F  # Save borrow
   shl A 4
   or A CNT  # Make short number
   ld (X BIG) A
   pop F  # Borrow?
   jnc 20  # No
   ld A (L I)  # Get result
   ld E A  # 2-complement
   do
      not (E DIG)  # Invert
      ld C (E BIG)  # Next digit
      cnt C  # Done?
   while z  # No
      ld E C  # Next digit
   loop
   xor C -16  # Invert final short
   ld (E BIG) C
   ld E A  # Result again
   do
      add (E DIG) 1  # Increment
      jnc 90  # Skip if no carry
      ld C (E BIG)  # Next digit
      cnt C  # Done?
   while z  # No
      ld E C  # Next digit
   loop
   add C (hex "10")  # Increment final short
   ld (E BIG) C
90 drop
   pop X
   call zapZeroA_A  # Remove leading zeroes
   or A SIGN  # Set negative
   ret

# Multiply two (unsigned) numbers
(code 'muluAE_A 0)
   cnt A  # A short?
   if nz  # Yes
      cmp A ZERO  # Multiply with zero?
      jeq ret  # Yes: Return zero
      shr A 4  # Normalize
      cnt E  # E also short?
      if nz  # Yes
         xchg A E
         shr A 4  # Normalize
         mul E  # Multiply
         null C  # Only lower word?
         if z  # Yes
            test A (hex "F000000000000000")  # Fit in short number?
            if z  # Yes
               shl A 4  # Make short number
               or A CNT
               ret
            end
         end
         shl C 4  # Make short number
         or C CNT
         jmp consNumAC_A  # Return bignum
      end
10    push X
      push Y
      push Z
      ld Y A  # Save digit in Y
      mul (E DIG)  # Multiply lowest digit
      call boxNum_X  # First cell
      ld (X DIG) A
      link
      push X  # <L I> Safe
      link
      ld Z C  # Keep upper word in Z
      do
         ld E (E BIG)
         cnt E  # End of bignum?
      while z  # No
         ld A (E DIG)  # Get next digit
         mul Y  # Multiply digit
         add D Z  # Add previous upper word
         ld Z C
         call boxNum_C  # Next cell
         ld (C DIG) A
         ld (X BIG) C
         ld X C
      loop
      ld A Y  # Retrieve digit
      shr E 4  # Normalize
      mul E  # Multiply
      add D Z  # Add previous upper word
      if z  # Only lower word
         test A (hex "F000000000000000")  # Fit in short number?
         if z  # Yes
            shl A 4  # Make short number
            or A CNT
20          ld (X BIG) A  # Store in final cell
            ld A (L I)  # Return bignum
            drop
            pop Z
            pop Y
            pop X
            ret
         end
      end
      shl C 4  # Make short number
      or C CNT
      call consNumAC_A  # Return bignum
      jmp 20
   end
   # A is big
   cnt E  # E short?
   if nz  # Yes
      cmp E ZERO  # Multiply with zero?
      jeq ret  # Yes: Return zero
      xchg A E  # Exchange args
      shr A 4  # Normalize
      jmp 10
   end
   # Both are big
   push X
   push Y
   push Z
   ld Y A  # Arg1 in Y
   ld Z E  # Arg2 in Z
   call boxNum_X  # Zero bignum
   ld (X DIG) 0
   link
   push X  # <L I> Safe
   link
   push X  # <L -I> Safe index
   push Y  # <L -II> Arg1 index
   do
      ld A (Y DIG)  # Multiply digits
      mul (Z DIG)
      add D (X DIG)  # Add lower word to safe
      do
         ld (X DIG) A  # Store lower word
         ld E C  # Keep upper word in E
         ld A (X BIG)  # Next safe cell
         cnt A  # End of safe?
         if nz  # Yes
            call boxNum_A  # Extend safe
            ld (A DIG) 0
            ld (X BIG) A
         end
         ld X A
         ld Y (Y BIG)  # Next cell of Arg1
         cnt Y #  End of bignum?
      while z  # No
         ld A (Y DIG)  # Multiply digits
         mul (Z DIG)
         add D (X DIG)  # Add safe
         addc D E  # plus carry
      loop
      ld A Y  # Final short number
      shr A 4  # Normalize
      mul (Z DIG)
      add D (X DIG)  # Add safe
      addc D E  # plus carry
      ld (X DIG) A
      if nz  # Uppper word
         ld A (X BIG)  # Next safe cell
         cnt A  # End of safe?
         if nz  # Yes
            call boxNum_A  # Extend safe
            ld (A DIG) 0
            ld (X BIG) A
         end
         ld (A DIG) C  # Store uppper word
      end
      ld Y (L -II)  # Get Arg1 index
      ld X ((L -I) BIG)  # Advance safe index
      ld (L -I) X
      ld Z (Z BIG)  # Next cell of Arg2
      cnt Z #  End of bignum?
   until nz  # Yes
   ld A Z
   shr A 4  # Normalize
   ld Z A
   mul (Y DIG)  # Multiply digit
   add D (X DIG)  # Add lower word to safe
   do
      ld (X DIG) A  # Store lower word
      ld E C  # Keep upper word in E
      ld A (X BIG)  # Next safe cell
      cnt A  # End of safe?
      if nz  # Yes
         call boxNum_A  # Extend safe
         ld (A DIG) 0
         ld (X BIG) A
      end
      ld X A
      ld Y (Y BIG)  # Next cell of Arg1
      cnt Y #  End of bignum?
   while z  # No
      ld A (Y DIG)  # Multiply digit
      mul Z
      add D (X DIG)  # Add safe
      addc D E  # plus carry
   loop
   ld A Y  # Final short number
   shr A 4  # Normalize
   mul Z  # Multiply digit
   add D (X DIG)  # Add safe
   addc D E  # plus carry
   ld (X DIG) A
   if nz  # Uppper word
      ld A (X BIG)  # Next safe cell
      cnt A  # End of safe?
      if nz  # Yes
         call boxNum_A  # Extend safe
         ld (A DIG) 0
         ld (X BIG) A
      end
      ld (A DIG) C  # Store uppper word
   end
   ld A (L I)  # Return bignum
   drop
   pop Z
   pop Y
   pop X
   jmp zapZeroA_A  # Remove leading zeroes

