1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
|
/*
* Copyright (c) 2024 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <algorithm>
#include <cassert>
#include <cstdio>
#include <cstdarg>
#include <cstring>
#include <fstream>
#include <iostream>
#include <iterator>
#include <sstream>
#include <string>
#include <vector>
#include <memory>
#include "elf.h"
#include "elf_file.h"
#include "errors.h"
#include "portable_endian.h"
// tsk namespace is polluted on windows
#ifdef _WIN32
#undef min
#undef max
#define _CRT_SECURE_NO_WARNINGS
#endif
void eh_he(elf32_header &eh) {
// Swap to host endianness
eh.common.magic = le32toh(eh.common.magic);
eh.common.type = le16toh(eh.common.type);
eh.common.machine = le16toh(eh.common.machine);
eh.common.version2 = le32toh(eh.common.version2);
eh.entry = le32toh(eh.entry);
eh.ph_offset = le32toh(eh.ph_offset);
eh.sh_offset = le32toh(eh.sh_offset);
eh.flags = le32toh(eh.flags);
eh.eh_size = le16toh(eh.eh_size);
eh.ph_entry_size = le16toh(eh.ph_entry_size);
eh.ph_num = le16toh(eh.ph_num);
eh.sh_entry_size = le16toh(eh.sh_entry_size);
eh.sh_num = le16toh(eh.sh_num);
eh.sh_str_index = le16toh(eh.sh_str_index);
}
void eh_le(elf32_header &eh) {
// Swap to little endianness
eh.common.magic = htole32(eh.common.magic);
eh.common.type = htole16(eh.common.type);
eh.common.machine = htole16(eh.common.machine);
eh.common.version2 = htole32(eh.common.version2);
eh.entry = htole32(eh.entry);
eh.ph_offset = htole32(eh.ph_offset);
eh.sh_offset = htole32(eh.sh_offset);
eh.flags = htole32(eh.flags);
eh.eh_size = htole16(eh.eh_size);
eh.ph_entry_size = htole16(eh.ph_entry_size);
eh.ph_num = htole16(eh.ph_num);
eh.sh_entry_size = htole16(eh.sh_entry_size);
eh.sh_num = htole16(eh.sh_num);
eh.sh_str_index = htole16(eh.sh_str_index);
}
void ph_he(elf32_ph_entry &ph) {
// Swap to host endianness
ph.type = le32toh(ph.type);
ph.offset = le32toh(ph.offset);
ph.vaddr = le32toh(ph.vaddr);
ph.paddr = le32toh(ph.paddr);
ph.filez = le32toh(ph.filez);
ph.memsz = le32toh(ph.memsz);
ph.flags = le32toh(ph.flags);
ph.align = le32toh(ph.align);
}
void ph_le(elf32_ph_entry &ph) {
// Swap to little endianness
ph.type = htole32(ph.type);
ph.offset = htole32(ph.offset);
ph.vaddr = htole32(ph.vaddr);
ph.paddr = htole32(ph.paddr);
ph.filez = htole32(ph.filez);
ph.memsz = htole32(ph.memsz);
ph.flags = htole32(ph.flags);
ph.align = htole32(ph.align);
}
void sh_he(elf32_sh_entry &sh) {
// Swap to host endianness
sh.name = le32toh(sh.name);
sh.type = le32toh(sh.type);
sh.flags = le32toh(sh.flags);
sh.addr = le32toh(sh.addr);
sh.offset = le32toh(sh.offset);
sh.size = le32toh(sh.size);
sh.link = le32toh(sh.link);
sh.info = le32toh(sh.info);
sh.addralign = le32toh(sh.addralign);
sh.entsize = le32toh(sh.entsize);
}
void sh_le(elf32_sh_entry &sh) {
// Swap to little endianness
sh.name = htole32(sh.name);
sh.type = htole32(sh.type);
sh.flags = htole32(sh.flags);
sh.addr = htole32(sh.addr);
sh.offset = htole32(sh.offset);
sh.size = htole32(sh.size);
sh.link = htole32(sh.link);
sh.info = htole32(sh.info);
sh.addralign = htole32(sh.addralign);
sh.entsize = htole32(sh.entsize);
}
void sym_he(elf32_sym_entry &sym) {
// Swap to host endianness
sym.name = le32toh(sym.name);
sym.value = le32toh(sym.value);
sym.size = le32toh(sym.size);
sym.info = le32toh(sym.info);
sym.other = le32toh(sym.other);
