File: bintool.cpp

package info (click to toggle)
picotool 2.2.0-a4%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,084 kB
  • sloc: cpp: 61,059; ansic: 2,999; asm: 2,048; perl: 219; sh: 212; python: 97; makefile: 41; xml: 18
file content (1119 lines) | stat: -rw-r--r-- 48,086 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
#include <iostream>
#include <memory>
#include <iostream>
#include <fstream>
#include <algorithm>
#include <random>
#include <cinttypes>
#include <tuple>

#include "boot/picobin.h"
#include <map>

#include "elf_file.h"

#if HAS_MBEDTLS
    #include "mbedtls_wrapper.h"
    #include <mbedtls/pk.h>
    #include <mbedtls/ecp.h>
    #include <mbedtls/error.h>
#endif

#include "bintool.h"
#include "metadata.h"
#include "errors.h"

// todo test with a holey binary

template<typename T> void dumper(const char *msg, const T& foop) {
    DEBUG_LOG("%s ", msg);
    for(uint8_t i : foop.bytes) {
        DEBUG_LOG("%02x", i);
    }
    DEBUG_LOG("\n");
}

std::vector<const Segment *> sorted_segs(elf_file *elf) {
    std::vector<const Segment *> phys_sorted_segs;
    std::transform(elf->segments().begin(), elf->segments().end(), std::back_inserter(phys_sorted_segs), [](const Segment &seg) {
        return &seg;
    });
    std::sort(phys_sorted_segs.begin(), phys_sorted_segs.end(), [](const Segment *first, const Segment *second) {
        return first->physical_address() < second->physical_address();
    });
    return phys_sorted_segs;
}

#if HAS_MBEDTLS
int read_keys(const std::string &filename, public_t *public_key, private_t *private_key) {
    mbedtls_pk_context pk_ctx;
    int rc;

    mbedtls_pk_init(&pk_ctx);
#if MBEDTLS_VERSION_MAJOR >= 3
    // This rng is only used for blinding when reading the key file
    // As this should only be done on a secure computer, blinding is not required, so it's fine to not actually seed it with any entropy
    mbedtls_ctr_drbg_context ctr_drbg;
    mbedtls_ctr_drbg_init(&ctr_drbg);
    rc = mbedtls_pk_parse_keyfile(&pk_ctx, filename.c_str(), NULL, mbedtls_ctr_drbg_random, &ctr_drbg);
#else
    rc = mbedtls_pk_parse_keyfile(&pk_ctx, filename.c_str(), NULL);
#endif
    if (rc != 0) {
        char error_string[128];
        mbedtls_strerror(rc, error_string, sizeof(error_string));
        fail(ERROR_FORMAT, "Failed to read key file %s, error %s", filename.c_str(), error_string);
        return -1;
    }
    
    const mbedtls_ecp_keypair *keypair = mbedtls_pk_ec(pk_ctx);
    if (!keypair) {
        fail(ERROR_FORMAT, "Failed to parse key file %s", filename.c_str());
    }
    mbedtls_mpi_write_binary(&keypair->d, reinterpret_cast<unsigned char *>(private_key), 32);
    mbedtls_mpi_write_binary(&keypair->Q.X, reinterpret_cast<unsigned char *>(public_key), 32);
    mbedtls_mpi_write_binary(&keypair->Q.Y, reinterpret_cast<unsigned char *>(public_key) + 32, 32);
    return 0;
}
#endif

#define OTP_KEY_YAML_HEADER \
"include:\n" \
"  - otp/tc_images/base_chipinfo.yml\n" \
"data:\n" \
"  - crit1_secure_boot_enable: [crit, 1]\n" \
"  - crit0_riscv_disable: [crit, 1]\n" \
"  - crit0_arm_disable: [crit, 0]\n" \
"  - BOOT_FLAGS0_SECURE_PARTITION_TABLE: [rbit3, 0]\n" \
"  - BOOT_FLAGS0_DISABLE_AUTO_SWITCH_ARCH: [rbit3, 1]\n" \
"  # - boot_temp_chicken_bit_opt_in_faster_sigcheck_rosc_div: [rbit3, 1]\n" \
"  - boot_flags1_key_valid: [rbit3, 0b0001]\n" \


#if HAS_MBEDTLS
void write_otp_key_yaml(const std::string &filename, message_digest_t pub_sha256) {
    std::ofstream out(filename, std::ios::out | std::ios::trunc);
    out.exceptions(std::fstream::failbit | std::fstream::badbit);
    out << std::string(OTP_KEY_YAML_HEADER);