# Divide two (unsigned) numbers (Knuth Vol.2, p.257)
(code 'divuAE_A 0)
   cnt A  # A short?
   if nz  # Yes
      cnt E  # E also short?
      if nz  # Yes
         shr A 4  # Normalize A
         ld C 0
         shr E 4  # Normalize E
         div E  # Divide
         shl A 4  # Make short number
         or A CNT  # Quotient
         ret
      end
      ld A ZERO  # Else return zero
      ret
   end
   push X
   push Y
   push Z
   link
   push ZERO  # <L III> Quotient
   push A  # <L II> Dividend 'u'
   push E  # <L I> Divisor 'v'
   link
   ld E (A DIG)  # Copy dividend
   call boxNumE_E
   ld (L II) E  # Save new 'u'
   ld X 0  # Calculate 'm'
   do
      ld A (A BIG)  # Next cell of 'u'
      cnt A  # Last one?
   while z  # No
      call boxNum_C  # Copy next digit
      ld (C DIG) (A DIG)
      ld (E BIG) C
      ld E C
      inc X  # Increment 'm'
   loop
   cmp A ZERO  # Trailing short zero?
   if ne  # No
      shr A 4  # Normalize
      call boxNum_C  # Append in new cell
      ld (C DIG) A
      ld (E BIG) C
      ld E C
      inc X  # Increment 'm'
   end
   ld Z E  # Keep last cell in Z
   push X  # <L -I> 'm'
   ld Y 0  # Last cell
   ld C 0  # Calculate 'n'
   ld A (L I)  # Get divisor
   cnt A  # Short?
   if nz  # Yes
      shr A 4  # Normalize
      call boxNumA_A  # Make big
      ld (L I) A  # Save new 'v'
      ld X A  # Keep in X
      inc C  # 'n' = 1
   else
      call boxNum_X  # Copy divisor
      ld (X DIG) (A DIG)
      ld (L I) X  # Save new 'v'
      do
         inc C  # Increment 'n'
         ld A (A BIG)  # Next cell of 'v'
         cnt A  # Last one?
      while z  # No
         ld E (A DIG)  # Copy next digit
         call boxNumE_E
         ld (X BIG) E  # Append to 'v'
         ld Y X  # Keep last cell
         ld X E
         dec (L -I)  # Decrement 'm'
      loop
      cmp A ZERO  # Trailing short zero?
      if ne  # No
         shr A 4  # Normalize
         call boxNumA_A  # Append in new cell
         ld (X BIG) A  # Append to 'v'
         ld Y X  # Set last cell
         ld X A
         dec (L -I)  # Decrement 'm'
         inc C  # Increment 'n'
      end
      null (L -I)  # 'm' negative?
      js divUnder  # Yes
   end
   push C  # <L -II> 'n'
   ld A 0  # Append additional cell
   call boxNumA_A
   ld (Z BIG) A
   ld Z 0  # Calculate 'd'
   do
      null (X DIG)  # Max left position?
   while ns  # No
      ld A (L II)  # Shift left 'u'
      call twiceBigA_A
      ld A (L I)  # and 'v'
      call twiceBigA_A
      inc Z  # Increment 'd'
   loop
   push Z  # <L -III> 'd'
   push (X DIG)  # <L -IV> 'v1'
   null Y  # Last cell?
   if nz  # Yes
      ld Y (Y DIG)  # Yes: Get digit
   end
   push Y  # <L -V> Last cell 'v2'
   push 0  # <S> tmp
   do
      ld C (L -I)  # Get 'm'
      ld X (L II)  # and 'u'
      do
         sub C 1
      while ge
         ld X (X BIG)  # Index X -> u
      loop
      ld E (L -II)  # Get 'n' in E
      ld Y X
      ld C 0  # 'u1' in C
      ld A 0  # 'u2' in A
      do
         ld (S) A  # Save 'u3' im tmp
         ld A C  # Shift words
         ld C (Y DIG)
         ld Y (Y BIG)
         sub E 1
      until lt
      ld Z C  # Keep 'r' = 't' in Z,Y
      ld Y A
      cmp C (L -IV)  # 'u1' = 'v1'?
      if ne  # No
         div (L -IV)  # 'q' = 't' / 'v1'
      else
         ld A -1  # 'q' = MAX
      end
      ld E A  # Save 'q' in E
      mul (L -IV)  # 'q' * 'v1'
      sub Y A  # Subtract from 'r'
      subc Z C
      do
         null Z  # 'r' <= MAX?
      while z  # Yes
         ld A E  # 'q' * 'v2'
         mul (L -V)
         cmp C Y  # > lo(r), 'u3'?
      while ge
         if eq
            cmp A (S)  # 'u3' in tmp
            break le
         end
         dec E  # Yes: Decrement 'q'
         add Y (L -IV)  # Increment 'r' by 'v1'
         addc Z 0
      loop
      ld (S) E  # Save 'q' in tmp
      ld Z X  # Get 'x'
      ld Y (L I)  # 'v'
      ld A E  # and 'q'
      mul (Y DIG)  # Multiply lowest digit
      sub (Z DIG) A  # Subtract from 'x'
      addc C 0
      ld E C  # Borrow in E
      do
         ld Y (Y BIG)  # More in 'v'?
         cnt Y
      while z  # Yes
         ld Z (Z BIG)  # Next 'x'
         ld A (S)  # Multiply with 'q' in tmp
         mul (Y DIG)  # 't' in D
         sub (Z DIG) E  # Subtract borrow
         ld E 0
         rcl E 1  # New borrow
         sub (Z DIG) A  # Subtract lo(t)
         addc E C  # Adjust borrow plus hi(t)
      loop
      null E  # Borrow?
      if nz  # Yes
         ld Z (Z BIG)  # Next 'x'
         sub (Z DIG) E  # Subtract borrow
         if c
            dec (S)  # Decrement 'q'
            null (L -I)  # 'm' ?
            if nz  # Yes
               ld Y (L I)  # Get 'v'
               add (X DIG) (Y DIG)  # 'x' += 'v'
               push F  # Save carry
               do
                  ld X (X BIG)  # More?
                  ld Y (Y BIG)
                  cnt Y
               while z  # Yes
                  pop F  # Get carry
                  addc (X DIG) (Y DIG)  # Add digits
                  push F
               loop
               pop F  # Final carry
               addc (X DIG) 0
            end
         end
      end
      ld A (S)  # Get 'q'
      ld C (L III)  # Quotient so far
      call consNumAC_A  # Prepend 'q'
      ld (L III) A  # Store result
      sub (L -I) 1  # Decrement 'm'
   until lt
   ld A (L III)  # Return quotient in A
   call zapZeroA_A
: divDone
   drop
   pop Z
   pop Y
   pop X
   ret
: divUnder  # Dividend smaller than divisor
   ld A ZERO  # Return quotient 0
   jmp divDone