sym.shndx = le32toh(sym.shndx);
}
void sym_le(elf32_sym_entry &sym) {
// Swap to little endianness
sym.name = htole32(sym.name);
sym.value = htole32(sym.value);
sym.size = htole32(sym.size);
sym.info = htole32(sym.info);
sym.other = htole32(sym.other);
sym.shndx = htole32(sym.shndx);
}
// Checks whether an ELF header is compatible with RP2040 / RP3050
// Returns zero on success
int rp_check_elf_header(const elf32_header &eh) {
if (eh.common.magic != ELF_MAGIC) {
fail(ERROR_FORMAT, "Not an ELF file");
}
if (eh.common.version != 1 || eh.common.version2 != 1) {
fail(ERROR_FORMAT, "Unrecognized ELF version");
}
if (eh.common.arch_class != 1 || eh.common.endianness != 1) {
fail(ERROR_INCOMPATIBLE, "Require 32 bit little-endian ELF");
}
if (eh.eh_size != sizeof(struct elf32_header)) {
fail(ERROR_FORMAT, "Invalid ELF32 format");
}
if (eh.common.machine != EM_ARM && eh.common.machine != EM_RISCV) {
fail(ERROR_FORMAT, "Not an Arm or RISC-V executable");
}
// Accept either ELFOSABI_NONE or ELFOSABI_GNU for EI_OSABI. Compilers may
// set the OS/ABI field to ELFOSABI_GNU when they use GNU features, such as
// the SHF_GNU_RETAIN section flag, but the binary is still compatible.
if (eh.common.abi != 0 /* NONE */ && eh.common.abi != 3 /* GNU */) {
fail(ERROR_INCOMPATIBLE, "Unrecognized ABI");
}
// todo amy not sure if this should be expected or not - we have HARD float in clang only for now
if (eh.flags & EF_ARM_ABI_FLOAT_HARD) {
// fail(ERROR_INCOMPATIBLE, "HARD-FLOAT not supported");
}
return 0;
}
// Determine binary type (flash or ram)
int rp_determine_binary_type(const elf32_header &eh, const std::vector<elf32_ph_entry>& entries, address_ranges flash_range, address_ranges ram_range, bool *ram_style) {
for(const auto &entry : entries) {
if (entry.type == PT_LOAD && entry.memsz) {
unsigned int mapped_size = std::min(entry.filez, entry.memsz);
if (mapped_size) {
// we back convert the entrypoint from a VADDR to a PADDR to see if it originates in flash, and if
// so call THAT a flash binary.
if (eh.entry >= entry.vaddr && eh.entry < entry.vaddr + mapped_size) {
uint32_t effective_entry = eh.entry + entry.paddr - entry.vaddr;
if (is_address_initialized(ram_range, effective_entry)) {
*ram_style = true;
return 0;
} else if (is_address_initialized(flash_range, effective_entry)) {
*ram_style = false;
return 0;
}
}
}
}
}
fail(ERROR_INCOMPATIBLE, "entry point is not in mapped part of file");
return ERROR_INCOMPATIBLE;
}
void elf_file::read_bytes(unsigned offset, unsigned length, void *dest) {
if (offset + length > elf_bytes.size()) {
fail(ERROR_FORMAT, "ELF File Read from 0x%x with size 0x%x exceeds the file size 0x%zx", offset, length, elf_bytes.size());
}
memcpy(dest, &elf_bytes[offset], length);
}
int elf_file::read_header(void) {
read_bytes(0, sizeof(eh), &eh);
eh_he(eh); // swap to Host for processing
return rp_check_elf_header(eh);
}
// Flattens the data in the section array the elf_bytes blob
void elf_file::flatten(void) {
elf_bytes.resize(sizeof(eh));
auto eh_out = eh;
eh_le(eh_out); // swap to LE for writing
memcpy(&elf_bytes[0], &eh_out, sizeof(eh_out));
elf_bytes.resize(std::max(eh.ph_offset + sizeof(elf32_ph_entry) * eh.ph_num, elf_bytes.size()));
auto ph_entries_out = ph_entries;
for (auto &ph : ph_entries_out) {
ph_le(ph); // swap to LE for writing
}