    // Print public key hash again in the format it is expected to appear in OTP
    for (int i = 0; i < 16; ++i) {
        char row[128];
        snprintf(row, sizeof(row), "  - bootkey0_%-2d: [ecc, 0x%02x%02x]\n", i, pub_sha256.bytes[2 * i + 1], pub_sha256.bytes[2 * i]);
        out << std::string(row);        
    }
}
#endif


std::unique_ptr<block> find_first_block(elf_file *elf) {
    std::unique_ptr<block> first_block;
    for(auto x : sorted_segs(elf)) {
        if (!x->is_load()) continue;
        auto data = elf->content(*x); // x->content(*elf);
        // todo handle alignment (not sure if necessary)
        if ((x->physical_address() & 3) || (x->physical_size() & 3)) {
            fail(ERROR_INCOMPATIBLE, "ELF segments must be word aligned");
        }
        std::vector<uint32_t> words = lsb_bytes_to_words(data.begin(), data.end());
        auto block_begin = std::find(words.begin(), words.end(), PICOBIN_BLOCK_MARKER_START);
        while (block_begin != words.end() && !first_block) {
            DEBUG_LOG("Found possible block at %08x + %08x...", (unsigned int)x->physical_address(), (int)(block_begin - words.begin())*4);
            block_begin++;
            for(auto next_item = block_begin; next_item < words.end(); ) {
                unsigned int size = item::decode_size(*next_item);
                if ((uint8_t)*next_item == PICOBIN_BLOCK_ITEM_2BS_LAST) {
                    if (size == next_item - block_begin) {
                        if (next_item < words.end() && next_item[2] == PICOBIN_BLOCK_MARKER_END) {
                            DEBUG_LOG(" verified block");
                            first_block = block::parse(x->physical_address() + 4*(block_begin - words.begin() - 1),
                                                       next_item + 1, block_begin, block_begin + size);
                            break;
                        }
                    }
                } else {
                    next_item += size;
                }
            }
            DEBUG_LOG("\n");
            block_begin = std::find(block_begin, words.end(), PICOBIN_BLOCK_MARKER_START);
        }
        if (first_block) break;
    }
    if (!first_block) {
        DEBUG_LOG("No block found\n");
        return NULL;
    }
    return first_block;
}


std::unique_ptr<block> find_first_block(std::vector<uint8_t> bin, uint32_t storage_addr) {
    std::unique_ptr<block> first_block;

    std::vector<uint32_t> words = lsb_bytes_to_words(bin.begin(), bin.end());
    auto block_begin = std::find(words.begin(), words.end(), PICOBIN_BLOCK_MARKER_START);

    while (block_begin != words.end() && !first_block) {
        DEBUG_LOG("Possible block at %08x + %08x\n", storage_addr, (int)(block_begin - words.begin())*4);
        block_begin++;
        for(auto next_item = block_begin; next_item < words.end(); ) {
            unsigned int size = item::decode_size(*next_item);
            if ((uint8_t)*next_item == PICOBIN_BLOCK_ITEM_2BS_LAST) {
                if (size == next_item - block_begin) {
                    if (next_item < words.end() && next_item[2] == PICOBIN_BLOCK_MARKER_END) {
                        DEBUG_LOG("is a valid block\n");
                        first_block = block::parse(storage_addr + 4*(block_begin - words.begin() - 1),
                                                    next_item + 1, block_begin, block_begin + size);
                        break;
                    } else {
                        printf("WARNING: Invalid block found at 0x%x - no block end marker\n",
                            (int)(block_begin - words.begin())*4
                        );
                    }
                } else {
                    printf("WARNING: Invalid block found at 0x%x - incorrect last item size of %d, expected %d\n",
                        (int)(block_begin - words.begin())*4, size, (int)(next_item - block_begin)
                    );
                }
                // Invalid block, so find the next one
                next_item = words.end();
            } else {
                next_item += size;
            }
        }
        block_begin = std::find(block_begin, words.end(), PICOBIN_BLOCK_MARKER_START);
    }
    if (!first_block) {
        DEBUG_LOG("NO BLOCK FOUND\n");
        return nullptr;
    }
    return first_block;
}


void set_block_ignored(elf_file *elf, uint32_t block_addr) {
    auto seg = elf->segment_from_physical_address(block_addr);
    if (seg == nullptr) {
        fail(ERROR_NOT_POSSIBLE, "The ELF file does not contain the block address %x", block_addr);
    }
    std::vector<uint8_t> content = elf->content(*seg);
    uint32_t offset = block_addr + 4 - seg->physical_address();
    if ((content[offset] & 0x7f) != PICOBIN_BLOCK_ITEM_PARTITION_TABLE) {
        DEBUG_LOG("setting block at %08x to ignored\n", block_addr);
        content[offset] = 0x7e;
    }
    elf->content(*seg, content);
}