# Remainder of two (unsigned) numbers
(code 'remuAE_A 0)
   cnt A  # A short?
   if nz  # Yes
      cnt E  # E also short?
      if nz  # Yes
         shr A 4  # Normalize A
         ld C 0
         shr E 4  # Normalize E
         div E  # Divide
         ld A C  # Get remainder
         shl A 4  # Make short number
         or A CNT  # Quotient
         ret
      end
      ret  # Remainder is in A
   end
   push X
   push Y
   push Z
   link
   push ZERO  # <L III> Quotient
   push A  # <L II> Dividend 'u'
   push E  # <L I> Divisor 'v'
   link
   ld E (A DIG)  # Copy dividend
   call boxNumE_E
   ld (L II) E  # Save new 'u'
   ld X 0  # Calculate 'm'
   do
      ld A (A BIG)  # Next cell of 'u'
      cnt A  # Last one?
   while z  # No
      call boxNum_C  # Copy next digit
      ld (C DIG) (A DIG)
      ld (E BIG) C
      ld E C
      inc X  # Increment 'm'
   loop
   cmp A ZERO  # Trailing short zero?
   if ne  # No
      shr A 4  # Normalize
      call boxNum_C  # Append in new cell
      ld (C DIG) A
      ld (E BIG) C
      ld E C
      inc X  # Increment 'm'
   end
   ld Z E  # Keep last cell in Z
   push X  # <L -I> 'm'
   ld Y 0  # Last cell
   ld C 0  # Calculate 'n'
   ld A (L I)  # Get divisor
   cnt A  # Short?
   if nz  # Yes
      shr A 4  # Normalize
      call boxNumA_A  # Make big
      ld (L I) A  # Save new 'v'
      ld X A  # Keep in X
      inc C  # 'n' = 1
   else
      call boxNum_X  # Copy divisor
      ld (X DIG) (A DIG)
      ld (L I) X  # Save new 'v'
      do
         inc C  # Increment 'n'
         ld A (A BIG)  # Next cell of 'v'
         cnt A  # Last one?
      while z  # No
         ld E (A DIG)  # Copy next digit
         call boxNumE_E
         ld (X BIG) E  # Append to 'v'
         ld Y X  # Keep last cell
         ld X E
         dec (L -I)  # Decrement 'm'
      loop
      cmp A ZERO  # Trailing short zero?
      if ne  # No
         shr A 4  # Normalize
         call boxNumA_A  # Append in new cell
         ld (X BIG) A  # Append to 'v'
         ld Y X  # Set last cell
         ld X A
         dec (L -I)  # Decrement 'm'
         inc C  # Increment 'n'
      end
      null (L -I)  # 'm' negative?
      js remUnder  # Yes
   end
   push C  # <L -II> 'n'
   ld A 0  # Append additional cell
   call boxNumA_A
   ld (Z BIG) A
   ld Z 0  # Calculate 'd'
   do
      null (X DIG)  # Max left position?
   while ns  # No
      ld A (L II)  # Shift left 'u'
      call twiceBigA_A
      ld A (L I)  # and 'v'
      call twiceBigA_A
      inc Z  # Increment 'd'
   loop
   push Z  # <L -III> 'd'
   push (X DIG)  # <L -IV> 'v1'
   null Y  # Last cell?
   if nz  # Yes
      ld Y (Y DIG)  # Yes: Get digit
   end
   push Y  # <L -V> Last cell 'v2'
   push 0  # <S> tmp
   do
      ld C (L -I)  # Get 'm'
      ld X (L II)  # and 'u'
      do
         sub C 1
      while ge
         ld X (X BIG)  # Index X -> u
      loop
      ld E (L -II)  # Get 'n' in E
      ld Y X
      ld C 0  # 'u1' in C
      ld A 0  # 'u2' in A
      do
         ld (S) A  # Save 'u3' im tmp
         ld A C  # Shift words
         ld C (Y DIG)
         ld Y (Y BIG)
         sub E 1
      until lt
      ld Z C  # Keep 'r' = 't' in Z,Y
      ld Y A
      cmp C (L -IV)  # 'u1' = 'v1'?
      if ne  # No
         div (L -IV)  # 'q' = 't' / 'v1'
      else
         ld A -1  # 'q' = MAX
      end
      ld E A  # Save 'q' in E
      mul (L -IV)  # 'q' * 'v1'
      sub Y A  # Subtract from 'r'
      subc Z C
      do
         null Z  # 'r' <= MAX?
      while z  # Yes
         ld A E  # 'q' * 'v2'
         mul (L -V)
         cmp C Y  # > lo(r), 'u3'?
      while ge
         if eq
            cmp A (S)  # 'u3' in tmp
            break le
         end
         dec E  # Yes: Decrement 'q'
         add Y (L -IV)  # Increment 'r' by 'v1'
         addc Z 0
      loop
      ld (S) E  # Save 'q' in tmp
      ld Z X  # Get 'x'
      ld Y (L I)  # 'v'
      ld A E  # and 'q'
      mul (Y DIG)  # Multiply lowest digit
      sub (Z DIG) A  # Subtract from 'x'
      addc C 0
      ld E C  # Borrow in E
      do
         ld Y (Y BIG)  # More in 'v'?
         cnt Y
      while z  # Yes
         ld Z (Z BIG)  # Next 'x'
         ld A (S)  # Multiply with 'q' in tmp
         mul (Y DIG)  # 't' in D
         sub (Z DIG) E  # Subtract borrow
         ld E 0
         rcl E 1  # New borrow
         sub (Z DIG) A  # Subtract lo(t)
         addc E C  # Adjust borrow plus hi(t)
      loop
      null E  # Borrow?
      if nz  # Yes
         ld Z (Z BIG)  # Next 'x'
         sub (Z DIG) E  # Subtract borrow
         if c
            dec (S)  # Decrement 'q'
            ld Y (L I)  # Get 'v'
            add (X DIG) (Y DIG)  # 'x' += 'v'
            push F  # Save carry
            do
               ld X (X BIG)  # More?
               ld Y (Y BIG)
               cnt Y
            while z  # Yes
               pop F  # Get carry
               addc (X DIG) (Y DIG)  # Add digits
               push F
            loop
            pop F  # Final carry
            addc (X DIG) 0
         end
      end
      ld A (S)  # Get 'q'
      ld C (L III)  # Quotient so far
      call consNumAC_A  # Prepend 'q'
      ld (L III) A  # Store result
      sub (L -I) 1  # Decrement 'm'
   until lt
   ld A (L II)  # Get remainder
   call zapZeroA_A
   do
      null (L -III)  # 'd'?
   while nz  # Yes
      call halfA_A  # Shift right (destructive)
      dec (L -III)  # Decrement 'd'
   loop
: remDone
   drop
   pop Z
   pop Y
   pop X
   ret
: remUnder  # Dividend smaller than divisor
   ld A (L II)  # Get remainder
   call zapZeroA_A
   jmp remDone

# Increment a (signed) number
(code 'incE_A 0)
   ld A ONE
   test E SIGN  # Positive?
   jz adduAE_A  # Increment
   off E SIGN  # Make positive
   call subuAE_A  # Subtract
   cmp A ZERO  # Zero?
   if ne  # No
      or A SIGN  # Negate again
   end
   ret

# Decrement a (signed) number
(code 'decE_A 0)
   ld A ONE
   test E SIGN  # Positive?
   if z  # Yes
      xchg A E
      jmp subuAE_A  # Decrement
   end
   off E SIGN  # Make positive
   call adduAE_A  # Add
   or A SIGN  # Negate again
   ret

# Add two (signed) numbers
(code 'addAE_A 0)
   test A SIGN  # Positive?
   if z  # Yes
      test E SIGN  # Arg also positive?
      jz adduAE_A  # Add [+ A E]
      off E SIGN  # [+ A -E]
      jmp subuAE_A  # Sub
   end
   # Result negatve
   test E SIGN  # Arg positive?
   if z  # [+ -A E]
      off A SIGN
      call subuAE_A  # Sub
   else  # [+ -A -E]
      off A SIGN
      off E SIGN
      call adduAE_A  # Add
   end
   cmp A ZERO  # Zero?
   if ne  # No
      xor A SIGN  # Negate
   end
   ret