memcpy(&elf_bytes[eh.ph_offset], &ph_entries_out[0], sizeof(elf32_ph_entry) * eh.ph_num);
elf_bytes.resize(std::max(eh.sh_offset + sizeof(elf32_sh_entry) * eh.sh_num, elf_bytes.size()));
auto sh_entries_out = sh_entries;
for (auto &sh : sh_entries_out) {
sh_le(sh); // swap to LE for writing
}
memcpy(&elf_bytes[eh.sh_offset], &sh_entries_out[0], sizeof(elf32_sh_entry) * eh.sh_num);
int idx = 0;
for (const auto &sh : sh_entries) {
if (sh.size && sh.type != SHT_NOBITS) {
elf_bytes.resize(std::max(sh.offset + sh.size, (uint32_t)elf_bytes.size()));
memcpy(&elf_bytes[sh.offset], &sh_data[idx][0], sh.size);
}
idx++;
}
idx = 0;
for (const auto &ph : ph_entries) {
if (ph.filez) {
elf_bytes.resize(std::max(ph.offset + ph.filez, (uint32_t)elf_bytes.size()));
memcpy(&elf_bytes[ph.offset], &ph_data[idx][0], ph.filez);
}
idx++;
}
if (verbose) printf("Elf file size %zu\n", elf_bytes.size());
}
void elf_file::write(std::shared_ptr<std::iostream> out) {
flatten();
out->exceptions(std::iostream::failbit | std::iostream::badbit);
if (verbose) printf("Writing %lu bytes to file\n", elf_bytes.size());
out->write(reinterpret_cast<const char*>(&elf_bytes[0]), elf_bytes.size());
}
void elf_file::read_sh(void) {
if (verbose) printf("%s sh offset %u #entries %d\n", __func__, eh.sh_offset, eh.sh_num);
if (eh.sh_num) {
sh_entries.resize(eh.sh_num);
read_bytes(eh.sh_offset, sizeof(elf32_sh_entry) * eh.sh_num, &sh_entries[0]);
for (auto &sh : sh_entries) {
sh_he(sh); // swap to Host for processing
}
}
}
// Read the section data from the internal byte array into discrete sections.
// This is used after modifying segments but before inserting new segments
void elf_file::read_sh_data(void) {
int sh_idx = 0;
sh_data.resize(eh.sh_num);
for (const auto &sh: sh_entries) {
if (sh.size && sh.type != SHT_NOBITS) {
sh_data[sh_idx].resize(sh.size);
read_bytes(sh.offset, sh.size, &sh_data[sh_idx][0]);
}
sh_idx++;
}
}
void elf_file::read_ph_data(void) {
int ph_idx = 0;
ph_data.resize(eh.ph_num);
for (const auto &ph: ph_entries) {
if (ph.filez) {
ph_data[ph_idx].resize(ph.filez);
read_bytes(ph.offset, ph.filez, &ph_data[ph_idx][0]);
}
ph_idx++;
}
}
const std::string elf_file::section_name(uint32_t sh_name) const {
if (!eh.sh_str_index || eh.sh_str_index > eh.sh_num)
return "";
if (sh_name > sh_data[eh.sh_str_index].size())
return "";
const char * str =(const char *) &sh_data[eh.sh_str_index][0];
return &str[sh_name];
}
const elf32_sh_entry* elf_file::get_section(const std::string &sh_name) {
for (unsigned int i = 0; i < sh_entries.size(); i++) {
if (section_name(sh_entries[i].name) == sh_name) {
return &sh_entries[i];
}
}
return NULL;
}
uint32_t elf_file::get_symbol(const std::string &sym_name) {
auto sym_tab = get_section(".symtab");
auto str_tab = get_section(".strtab");
if (!sym_tab || !str_tab) {
return 0;
}
auto data = content(*sym_tab);
auto strings = content(*str_tab);
const char * str =(const char *) strings.data();
for (unsigned int i=0; i < sym_tab->size / sizeof(elf32_sym_entry); i++) {
elf32_sym_entry sym;
memcpy(&sym, data.data() + i*sizeof(elf32_sym_entry), sizeof(elf32_sym_entry));
sym_he(sym); // swap to Host for processing
if (&str[sym.name] == sym_name) {
return sym.value;
}
}
return 0;
}
uint32_t elf_file::append_section_name(const std::string &sh_name_str) {
// Create byte array with new section name