void set_next_block(elf_file *elf, std::unique_ptr<block> &first_block, uint32_t highest_address) {
    // todo this isn't right, but virtual should be physical for now
    auto seg = elf->segment_from_physical_address(first_block->physical_addr);
    if (seg == nullptr) {
        fail(ERROR_NOT_POSSIBLE, "The ELF file does not contain the next block address %x", first_block->physical_addr);
    }
    std::vector<uint8_t> content = elf->content(*seg);
    uint32_t offset = first_block->physical_addr + first_block->next_block_rel_index * 4 - seg->physical_address();
    uint32_t delta = highest_address - first_block->physical_addr;
    // todo this assumes a 2 word NEXT_BLOCK_ADDR type for now
    content[offset] = delta & 0xff;
    content[offset+1] = (delta >> 8) & 0xff;
    content[offset+2] = (delta >> 16) & 0xff;
    content[offset+3] = (delta >> 24) & 0xff;
    DEBUG_LOG("defaulting next_block_addr at %08x to %08x\n",
        (int)first_block->physical_addr + first_block->next_block_rel_index * 4,
        (int)(highest_address));
    first_block->next_block_rel = delta;
    elf->content(*seg, content);
}


void set_block_ignored(std::vector<uint8_t> &bin, uint32_t storage_addr, uint32_t block_addr) {
    uint32_t offset = block_addr + 4 - storage_addr;
    if ((bin[offset] & 0x7f) != PICOBIN_BLOCK_ITEM_PARTITION_TABLE) {
        DEBUG_LOG("setting block at %08x to ignored\n", block_addr);
        bin[offset] = 0x7e;
    }
}


void set_next_block(std::vector<uint8_t> &bin, uint32_t storage_addr, std::unique_ptr<block> &first_block, uint32_t highest_address) {
    // todo this isn't right, but virtual should be physical for now
    uint32_t offset = first_block->physical_addr + first_block->next_block_rel_index * 4 - storage_addr;
    uint32_t delta = highest_address - first_block->physical_addr;
    // todo this assumes a 2 word NEXT_BLOCK_ADDR type for now
    bin[offset] = delta & 0xff;
    bin[offset+1] = (delta >> 8) & 0xff;
    bin[offset+2] = (delta >> 16) & 0xff;
    bin[offset+3] = (delta >> 24) & 0xff;
    DEBUG_LOG("defaulting next_block_addr at %08x to %08x\n",
        (int)first_block->physical_addr + first_block->next_block_rel_index * 4,
        (int)(highest_address));
    first_block->next_block_rel = delta;
}


block place_new_block(elf_file *elf, std::unique_ptr<block> &first_block, bool set_others_ignored) {
    uint32_t highest_ram_address = 0;
    uint32_t highest_flash_address = 0;
    bool no_flash = false;

    for(const auto &seg : elf->segments()) {
        // std::cout << &seg << " " << to_string(seg) << std::endl;
        const uint32_t paddr = seg.physical_address();
        const uint32_t psize = seg.physical_size();
        if (psize == 0) continue;
        if (paddr >= 0x20000000 && paddr < 0x20080000) {
            highest_ram_address = std::max(paddr + psize, highest_ram_address);
        } else if (paddr >= 0x10000000 && paddr < 0x20000000) {
            highest_flash_address = std::max(paddr + psize, highest_flash_address);
        }
    }

    if (highest_flash_address == 0) {
        no_flash = true;
    }
    uint32_t highest_address = no_flash ? highest_ram_address : highest_flash_address;

    DEBUG_LOG("RAM %08x ", highest_ram_address);
    if (no_flash) {
        DEBUG_LOG("NO FLASH\n");
    } else {
        DEBUG_LOG("FLASH %08x\n", highest_flash_address);
    }