# Subtract to (signed) numbers
(code 'subAE_A 0)
   test A SIGN  # Positive?
   if z  # Yes
      test E SIGN  # Arg also positive?
      jz subuAE_A  # Sub [- A E]
      off E SIGN  # [- A -E]
      jmp adduAE_A  # Add
   end
   # Result negatve
   test E SIGN  # Arg positive?
   if z  # [- -A E]
      off A SIGN
      call adduAE_A  # Add
   else  # [- -A -E]
      off A SIGN
      off E SIGN
      call subuAE_A  # Sub
   end
   cmp A ZERO  # Zero?
   if ne  # No
      xor A SIGN  # Negate
   end
   ret

### Comparisons ###
(code 'cmpNumAE_F 0)
   test A SIGN  # A positive?
   if z  # Yes
      test E SIGN  # E also positive?
      jz cmpuAE_F  # Yes [A E]
      clrc  # gt [A -E]
      ret
   end
   # A negative
   test E SIGN  # E positive?
   if z  # Yes
      or B B  # nz [-A E]
      setc  # lt
      ret
   end
   xchg A E  # [-A -E]
   off A SIGN
   off E SIGN

# Compare two (unsigned) numbers
(code 'cmpuAE_F 0)
   cnt A  # A short?
   if nz  # Yes
      cnt E  # E also short?
      if nz  # Yes
         cmp A E  # F
         ret
      end
      or B B  # nz (E is big)
      setc  # lt
      ret
   end
   # A is big
   cnt E  # E short?
   if nz  # Yes
      clrc  # gt (E is short)
      ret
   end
   # Both are big
   push X
   push Y
   ld X 0  # Clear reverse pointers
   ld Y 0
   do
      ld C (A BIG)  # Tails equal?
      cmp C (E BIG)
      if eq  # Yes
         do
            ld C (A DIG)  # Compare digits
            cmp C (E DIG)
         while eq
            null X  # End of reversed list?
            if z  # Yes
               pop Y  # eq
               pop X
               ret
            end
            ld C (X BIG)  # Restore A
            ld (X BIG) A
            ld A X
            ld X C
            ld C (Y BIG)  # Restore E
            ld (Y BIG) E
            ld E Y
            ld Y C
         loop
         push F
         break T
      end
      cnt C  # End of A?
      if nz  # Yes
         cnt (E BIG)  # Also end of E?
         if nz  # Yes
            cmp C (E BIG)  # F
         else
            or B B  # nz (E is bigger)
            setc  # lt
         end
         push F
         break T
      end
      cnt (E BIG)  # End of E?
      if nz  # Yes
         clrc  # gt
         push F
         break T
      end
      ld (A BIG) X  # Reverse A
      ld X A
      ld A C
      ld C (E BIG)  # Reverse E
      ld (E BIG) Y
      ld Y E
      ld E C
   loop
   do
      null X  # Reversed?
   while nz  # Yes
      ld C (X BIG)  # Restore A
      ld (X BIG) A
      ld A X
      ld X C
      ld C (Y BIG)  # Restore E
      ld (Y BIG) E
      ld E Y
      ld Y C
   loop
   pop F  # Return flags
   pop Y
   pop X
   ret

### Conversions ###
# Make number from symbol
(code 'symToNumXA_FE 0)
   link
   push ZERO  # <L I> Safe
   link
   push A  # <L -I> Scale
   push 0  # <L -II> Sign flag
   push 0  # <L -III> Fraction flag
   ld C 0
   call symByteCX_FACX  # Get first byte
   jz 99  # None
   do
      cmp B 32  # Skip white space
   while le
      call symByteCX_FACX  # Next byte
      jz 99  # None
   loop
   cmp B (char "+")  # Plus sign?
   jz 10  # Yes
   cmp B (char "-")  # Minus sign?
   if eq  # Yes
      or (L -II) 1  # Set Sign
10    call symByteCX_FACX  # Next byte
      jz 99  # None
   end
   sub A (char "0")  # First digit
   cmp A 10  # Too big?
   jge 99  # Return NO
   shl A 4  # Make short number
   or A CNT
   ld (L I) A  # Save
   do
      call symCharCX_FACX  # More?
   while nz  # Yes
      test (L -III) 1  # Fraction?
      if nz  # Yes
         null (L -I)  # Scale?
         if z  # No
            sub A (char "0")  # Next digit
            cmp A 10  # Too big?
            jge 99  # Return NO
            cmp A 5  # Round?
            if ge  # Yes
               ld A ONE  # Increment
               ld E (L I)
               push C
               call adduAE_A
               pop C
               ld (L I) A
            end
            do
               call symByteCX_FACX  # More?
            while nz  # Yes
               sub A (char "0")  # Next digit
               cmp A 10  # Too big?
               jge 99  # Return NO
            loop
            break T
         end
      end
      cmp A (Sep0)  # Decimal separator?
      if eq  # Yes
         test (L -III) 1  # Fraction?
         jnz 99  # Return NO
         or (L -III) 1  # Set Fraction
      else
         cmp A (Sep3)  # Thousand separator?
         if ne  # No
            sub A (char "0")  # Next digit
            cmp A 10  # Too big?
            jge 99  # Return NO
            push C  # Save symByte args
            push X
            push A  # Save digit
            ld A (L I)  # Multiply number by 10
            call tenfoldA_A
            ld (L I) A  # Save
            pop E  # Get digit
            shl E 4  # Make short number
            or E CNT
            call adduAE_A  # Add to number
            ld (L I) A  # Save again
            pop X  # Pop symByte args
            pop C
            test (L -III) 1  # Fraction?
            if nz  # Yes
               dec (L -I)  # Decrement Scale
            end
         end
      end
   loop
   test (L -III) 1  # Fraction?
   if nz  # Yes
      do
         sub (L -I) 1  # Decrement Scale
      while nc  # >= 0
         ld A (L I)  # Multiply number by 10
         call tenfoldA_A
         ld (L I) A  # Save
      loop
   end
   ld E (L I)  # Get result
   test (L -II) 1  # Sign?
   if nz  # Yes
      cmp E ZERO  # Zero?
      if ne  # No
         xor E SIGN  # Negate
      end
   end
   setc  # Return YES
99 drop
   ret