std::vector<uint8_t> name_bytes(sh_name_str.begin(), sh_name_str.end());
name_bytes.push_back(0);
// Append the byte array to section header table remembering the offset
// of the start of the string for the new section
elf32_sh_entry &shstrtab = sh_entries[eh.sh_str_index];
std::vector<uint8_t> &shstrtab_data = sh_data[eh.sh_str_index];
sh_entries[eh.sh_str_index].size += name_bytes.size();
uint32_t sh_name = shstrtab_data.size();
shstrtab_data.insert(shstrtab_data.end(), name_bytes.begin(), name_bytes.end());
// Move offsets for anything stored after the resized section header table
for (auto &sh: sh_entries) {
if (sh.offset > shstrtab.offset)
sh.offset += name_bytes.size();
}
for (auto &ph: ph_entries) {
if (ph.offset > shstrtab.offset)
ph.offset += name_bytes.size();
}
return sh_name;
}
void elf_file::dump(void) const {
for (const auto &ph: ph_entries) {
printf("PH offset %08x vaddr %08x paddr %08x size %08x type %08x\n",
ph.offset, ph.vaddr, ph.paddr, ph.memsz, ph.type);
}
int sh_idx = 0;
for (const auto &sh: sh_entries) {
printf("SH[%d] %20s addr %08x offset %08x size %08x type %08x\n",
sh_idx, section_name(sh.name).c_str(), sh.addr, sh.offset, sh.size, sh.type);
sh_idx++;
}
}
void elf_file::move_all(int dist) {
if (verbose) printf("Incrementing all paddr by %d\n", dist);
for (auto &ph: ph_entries) {
ph.paddr += dist;
}
}
void elf_file::read_ph(void) {
if (verbose) printf("%s ph offset %u #entries %d\n", __func__, eh.ph_offset, eh.ph_num);
if (eh.ph_num) {
ph_entries.resize(eh.ph_num);
read_bytes(eh.ph_offset, sizeof(elf32_ph_entry) * eh.ph_num, &ph_entries[0]);
for (auto &ph : ph_entries) {
ph_he(ph); // swap to Host for processing
}
}
}
int elf_file::read_file(std::shared_ptr<std::iostream> file) {
int rc = 0;
try {
elf_bytes = read_binfile(file);
int rc = read_header();
if (!rc) {
read_ph();
read_sh();
}
read_sh_data();
read_ph_data();
}
catch (const std::ios_base::failure &e) {
std::cerr << "Failed to read elf file" << std::endl;
rc = -1;
}
return rc;
}
uint32_t elf_file::lowest_section_offset(void) const {
uint32_t offset = eh.sh_offset; // Section header offset is after the data
for (const auto &sh: sh_entries) {
if (sh.type != SHT_NULL && sh.offset > 0 && sh.offset < offset) {
offset = sh.offset;
}
}
return offset;
}
uint32_t elf_file::highest_section_offset(void) const {
uint32_t offset = 0; // Section header offset is after the data
for (const auto &sh: sh_entries) {
if (sh.type != SHT_NULL && sh.offset > 0 && sh.offset >= offset) {
offset = sh.offset + sh.size;
}
}
return offset;
}
std::vector<uint8_t> elf_file::content(const elf32_ph_entry &ph) const {
std::vector<uint8_t> content;
std::copy(elf_bytes.begin() + ph.offset, elf_bytes.begin() + ph.offset + ph.filez, std::back_inserter(content));
return content;
}
std::vector<uint8_t> elf_file::content(const elf32_sh_entry &sh) const {
std::vector<uint8_t> content;
std::copy(elf_bytes.begin() + sh.offset, elf_bytes.begin() + sh.offset + sh.size, std::back_inserter(content));
return content;
}
void elf_file::content(const elf32_ph_entry &ph, const std::vector<uint8_t> &content) {
if (!editable) return;
assert(content.size() <= ph.filez);
if (verbose) printf("Update segment content offset %x content size %zx physical size %x\n", ph.offset, content.size(), ph.filez);
memcpy(&elf_bytes[ph.offset], &content[0], std::min(content.size(), (size_t) ph.filez));