    int32_t loop_start_rel = 0;
    uint32_t new_block_addr = 0;
    std::unique_ptr<block> new_first_block;
    if (!first_block->next_block_rel) {
        set_next_block(elf, first_block, highest_address);
        loop_start_rel = -first_block->next_block_rel;
        new_block_addr = first_block->physical_addr + first_block->next_block_rel;
        if (set_others_ignored) set_block_ignored(elf, first_block->physical_addr);
    } else {
        DEBUG_LOG("There is already a block loop\n");
        if (set_others_ignored) set_block_ignored(elf, first_block->physical_addr);
        uint32_t next_block_addr = first_block->physical_addr + first_block->next_block_rel;
        while (true) {
            auto segment = elf->segment_from_physical_address(next_block_addr);
            if (segment == nullptr) {
                fail(ERROR_NOT_POSSIBLE, "The ELF file does not contain the next block address %x", next_block_addr);
            }
            auto data = elf->content(*segment);
            auto offset = next_block_addr - segment->physical_address();
            std::vector<uint32_t> words = lsb_bytes_to_words(data.begin() + offset, data.end());
            if (words.front() != PICOBIN_BLOCK_MARKER_START) {
                fail(ERROR_UNKNOWN, "Block loop is not valid - no block found at %08x\n", (int)(next_block_addr));
            }
            words.erase(words.begin());
            DEBUG_LOG("Checking block at %x\n", next_block_addr);
            for(auto next_item = words.begin(); next_item < words.end(); ) {
                unsigned int size = item::decode_size(*next_item);
                if ((uint8_t)*next_item == PICOBIN_BLOCK_ITEM_2BS_LAST) {
                    if (size == next_item - words.begin()) {
                        if (next_item < words.end() && next_item[2] == PICOBIN_BLOCK_MARKER_END) {
                            DEBUG_LOG("is a valid block\n");
                            new_first_block = block::parse(next_block_addr, next_item + 1, words.begin(), words.begin() + size);
                            break;
                        }
                    }
                } else {
                    next_item += size;
                }
            }
            if (new_first_block->physical_addr + new_first_block->next_block_rel == first_block->physical_addr) {
                DEBUG_LOG("Found last block in block loop\n");
                break;
            } else {
                DEBUG_LOG("Continue looping\n");
                if (set_others_ignored) set_block_ignored(elf, new_first_block->physical_addr);
                next_block_addr = new_first_block->physical_addr + new_first_block->next_block_rel;
                new_first_block.reset();
            }
        }
        set_next_block(elf, new_first_block, highest_address);
        new_block_addr = new_first_block->physical_addr + new_first_block->next_block_rel;
        loop_start_rel = first_block->physical_addr - new_block_addr;
    }
    if (highest_address != new_block_addr) {
        fail(ERROR_UNKNOWN, "Next block not at highest address %08x %08x\n", (int)highest_address, (int)(new_block_addr));
    }

    // loop back to first block
    block new_block(new_block_addr, loop_start_rel);
    // check if last block has an image_def
    if (new_first_block != nullptr && new_first_block->get_item<image_type_item>() != nullptr) {
        // copy the last block items
        std::copy(new_first_block->items.begin(),
                  new_first_block->items.end(),
                  std::back_inserter(new_block.items));
    } else {
        // copy the first block items
        std::copy(first_block->items.begin(),
                  first_block->items.end(),
                  std::back_inserter(new_block.items));
    }

    // Delete existing signature and hash as these will be replaced with new ones
    std::shared_ptr<signature_item> signature = new_block.get_item<signature_item>();
    if (signature != nullptr) {
        new_block.items.erase(std::remove(new_block.items.begin(), new_block.items.end(), signature), new_block.items.end());
    }
    std::shared_ptr<hash_value_item> hash_value = new_block.get_item<hash_value_item>();
    if (hash_value != nullptr) {
        new_block.items.erase(std::remove(new_block.items.begin(), new_block.items.end(), hash_value), new_block.items.end());
    }
    std::shared_ptr<hash_def_item> hash_def = new_block.get_item<hash_def_item>();
    if (hash_def != nullptr) {
        new_block.items.erase(std::remove(new_block.items.begin(), new_block.items.end(), hash_def), new_block.items.end());
    }