# Format number to output, length, or symbol
(code 'fmtNum0AE_E 0)
   ld (Sep3) 0  # Thousand separator 0
   ld (Sep0) 0  # Decimal separator 0
(code 'fmtNumAE_E)
   push C
   push X
   push Y
   push Z
   link
   push ZERO  # <L I> Name
   link
   push A  # <L -I> Scale
   ld A E  # Get number
   cnt A  # Short number?
   if nz  # Yes
      push 16  # <L -II> mask
   else
      push 1  # <L -II> mask
   end
   shr B 3  # Get sign bit
   push A  # <L -III> Sign flag
   off E SIGN
   # Calculate buffer size
   ld A 19  # Decimal length of 'cnt' (60 bit)
   ld C E  # Get number
   do
      cnt C  # Last digit?
   while z  # No
      add A 20  # Add decimal length of 'digit' (64 bit)
      ld C (C BIG)
   loop
   add A 17  # Round up
   ld C 0  # Divide by 18
   div 18
   shl A 3  # Word count
   sub S A  # Space for incrementor
   ld (S) 1  # Init to '1'
   ld X S  # Keep pointer to incrementor in X
   sub S A  # <S III> Accumulator
   cmp S (StkLimit)  # Stack check
   jlt stkErr
   ld (S) 0  # Init to '0'
   push S # <S II> Top of accumulator
   push X  # <S I> Pointer to incrementor
   push X  # <S> Top of incrementor
   do
      cnt E  # Short number?
      ldnz Z E  # Yes
      if z
         ld Z (E DIG)  # Digit in Z
      end
      do
         ld A Z  # Current digit
         test A (L -II)  # Test next bit with mask
         if nz
            # Add incrementor to accumulator
            ld C 0  # Carry for BCD addition
            lea X (S III)  # Accumulator
            ld Y (S I)  # Incrementor
            do
               cmp X (S II)  # X > Top of accumulator?
               if gt  # Yes
                  add (S II) 8  # Extend accumulator
                  ld (X) 0  # with '0'
               end
               ld A (X)
               add A (Y)  # Add BCD
               add A C  # Add BCD-Carry
               ld C 0  # Clear BCD-Carry
               cmp A 1000000000000000000  # BCD overflow?
               if ge  # Yes
                  sub A 1000000000000000000
                  ld C 1  # Set BCD-Carry
               end
               ld (X) A  # Store BCD digit in accumulator
               add X 8
               add Y 8
               cmp Y (S)  # Reached top of incrementor?
            until gt  # Yes
            null C  # BCD-Carry?
            if ne  # Yes
               add (S II) 8  # Extend accumulator
               ld (X) 1  # With '1'
            end
         end
         # Shift incrementor left
         ld C 0  # Clear BCD-Carry
         ld Y (S I)  # Incrementor
         do
            ld A (Y)
            add A A  # Double
            add A C  # Add BCD-Carry
            ld C 0  # Clear BCD-Carry
            cmp A 1000000000000000000  # BCD overflow?
            if ge  # Yes
               sub A 1000000000000000000
               ld C 1  # Set BCD-Carry
            end
            ld (Y) A  # Store BCD digit in incrementor
            add Y 8
            cmp Y (S)  # Reached top of incrementor?
         until gt  # Yes
         null C  # BCD-Carry?
         if ne  # Yes
            add (S) 8  # Extend incrementor
            ld (Y) 1  # With '1'
         end
         shl (L -II) 1  # Shift bit mask
      until z
      cnt E  # Short number?
   while z  # No
      ld E (E BIG)  # Next digit
      cnt E  # Short number?
      if nz  # Yes
         ld A 16  # Mask
      else
         ld A 1
      end
      ld (L -II) A  # Set bit mask
   loop
   ld Y (S II)  # Top of accumulator
   lea Z (S III)  # Accumulator
   null (L -I)  # Scale negative?
   if s  # Yes
      cmp (L -I) -1  # Direct print?
      if eq  # Yes
         test (L -III) 1  # Sign?
         if nz  # Yes
            ld B (char "-")  # Output sign
            call (PutB)
         end
         ld A (Y)  # Output highest word
         call outWordA
         do
            sub Y 8  # More?
            cmp Y Z
         while ge  # Yes
            ld A (Y)  # Output words in reverse order
            ld E 100000000000000000  # Digit scale
            do
               ld C 0  # Divide by digit scale
               div E
               push C  # Save remainder
               add B (char "0")  # Output next digit
               call (PutB)
               cmp E 1  # Done?
            while ne  # No
               ld C 0  # Divide digit scale by 10
               ld A E
               div 10
               ld E A
               pop A  # Get remainder
            loop
         loop
      else  # Calculate length
         ld A Y  # Top of accumulator
         sub A Z  # Accumulator
         shr A 3  # Number of accumulator words
         mul 18  # Number of digits
         ld E A
         ld A (Y)  # Length of highest word
         do
            inc E  # Increment length
            ld C 0  # Divide by 10
            div 10
            null A  # Done?
         until z  # Yes
         test (L -III) 1  # Sign?
         if nz  # Yes
            inc E  # Space for '-'
         end
         shl E 4  # Make short number
         or E CNT
      end
      drop
   else
      ld C 4  # Build name
      lea X (L I)
      test (L -III) 1  # Sign?
      if nz  # Yes
         ld B (char "-")  # Insert sign
         call byteSymBCX_CX
      end
      push C  # Save name index
      ld A Y  # Top of accumulator
      sub A Z  # Accumulator
      shr A 3  # Number of accumulator words
      mul 18  # Number of digits
      ld E A  # Calculate length-1
      ld A (Y)  # Highest word
      do
         ld C 0  # Divide by 10
         div 10
         null A  # Done?
      while nz  # No
         inc E  # Increment length
      loop
      pop C  # Restore name index
      sub E (L -I)  # Scale
      ld (L -I) E  # Decrement by Length-1
      if lt  # Scale < 0
         ld B (char "0")  # Prepend '0'
         call byteSymBCX_CX
         ld A (Sep0)  # Prepend decimal separator
         call charSymACX_CX
         do
            cmp (L -I) -1   # Scale
         while lt
            inc (L -I)  # Increment scale
            ld B (char "0")  # Ouput zeroes
            call byteSymBCX_CX
         loop
      end
      ld A (Y)  # Pack highest word
      call fmtWordACX_CX
      do
         sub Y 8  # More?
         cmp Y Z
      while ge  # Yes
         ld A (Y)  # Pack words in reverse order
         ld E 100000000000000000  # Digit scale
         do
            push A
            call fmtScaleCX_CX  # Handle scale character(s)
            pop A
            push C  # Save name index
            ld C 0  # Divide by digit scale
            div E
            xchg C (S)  # Save remainder, restore name index
            add B (char "0")  # Pack next digit
            call byteSymBCX_CX
            cmp E 1  # Done?
         while ne  # No
            push C  # Save name index
            ld C 0  # Divide digit scale by 10
            ld A E
            div 10
            pop C  # Restore name index
            ld E A
            pop A  # Get remainder
         loop
      loop
      ld X (L I)  # Get name
      drop
      call consSymX_E
   end
   pop Z
   pop Y
   pop X
   pop C
   ret

(code 'fmtWordACX_CX 0)
   cmp A 9  # Single digit?
   if gt  # No
      ld E C  # Save C
      ld C 0  # Divide by 10
      div 10
      push C  # Save remainder
      ld C E  # Restore C
      call fmtWordACX_CX  # Recurse
      call fmtScaleCX_CX  # Handle scale character(s)
      pop A
   end
   add B (char "0")  # Make ASCII digit
   jmp byteSymBCX_CX