read_sh_data(); // Extract the sections after modifying the content
read_ph_data();
}
void elf_file::content(const elf32_sh_entry &sh, const std::vector<uint8_t> &content) {
if (!editable) return;
assert(content.size() <= sh.size);
if (verbose) printf("Update section content offset %x content size %zx section size %x\n", sh.offset, content.size(), sh.size);
memcpy(&elf_bytes[sh.offset], &content[0], std::min(content.size(), (size_t) sh.size));
read_sh_data(); // Extract the sections after modifying the content
read_ph_data();
}
const elf32_ph_entry* elf_file::segment_from_physical_address(uint32_t paddr) {
for (int i = 0; i < eh.ph_num; i++) {
if (paddr >= ph_entries[i].paddr && paddr < ph_entries[i].paddr + ph_entries[i].filez) {
if (verbose) printf("segment %d contains physical address %x\n", i, paddr);
return &ph_entries[i];
}
}
return nullptr;
}
const elf32_ph_entry* elf_file::segment_from_virtual_address(uint32_t vaddr) {
for (int i = 0; i < eh.ph_num; i++) {
if (vaddr >= ph_entries[i].vaddr && vaddr < ph_entries[i].vaddr + ph_entries[i].memsz) {
if (verbose) printf("segment %d contains virtual address %x\n", i, vaddr);
return &ph_entries[i];
}
}
return NULL;
}
// Appends a new segment and section - filled with zeros
// Use content to replace the content
const elf32_ph_entry& elf_file::append_segment(uint32_t vaddr, uint32_t paddr, uint32_t size, const std::string &name) {
elf32_ph_entry ph;
read_sh_data(); // Convert the section data back into discreet chunks
uint32_t sh_name = append_section_name(name);
ph.type = PT_LOAD;
ph.flags = PF_R; // Readable segment
ph.paddr = paddr;
ph.vaddr = vaddr;
ph.filez = size;
ph.memsz = size;
ph.align = 2;
if (verbose) {
std::cout << "new segment " << name <<
" paddr " << std::hex << paddr <<
" vaddr " << std::hex << vaddr <<
" size " << std::hex << size << std::endl;
}
ph_entries.push_back(ph);
eh.ph_num++;
// There's normally space between the end of the program header table and the start of data to
// squeeze in another program header. If not, shuffle everything by 4K;
uint32_t lso = lowest_section_offset();
if (lso < eh.ph_offset + eh.ph_entry_size * eh.ph_num) {
// Move the segment offsets
for (auto &ph: ph_entries) {
ph.offset += 0x1000;
}
// Move section header table and each section offset
eh.sh_offset += 0x1000;
for (auto &sh : sh_entries) {
sh.offset += 0x1000;
}
}
// Append the new signature section
elf32_sh_entry sh = {};
sh.name = sh_name;
sh.type = SHT_PROGBITS;
sh.flags = SHF_ALLOC;
sh.addr = ph.vaddr;
sh.size = size;
uint32_t hso = highest_section_offset();
sh.offset = hso;
// Add the new segment for the signature and point to offset in file for data
sh_entries.push_back(sh);
sh_data.push_back(std::vector<uint8_t>(size));
ph_entries.back().offset = sh.offset;
ph_data.push_back(std::vector<uint8_t>(size));
eh.sh_offset = sh.offset + sh.size;
eh.sh_num++;
if (verbose) printf("%s sig offset %08x num sections %u\n", __func__, sh.offset, eh.sh_num);
flatten();
return ph_entries.back();
}
std::vector<uint8_t> elf_file::read_binfile(std::shared_ptr<std::iostream> in) {
std::vector<uint8_t> data;
in->exceptions(std::iostream::failbit | std::iostream::badbit);
in->seekg(0, in->end);
data.resize(in->tellg());
in->seekg(0, in->beg);
in->read(reinterpret_cast<char *>(&data[0]), data.size());
return data;
}
|