    return new_block;
}


std::vector<std::unique_ptr<block>> get_all_blocks(std::vector<uint8_t> &bin, uint32_t storage_addr, std::unique_ptr<block> &first_block, get_more_bin_cb more_cb) {
    uint32_t next_block_addr = first_block->physical_addr + first_block->next_block_rel;
    std::vector<std::unique_ptr<block>> all_blocks;
    uint32_t read_size = PICOBIN_MAX_BLOCK_SIZE;
    uint32_t current_bin_start = storage_addr;
    while (true) {
        std::unique_ptr<block> new_first_block;
        if (next_block_addr + read_size > current_bin_start + bin.size() && more_cb != nullptr) {
            DEBUG_LOG("Reading into bin %08x+%x\n", next_block_addr, read_size);
            more_cb(bin, next_block_addr, read_size);
            current_bin_start = next_block_addr;
        }
        auto offset = next_block_addr - current_bin_start;
        std::vector<uint32_t> words = lsb_bytes_to_words(bin.begin() + offset, bin.end());
        if (words.front() != PICOBIN_BLOCK_MARKER_START) {
            fail(ERROR_UNKNOWN, "Block loop is not valid - no block found at %08x\n", (int)(next_block_addr));
        }
        words.erase(words.begin());
        DEBUG_LOG("Checking block at %x\n", next_block_addr);
        DEBUG_LOG("Starts with %x %x %x %x\n", words[0], words[1], words[2], words[3]);
        for(auto next_item = words.begin(); next_item < words.end(); ) {
            unsigned int size = item::decode_size(*next_item);
            if ((uint8_t)*next_item == PICOBIN_BLOCK_ITEM_2BS_LAST) {
                if (size == next_item - words.begin()) {
                    if (next_item < words.end() && next_item[2] == PICOBIN_BLOCK_MARKER_END) {
                        DEBUG_LOG("is a valid block\n");
                        new_first_block = block::parse(next_block_addr, next_item + 1, words.begin(), words.begin() + size);
                        break;
                    }
                }
            } else {
                next_item += size;
            }
        }
        if (new_first_block == nullptr) {
            fail(ERROR_UNKNOWN, "Block loop is not valid - incomplete block found at %08x\n", (int)(next_block_addr));
        }
        if (new_first_block->physical_addr + new_first_block->next_block_rel == first_block->physical_addr) {
            DEBUG_LOG("Found last block in block loop\n");
            all_blocks.push_back(std::move(new_first_block));
            break;
        } else {
            DEBUG_LOG("Continue looping\n");
            next_block_addr = new_first_block->physical_addr + new_first_block->next_block_rel;
            all_blocks.push_back(std::move(new_first_block));
        }
    }
    return all_blocks;
}


std::unique_ptr<block> get_last_block(std::vector<uint8_t> &bin, uint32_t storage_addr, std::unique_ptr<block> &first_block, get_more_bin_cb more_cb) {
    auto all_blocks = get_all_blocks(bin, storage_addr, first_block, more_cb);
    return std::move(all_blocks.back());
}


block place_new_block(std::vector<uint8_t> &bin, uint32_t storage_addr, std::unique_ptr<block> &first_block, bool set_others_ignored) {
    uint32_t highest_ram_address = 0;
    uint32_t highest_flash_address = 0;
    bool no_flash = false;

    const uint32_t paddr = storage_addr;
    const uint32_t psize = bin.size();
    if (paddr >= 0x20000000 && paddr < 0x20080000) {
        highest_ram_address = std::max(paddr + psize, highest_ram_address);
    } else if (paddr >= 0x10000000 && paddr < 0x20000000) {
        highest_flash_address = std::max(paddr + psize, highest_flash_address);
    }

    if (highest_flash_address == 0) {
        no_flash = true;
    }
    uint32_t highest_address = no_flash ? highest_ram_address : highest_flash_address;

    if (no_flash) {
        DEBUG_LOG("RAM %08x ", highest_ram_address);
        DEBUG_LOG("NO FLASH\n");
    } else {
        DEBUG_LOG("FLASH %08x\n", highest_flash_address);
    }

    int32_t loop_start_rel = 0;
    uint32_t new_block_addr = 0;
    std::unique_ptr<block> new_first_block;
    if (!first_block->next_block_rel) {
        set_next_block(bin, storage_addr, first_block, highest_address);
        loop_start_rel = -first_block->next_block_rel;
        new_block_addr = first_block->physical_addr + first_block->next_block_rel;
        if (set_others_ignored) set_block_ignored(bin, storage_addr, first_block->physical_addr);
    } else {
        DEBUG_LOG("Ooh, there is already a block loop - lets find it's end\n");
        auto all_blocks = get_all_blocks(bin, storage_addr, first_block);
        for (auto &block : all_blocks) {
            if (set_others_ignored) set_block_ignored(bin, storage_addr, block->physical_addr);
        }
        new_first_block = std::move(all_blocks.back());
        set_next_block(bin, storage_addr, new_first_block, highest_address);
        new_block_addr = new_first_block->physical_addr + new_first_block->next_block_rel;
        loop_start_rel = first_block->physical_addr - new_block_addr;
    }
    if (highest_address != new_block_addr) {
        fail(ERROR_UNKNOWN, "Next block not at highest address %08x %08x\n", (int)highest_address, (int)(new_block_addr));
    }