(code 'fmtScaleCX_CX 0)
   null (L -I)  # Scale null?
   if z  # Yes
      ld A (Sep0)  # Output decimal separator
      call charSymACX_CX
   else
      null (Sep3)  # Thousand separator?
      if nz  # Yes
         ld A (L -I)  # Scale > 0?
         null A
         if nsz  # Yes
            push C
            ld C 0  # Modulus 3
            div 3
            null C
            pop C
            if z
               ld A (Sep3)  # Output thousand separator
               call charSymACX_CX
            end
         end
      end
   end
   dec (L -I)  # Decrement scale
   ret

# (format 'num ['cnt ['sym1 ['sym2]]]) -> sym
# (format 'sym|lst ['cnt ['sym1 ['sym2]]]) -> num
(code 'doFormat 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)  # Eval first
   eval
   link
   push E  # <L I> 'num' | 'sym'
   link
   ld Y (Y CDR)  # Second arg
   ld E (Y)
   eval  # Eval 'cnt'
   cmp E Nil  # Any?
   if eq  # No
      ld E 0  # Zero
   else
      call xCntEX_FE  # Extract 'cnt'
   end
   push E  # <L -I> Scale
   push (char ".")  # <L -II> Sep0
   push 0  # Sep3
   ld Y (Y CDR)  # Third arg?
   atom Y
   if z  # Yes
      ld E (Y)
      eval  # Eval 'sym1'
      num E  # Need symbol
      jnz symErrEX
      sym E
      jz symErrEX
      call firstCharE_A
      ld (L -II) A  # Sep0
      ld Y (Y CDR)  # Fourth arg?
      atom Y
      if z  # Yes
         ld E (Y)
         eval  # Eval 'sym2'
         num E  # Need symbol
         jnz symErrEX
         sym E
         jz symErrEX
         call firstCharE_A
         ld (S) A
      end
   end
   pop (Sep3)  # Get Sep3
   pop (Sep0)  # and Sep0
   ld E (L I)  # Get 'num' | 'sym'
   num E  # Number?
   if nz  # Yes
      pop A  # Get scale
      call fmtNumAE_E  # Convert to string
   else
      sym E  # Symbol?
      if nz  # Yes
         ld X (E TAIL)
         call nameX_X  # Get name
      else
         link
         push ZERO  # <L II> Number safe
         push ZERO  # <L I> Result
         ld C 4  # Build name
         ld X S
         link
         call packECX_CX
         ld X (L I)  # Get result
         drop
      end
      pop A  # Get scale
      call symToNumXA_FE  # Convert to number
      if nc  # Failed
         ld E Nil
      end
   end
   drop
   pop Y
   pop X
   ret

### Arithmetics ###
# (+ 'num ..) -> num
(code 'doAdd 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      link
      push ZERO  # <L II> Safe
      push E  # <L I> Result
      link
      do
         ld Y (Y CDR)  # More args?
         atom Y
      while z  # Yes
         ld E (Y)
         eval  # Eval next arg
         cmp E Nil
         jz 10  # Abort if NIL
         num E  # Number?
         jz numErrEX  # No
         ld (L II) E  # Save arg
         ld A (L I)  # Result
         call addAE_A  # Add
         ld (L I) A  # Result
      loop
      ld E (L I)  # Result
10    drop
   end
   pop Y
   pop X
   ret

# (- 'num ..) -> num
(code 'doSub 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      ld Y (Y CDR)  # More than one arg?
      atom Y
      if nz  # No: Unary minus
         cmp E ZERO  # Zero?
         if ne  # No
            xor E SIGN  # Negate
         end
      else
         link
         push ZERO  # <L II> Safe
         push E  # <L I> Result
         link
         do
            ld E (Y)
            eval  # Eval next arg
            cmp E Nil
            jz 10  # Abort if NIL
            num E  # Number?
            jz numErrEX  # No
            ld (L II) E  # Save arg
            ld A (L I)  # Result
            call subAE_A  # Subtract
            ld (L I) A  # Result
            ld Y (Y CDR)  # More args?
            atom Y
         until nz  # No
         ld E (L I)  # Result
10       drop
      end
   end
   pop Y
   pop X
   ret

# (inc 'num) -> num
# (inc 'var ['num]) -> num
(code 'doInc 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      link
      push E  # <L I/II> First arg
      link
      num E  # Number?
      if nz  # Yes
         call incE_A  # Increment it
      else
         call checkVarEX
         sym E  # Symbol?
         if nz  # Yes
            sym (E TAIL)  # External symbol?
            if nz  # Yes
               call dbTouchEX  # Touch it
            end
         end
         ld Y (Y CDR)  # Next arg?
         atom Y
         if nz  # No
            ld E (E)  # Get VAL
            cmp E Nil  # NIL?
            ldz A E
            if ne  # No
               num E  # Number?
               jz numErrEX  # No
               call incE_A  # Increment it
               ld ((L I)) A  # Set new value
            end
         else
            ld E (Y)
            eval  # Eval next arg
            tuck E  # <L I> Second arg
            link
            ld A ((L II))  # First arg's VAL
            cmp A Nil  # NIL?
            if ne  # No
               num A  # Number?
               jz numErrAX  # No
               ld E (L I)  # Second arg
               cmp E Nil  # NIL?
               ldz A E
               if ne  # No
                  num E
                  jz numErrEX  # No
                  call addAE_A  # Add
                  ld ((L II)) A  # Set new value
               end
            end
         end
      end
      ld E A  # Get result
      drop
   end
   pop Y
   pop X
   ret

# (dec 'num) -> num
# (dec 'var ['num]) -> num
(code 'doDec 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      link
      push E  # <L I/II> First arg
      link
      num E  # Number?
      if nz  # Yes
         call decE_A  # Decrement it
      else
         call checkVarEX
         sym E  # Symbol?
         if nz  # Yes
            sym (E TAIL)  # External symbol?
            if nz  # Yes
               call dbTouchEX  # Touch it
            end
         end
         ld Y (Y CDR)  # Next arg?
         atom Y
         if nz  # No
            ld E (E)  # Get VAL
            cmp E Nil  # NIL?
            ldz A E
            if ne  # No
               num E  # Number?
               jz numErrEX  # No
               call decE_A  # Decrement it
               ld ((L I)) A  # Set new value
            end
         else
            ld E (Y)
            eval  # Eval next arg
            tuck E  # <L I> Second arg
            link
            ld A ((L II))  # First arg's VAL
            cmp A Nil  # NIL?
            if ne  # No
               num A  # Number?
               jz numErrAX  # No
               ld E (L I)  # Second arg
               cmp E Nil  # NIL?
               ldz A E
               if ne  # No
                  num E
                  jz numErrEX  # No
                  call subAE_A  # Subtract
                  ld ((L II)) A  # Set new value
               end
            end
         end
      end
      ld E A  # Get result
      drop
   end
   pop Y
   pop X
   ret