    // loop back to first block
    block new_block(new_block_addr, loop_start_rel);
    // check if last block has an image_def
    if (new_first_block != nullptr && new_first_block->get_item<image_type_item>() != nullptr) {
        // copy the last block items
        std::copy(new_first_block->items.begin(),
                  new_first_block->items.end(),
                  std::back_inserter(new_block.items));
    } else {
        // copy the first block items
        std::copy(first_block->items.begin(),
                  first_block->items.end(),
                  std::back_inserter(new_block.items));
    }

    // Delete existing signature and hash as these will be replaced with new ones
    std::shared_ptr<signature_item> signature = new_block.get_item<signature_item>();
    if (signature != nullptr) {
        new_block.items.erase(std::remove(new_block.items.begin(), new_block.items.end(), signature), new_block.items.end());
    }
    std::shared_ptr<hash_value_item> hash_value = new_block.get_item<hash_value_item>();
    if (hash_value != nullptr) {
        new_block.items.erase(std::remove(new_block.items.begin(), new_block.items.end(), hash_value), new_block.items.end());
    }
    std::shared_ptr<hash_def_item> hash_def = new_block.get_item<hash_def_item>();
    if (hash_def != nullptr) {
        new_block.items.erase(std::remove(new_block.items.begin(), new_block.items.end(), hash_def), new_block.items.end());
    }

    return new_block;
}


// Checksum stuff
uint32_t poly8_lookup[256] =
{
 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA,
 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988,
 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE,
 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,
 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172,
 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940,
 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116,
 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A,
 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818,
 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C,
 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2,
 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0,
 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086,
 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4,
 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A,
 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8,
 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE,
 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252,
 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60,
 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04,
 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A,
 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38,
 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E,
 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C,
 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2,
 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0,
 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6,
 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
};

uint32_t crc32_byte(const uint8_t *p, uint32_t bytelength)
{
	uint32_t crc = 0xffffffff;
	while (bytelength-- !=0) crc = poly8_lookup[((uint8_t) crc ^ *(p++))] ^ (crc >> 8);
	return crc;
}

uint8_t rev_8(uint8_t b) {
    b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
    b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
    b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
    return b;
}

uint32_t rev_32(uint32_t b) {
    uint8_t b0 = rev_8(b >> 24);
    uint8_t b1 = rev_8(b >> 16);
    uint8_t b2 = rev_8(b >> 8);
    uint8_t b3 = rev_8(b);
    return (b3 << 24) | (b2 << 16) | (b1 << 8) | b0;
}

void crc32(const uint8_t *data, size_t len, uint32_t* cs_out) {
    uint8_t rev_data[252] = {};
    for (size_t i=0; i < sizeof(rev_data); i++) {
        rev_data[i] = rev_8(data[i]);
    }

    uint32_t crc = crc32_byte(rev_data, sizeof(rev_data));

    crc = rev_32(crc);

    *cs_out = crc;
}

uint32_t calc_checksum(std::vector<uint8_t> bin) {
    assert(bin.size() == 252);

    uint32_t checksum = 0;
    crc32(bin.data(), bin.size(), &checksum);

    return checksum;
}


#if HAS_MBEDTLS
void hash_andor_sign_block(block *new_block, const public_t public_key, const private_t private_key, bool hash_value, bool sign, std::vector<uint8_t> to_hash) {
    if (!(hash_value || sign)) {
        // Don't need to add anything if not actually hashing or signing
        return;
    }

    std::shared_ptr<hash_def_item> hash_def = std::make_shared<hash_def_item>(PICOBIN_HASH_SHA256);
    new_block->items.push_back(hash_def);

    // hash everything up to an including the hash def (todo really we shuold use the value from the hashdef when
    // we're all done)
    auto tmp_words = new_block->to_words();
    DEBUG_LOG("hash 0 + %08x\n", (int)(tmp_words.size()-3)*4);
    if (new_block->items[0]->type() == PICOBIN_BLOCK_ITEM_1BS_IMAGE_TYPE) {
        if (((image_type_item *)new_block->items[0].get())->flags & 0x8000) {
            DEBUG_LOG("CLEARING TBYB FLAG\n");
            assert(tmp_words[1] & 0x80000000);
            tmp_words[1] &= ~0x80000000;
        }
    }
    auto block_hashed_contents = words_to_lsb_bytes(tmp_words.begin(), tmp_words.end() - 3); // remove stuff at end
    std::copy(block_hashed_contents.begin(), block_hashed_contents.end(), std::back_inserter(to_hash));

    message_digest_t sha256;
    sha256_buffer(to_hash.data(), to_hash.size(), &sha256);
    dumper("SHA256", sha256);

    if (sign) {
        // dumper("PRIVATE KEY", private_key);
        dumper("PUBLIC KEY", public_key);

        uint8_t entropy[32];
        std::random_device rand{};
        assert(rand.max() - rand.min() >= 256);
        for(auto &e : entropy) {
            e = rand();
        }

        signature_t sig;
        sign_sha256(entropy, sizeof(entropy), &sha256, &public_key, &private_key, &sig);
        dumper("SIG", sig);

        uint32_t err = verify_signature_secp256k1(&sig, &public_key, &sha256);
        if (err) {
            fail(ERROR_VERIFICATION_FAILED, "Signature verification failed");
        }

        std::shared_ptr<signature_item> signature = std::make_shared<signature_item>(PICOBIN_SIGNATURE_SECP256K1);
        signature->public_key_bytes = std::vector<uint8_t>(public_key.bytes, public_key.bytes + sizeof(public_key.bytes));
        signature->signature_bytes = std::vector<uint8_t>(sig.bytes, sig.bytes + sizeof(sig.bytes));
        new_block->items.push_back(signature);
    }

    if (hash_value) {
        std::shared_ptr<hash_value_item> hash = std::make_shared<hash_value_item>();
        hash->hash_bytes = std::vector<uint8_t>(sha256.bytes, sha256.bytes + sizeof(sha256.bytes));
        new_block->items.push_back(hash);
    }
}


std::vector<uint8_t> get_lm_hash_data(elf_file *elf, block *new_block, bool clear_sram = false) {
    std::vector<uint8_t> to_hash;
    std::shared_ptr<load_map_item> load_map = new_block->get_item<load_map_item>();
    if (load_map == nullptr) {
        std::vector<load_map_item::entry> entries;
        if (clear_sram) {
            // todo tidy up this way of hashing the uint32_t
            std::vector<uint32_t> sram_size_vec = {SRAM_END_RP2350 - SRAM_START};
            entries.push_back({
                0x0,
                SRAM_START,
                sram_size_vec[0]
            });
            auto sram_size_data = words_to_lsb_bytes(sram_size_vec.begin(), sram_size_vec.end());
            std::copy(sram_size_data.begin(), sram_size_data.end(), std::back_inserter(to_hash));
            DEBUG_LOG("CLEAR %08x + %08x\n", (int)SRAM_START, (int)sram_size_vec[0]);
        }
        for(const auto &seg : sorted_segs(elf)) {
            if (!seg->is_load()) continue;
            const auto data = elf->content(*seg);
            // std::cout << "virt = " << std::hex << seg->virtual_address() << " + " << std::hex << seg->virtual_size() << ", phys = " << std::hex << seg->physical_address() << " + " << std::hex << seg->physical_size() << std::endl;
            if (data.size() != seg->physical_size()) {
                fail(ERROR_INCOMPATIBLE, "Elf segment physical size (%" PRIx32 ") does not match data size in file (%zx)", seg->physical_size(), data.size());
            }
            if (seg->physical_size()) {
                std::copy(data.begin(), data.end(), std::back_inserter(to_hash));
                DEBUG_LOG("HASH %08x + %08x\n", (int)seg->physical_address(), (int)seg->physical_size());
                entries.push_back(
                    {
                        (uint32_t)seg->physical_address(),
                        (uint32_t)seg->virtual_address(),
                        (uint32_t)seg->physical_size()
                    });
            }
        }

        load_map = std::make_shared<load_map_item>(false, entries);
        new_block->items.push_back(load_map);
    } else {
        DEBUG_LOG("Already has load map, so hashing that\n");
        // todo hash existing load map
        for(const auto &entry : load_map->entries) {
            std::vector<uint8_t> data;
            uint32_t current_storage_address = entry.storage_address;
            if (current_storage_address == 0) {
                std::copy(
                    (uint8_t*)&entry.size,
                    (uint8_t*)&entry.size + sizeof(entry.size),
                    std::back_inserter(to_hash));
                DEBUG_LOG("CLEAR %08x + %08x\n", (int)entry.runtime_address, (int)entry.size);
            } else {
                while (data.size() < entry.size) {
                    auto seg = elf->segment_from_physical_address(current_storage_address);
                    if (seg == nullptr) {
                        fail(ERROR_NOT_POSSIBLE, "The ELF file does not contain the storage address %x", current_storage_address);
                    }
                    const auto new_data = elf->content(*seg);

                    uint32_t offset = current_storage_address - seg->physical_address();

                    std::copy(new_data.begin()+offset, new_data.end(), std::back_inserter(data));
                    current_storage_address += new_data.size();
                }
                data.resize(entry.size);
                std::copy(data.begin(), data.end(), std::back_inserter(to_hash));
                DEBUG_LOG("HASH %08x + %08x\n", (int)entry.storage_address, (int)data.size());
            }
        }
    }