# (* 'num ..) -> num
(code 'doMul 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      ld B 0  # Init sign
      test E SIGN
      if nz
         off E SIGN
         inc B
      end
      link
      push ZERO  # <L II> Safe
      push E  # <L I> Result
      link
      push A  # <L -I> Sign flag
      do
         ld Y (Y CDR)  # More args?
         atom Y
      while z  # Yes
         ld E (Y)
         eval  # Eval next arg
         cmp E Nil
         jz 10  # Abort if NIL
         num E  # Number?
         jz numErrEX  # No
         test E SIGN  # Arg negative?
         if nz  # Yes
            off E SIGN  # Make argument positive
            xor (L -I) 1  # Toggle result sign
         end
         ld (L II) E  # Save arg
         ld A (L I)  # Result
         call muluAE_A  # Multiply
         ld (L I) A  # Result
      loop
      ld E (L I)  # Result
      test (L -I) 1  # Sign?
      if nz  # Yes
         cmp E ZERO  # Zero?
         if ne  # No
            or E SIGN  # Set negative
         end
      end
10    drop
   end
   pop Y
   pop X
   ret

# (*/ 'num1 ['num2 ..] 'num3) -> num
(code 'doMulDiv 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      ld B 0  # Init sign
      test E SIGN
      if nz
         off E SIGN
         inc B
      end
      link
      push ZERO  # <L II> Safe
      push E  # <L I> Result
      link
      push A  # <L -I> Sign flag
      do
         ld Y (Y CDR)  # Next arg
         ld E (Y)
         eval  # Eval next arg
         cmp E Nil
         jz 10  # Abort if NIL
         num E  # Number?
         jz numErrEX  # No
         test E SIGN  # Arg negative?
         if nz  # Yes
            off E SIGN  # Make argument positive
            xor (L -I) 1  # Toggle result sign
         end
         ld (L II) E  # Save arg
         atom (Y CDR)  # More args?
      while z  # Yes
         ld A (L I)  # Result
         call muluAE_A  # Multiply
         ld (L I) A  # Result
      loop
      cmp E ZERO  # Zero?
      jeq divErrX  # Yes
      ld A E  # Last argument
      call shruA_A  # / 2
      ld E (L I)  # Get product
      ld (L I) A  # Save halved argument
      call adduAE_A  # Add for rounding
      ld (L I) A  # Save rounded product
      ld E (L II)  # Last argument
      call divuAE_A  # Divide
      ld E A  # Result
      test (L -I) 1  # Sign?
      if nz  # Yes
         cmp E ZERO  # Zero?
         if ne  # No
            or E SIGN  # Set negative
         end
      end
10    drop
   end
   pop Y
   pop X
   ret

# (/ 'num ..) -> num
(code 'doDiv 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      ld B 0  # Init sign
      test E SIGN
      if nz
         off E SIGN
         inc B
      end
      link
      push ZERO  # <L II> Safe
      push E  # <L I> Result
      link
      push A  # <L -I> Sign flag
      do
         ld Y (Y CDR)  # More args?
         atom Y
      while z  # Yes
         ld E (Y)
         eval  # Eval next arg
         cmp E Nil
         jz 10  # Abort if NIL
         num E  # Number?
         jz numErrEX  # No
         cmp E ZERO  # Zero?
         jeq divErrX  # Yes
         test E SIGN  # Arg negative?
         if nz  # Yes
            off E SIGN  # Make argument positive
            xor (L -I) 1  # Toggle result sign
         end
         ld (L II) E  # Save arg
         ld A (L I)  # Result
         call divuAE_A  # Divide
         ld (L I) A  # Result
      loop
      ld E (L I)  # Result
      test (L -I) 1  # Sign?
      if nz  # Yes
         cmp E ZERO  # Zero?
         if ne  # No
            or E SIGN  # Set negative
         end
      end
10    drop
   end
   pop Y
   pop X
   ret

# (% 'num ..) -> num
(code 'doRem 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      ld B 0  # Init sign
      test E SIGN
      if nz
         off E SIGN
         ld B 1
      end
      link
      push ZERO  # <L II> Safe
      push E  # <L I> Result
      link
      push A  # <L -I> Sign flag
      do
         ld Y (Y CDR)  # More args?
         atom Y
      while z  # Yes
         ld E (Y)
         eval  # Eval next arg
         cmp E Nil
         jz 10  # Abort if NIL
         num E  # Number?
         jz numErrEX  # No
         cmp E ZERO  # Zero?
         jeq divErrX  # Yes
         off E SIGN  # Make argument positive
         ld (L II) E  # Save arg
         ld A (L I)  # Result
         call remuAE_A  # Remainder
         ld (L I) A  # Result
      loop
      ld E (L I)  # Result
      test (L -I) 1  # Sign?
      if nz  # Yes
         cmp E ZERO  # Zero?
         if ne  # No
            or E SIGN  # Set negative
         end
      end
10    drop
   end
   pop Y
   pop X
   ret

# (>> 'cnt 'num) -> num
(code 'doShift 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   call evCntXY_FE  # Get shift count
   link
   push ZERO  # <L I> Safe
   link
   push E  # <L -I> Shift count
   ld Y (Y CDR)  # Second arg
   ld E (Y)
   eval  # Eval number
   cmp E Nil  # Any?
   if nz  # Yes
      num E  # Number?
      jz numErrEX  # No
      ld A E  # Number in A
      off A SIGN  # Make positive
      and E SIGN  # Sign bit
      push E  # <L -II> Sign bit
      null (L -I)  # Shift count?
      if nz  # Yes
         if ns  # Positive
            call shruA_A  # Non-destructive
            ld (L I) A
            do
               dec (L -I)  # Shift count?
            while nz
               call halfA_A  # Shift right (destructive)
               ld (L I) A
            loop
         else
            call shluA_A  # Non-destructive
            ld (L I) A
            do
               inc (L -I)  # Shift count?
            while nz
               call twiceA_A  # Shift left (destructive)
               ld (L I) A
            loop
         end
      end
      cmp A ZERO  # Result zero?
      if ne  # No
         or A (L -II)  # Sign bit
      end
      ld E A  # Get result
   end
   drop
   pop Y
   pop X
   ret

# (lt0 'any) -> num | NIL
(code 'doLt0 2)
   ld E (E CDR)  # Get arg
   ld E (E)
   eval  # Eval it
   num E  # Number?
   jz retNil
   test E SIGN  # Negative?
   jz retNil
   ret  # Yes: Return num

# (le0 'any) -> num | NIL
(code 'doLe0 2)
   ld E (E CDR)  # Get arg
   ld E (E)
   eval  # Eval it
   num E  # Number?
   jz retNil
   cmp E ZERO  # Zero?
   if ne  # No
      test E SIGN  # Negative?
      jz retNil
   end
   ret  # Yes: Return num

# (ge0 'any) -> num | NIL
(code 'doGe0 2)
   ld E (E CDR)  # Get arg
   ld E (E)
   eval  # Eval it
   num E  # Number?
   jz retNil
   test E SIGN  # Positive?
   jnz retNil
   ret  # Yes: Return num

# (gt0 'any) -> num | NIL
(code 'doGt0 2)
   ld E (E CDR)  # Get arg
   ld E (E)
   eval  # Eval it
   num E  # Number?
   jz retNil
   cmp E ZERO  # Zero?
   jeq retNil
   test E SIGN  # Positive?
   jnz retNil
   ret  # Yes: Return num

# (abs 'num) -> num
(code 'doAbs 2)
   push X
   ld X E
   ld E (E CDR)  # Get arg
   ld E (E)
   eval  # Eval it
   cmp E Nil  # Any?
   if nz  # Yes
      num E  # Number?
      jz numErrEX  # No
      off E SIGN  # Clear sign
   end
   pop X
   ret

### Bit operations ###
# (bit? 'num ..) -> num | NIL
(code 'doBitQ 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   num E  # Number?
   jz numErrEX  # No
   off E SIGN  # Clear sign
   link
   push E  # <L I> Bit mask
   link
   do
      ld Y (Y CDR)  # More args?
      atom Y
   while z  # Yes
      ld E (Y)
      eval  # Eval next arg
      cmp E Nil
   while ne  # Abort if NIL
      num E  # Number?
      jz numErrEX  # No
      off E SIGN  # Clear sign
      ld C (L I)  # Get mask
      do
         cnt C  # C short?
      while z  # No
         cnt E  # E short?
         jnz 10  # Yes: Return NIL
         ld A (E DIG)  # Get digit
         and A (C DIG)  # Match?
         cmp A (C DIG)
         jne 10  # No: Return NIL
         ld C (C BIG)
         ld E (E BIG)
      loop
      cnt E  # E also short?
      if z  # No
         shr C 4  # Normalize
         ld E (E DIG)  # Get digit
      end
      and E C  # Match?
      cmp E C
      if ne  # No
10       ld E Nil  # Return NIL
         drop
         pop Y
         pop X
         ret
      end
   loop
   ld E (L I)  # Return bit mask
   drop
   pop Y
   pop X
   ret

# (& 'num ..) -> num
(code 'doBitAnd 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      off E SIGN  # Clear sign
      link
      push ZERO  # <L II> Safe
      push E  # <L I> Result
      link
      do
         ld Y (Y CDR)  # More args?
         atom Y
      while z  # Yes
         ld E (Y)
         eval  # Eval next arg
         cmp E Nil
         jeq 10  # Abort if NIL
         num E  # Number?
         jz numErrEX  # No
         off E SIGN  # Clear sign
         ld (L II) E  # Save arg
         ld A (L I)  # Result
         call anduAE_A  # Bitwise AND
         ld (L I) A  # Result
      loop
      ld E (L I)  # Result
10    drop
   end
   pop Y
   pop X
   ret

# (| 'num ..) -> num
(code 'doBitOr 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      off E SIGN  # Clear sign
      link
      push ZERO  # <L II> Safe
      push E  # <L I> Result
      link
      do
         ld Y (Y CDR)  # More args?
         atom Y
      while z  # Yes
         ld E (Y)
         eval  # Eval next arg
         cmp E Nil
         jeq 10  # Abort if NIL
         num E  # Number?
         jz numErrEX  # No
         off E SIGN  # Clear sign
         ld (L II) E  # Save arg
         ld A (L I)  # Result
         call oruAE_A  # Bitwise OR
         ld (L I) A  # Result
      loop
      ld E (L I)  # Result
10    drop
   end
   pop Y
   pop X
   ret

# (x| 'num ..) -> num
(code 'doBitXor 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      off E SIGN  # Clear sign
      link
      push ZERO  # <L II> Safe
      push E  # <L I> Result
      link
      do
         ld Y (Y CDR)  # More args?
         atom Y
      while z  # Yes
         ld E (Y)
         eval  # Eval next arg
         cmp E Nil
         jeq 10  # Abort if NIL
         num E  # Number?
         jz numErrEX  # No
         off E SIGN  # Clear sign
         ld (L II) E  # Save arg
         ld A (L I)  # Result
         call xoruAE_A  # Bitwise XOR
         ld (L I) A  # Result
      loop
      ld E (L I)  # Result
10    drop
   end
   pop Y
   pop X
   ret

### Random generator ###
(code 'initSeedE_E 0)
   push C  # Counter
   ld C 0
   do
      atom E  # Pair?
   while z  # Yes
      push E  # Recurse on CAR
      ld E (E)
      call initSeedE_E
      add C E
      pop E  # Loop on CDR
      ld E (E CDR)
   loop
   cmp E Nil  # NIL?
   if ne  # No
      num E  # Need number
      if z  # Must be symbol
         ld E (E TAIL)
         call nameE_E  # Get name
      end
      do
         cnt E  # Short?
      while z  # No
         add C (E DIG)  # Add next digit
         ld E (E BIG)
      loop
      shr E 3  # Keep sign
      add C E  # Add final short
   end
   ld E C  # Return counter
   pop C
   ret

# (seed 'any) -> cnt
(code 'doSeed 2)
   ld E (E CDR)  # Get arg
   ld E (E)
   eval  # Eval it
   call initSeedE_E  # Initialize 'Seed'
   ld A 6364136223846793005  # Multiplier
   mul E  # times 'Seed'
   ld (Seed) D  # Save
   shr A (- 32 3)  # Get higher 32 bits
   ld E A
   off E 7  # Keep sign
   or E CNT  # Make short number
   ret

# (hash 'any) -> cnt
(code 'doHash 2)
   push X
   ld E (E CDR)  # Get arg
   ld E (E)
   eval  # Eval it
   call initSeedE_E  # Initialize
   ld X E  # Value in X
   ld C 64  # Counter
   ld E 0  # Result
   do
      ld A X  # Value XOR Result
      xor A E
      test A 1  # LSB set?
      if nz  # Yes
         xor E (hex "14002")  # CRC Polynom x**16 + x**15 + x**2 + 1
      end
      shr X 1  # Shift value
      shr E 1  # and result
      dec C  # Done?
   until z  # Yes
   inc E  # Plus 1
   shl E 4  # Make short number
   or E CNT  # Make short number
   pop X
   ret

# (rand ['cnt1 'cnt2] | ['T]) -> cnt | flg
(code 'doRand 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld A 6364136223846793005  # Multiplier
   mul (Seed)  # times 'Seed'
   add D 1  # plus 1
   ld (Seed) D  # Save
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil  # Any?
   if eq  # No
      shr A (- 32 3)  # Get higher 32 bits
      ld E A
      off E 7  # Keep sign
      or E CNT  # Make short number
      pop Y
      pop X
      ret
   end
   cmp E TSym  # Boolean
   if eq
      ld A (Seed)
      rcl A 1  # Highest bit?
      if nc  # No
         ld E Nil  # Return NIL
      end  # else return T
      pop Y
      pop X
      ret
   end
   call xCntEX_FE  # Get cnt1
   push E  # Save it
   ld Y (Y CDR)  # Second arg
   call evCntXY_FE  # Get cnt2
   inc E  # Seed % (cnt2 + 1 - cnt1) + cnt1
   sub E (S)
   ld D (Seed)  # Get 'Seed'
   shl C 32  # Get middle 64 bits
   shr A 32
   or A C
   ld C 0
   div E  # Modulus in C
   pop E  # + cnt1
   add E C
   pop Y
   pop X
   jmp boxE_E  # Return short number

# vi:et:ts=3:sw=3