    return to_hash;
}


std::vector<uint8_t> get_lm_hash_data(std::vector<uint8_t> bin, uint32_t storage_addr, uint32_t runtime_addr, block *new_block, get_more_bin_cb more_cb, bool clear_sram = false) {
    std::vector<uint8_t> to_hash;
    std::shared_ptr<load_map_item> load_map = new_block->get_item<load_map_item>();
    if (load_map == nullptr) {
        to_hash.insert(to_hash.begin(), bin.begin(), bin.end());
        std::vector<load_map_item::entry> entries;
        if (clear_sram) {
            // todo gate this clearing of SRAM
            std::vector<uint32_t> sram_size_vec = {0x00082000};
            assert(sram_size_vec[0] % 4 == 0);
            entries.push_back({
                0x0,
                0x20000000,
                sram_size_vec[0]
            });
            auto sram_size_data = words_to_lsb_bytes(sram_size_vec.begin(), sram_size_vec.end());
            to_hash.insert(to_hash.begin(), sram_size_data.begin(), sram_size_data.end());
        }
        DEBUG_LOG("HASH %08x + %08x\n", (int)storage_addr, (int)bin.size());
        entries.push_back(
            {
                (uint32_t)storage_addr,
                (uint32_t)runtime_addr,
                (uint32_t)bin.size()
            });

        load_map = std::make_shared<load_map_item>(false, entries);
        new_block->items.push_back(load_map);
    } else {
        DEBUG_LOG("Already has load map, so hashing that\n");
        // todo hash existing load map
        uint32_t current_bin_start = storage_addr;
        for(const auto &entry : load_map->entries) {
            if (entry.storage_address == 0) {
                std::copy(
                    (uint8_t*)&entry.size,
                    (uint8_t*)&entry.size + sizeof(entry.size),
                    std::back_inserter(to_hash));
                DEBUG_LOG("CLEAR %08x + %08x\n", (int)entry.runtime_address, (int)entry.size);
            } else {
                if (entry.storage_address + entry.size > current_bin_start + bin.size()) {
                    if (more_cb == nullptr) {
                        fail(ERROR_NOT_POSSIBLE, "BIN does not contain data for load_map entry %08x->%08x", entry.storage_address, entry.storage_address + entry.size);
                    }
                    DEBUG_LOG("Reading into bin %08x+%x\n", entry.storage_address, entry.size);
                    more_cb(bin, entry.storage_address, entry.size);
                    current_bin_start = entry.storage_address;
                }
                uint32_t rel_addr = entry.storage_address - current_bin_start;
                std::copy(
                    bin.begin() + rel_addr,
                    bin.begin() + rel_addr + entry.size,
                    std::back_inserter(to_hash));
                DEBUG_LOG("HASH %08x + %08x\n", (int)entry.storage_address, (int)entry.size);
            }
        }
    }

    return to_hash;
}


int hash_andor_sign(elf_file *elf, block *new_block, const public_t public_key, const private_t private_key, bool hash_value, bool sign, bool clear_sram) {
    std::vector<uint8_t> to_hash = get_lm_hash_data(elf, new_block, clear_sram);

    hash_andor_sign_block(new_block, public_key, private_key, hash_value, sign, to_hash);
    
    auto tmp = new_block->to_words();
    std::vector<uint8_t> data = words_to_lsb_bytes(tmp.begin(), tmp.end());

    // If multiple signature segments, need different names
    std::string sigx = ".sigx";
    if (elf->get_section(sigx) != NULL) {
        sigx += '0';
    }
    while (elf->get_section(sigx) != NULL) {
        sigx[5] += 1;
        if (sigx[5] > '9') fail(ERROR_INCOMPATIBLE, "Only compatible with up to 10 sigx blocks"); // very unlikely anyone has more than 10 sigx blocks - that would be silly
    }
    elf->append_segment(new_block->physical_addr, new_block->physical_addr, data.size(), sigx);
    auto sig_section = elf->get_section(sigx);
    assert(sig_section);
    assert(sig_section->virtual_address() == new_block->physical_addr);

    if (sig_section->size < data.size()) {
        fail(ERROR_UNKNOWN, "Block is too big for elf section\n");
    }
    while (data.size() < sig_section->size) {
        data.push_back(0);
    }

    elf->content(*sig_section, data);

    return 0;
}


std::vector<uint8_t> hash_andor_sign(std::vector<uint8_t> bin, uint32_t storage_addr, uint32_t runtime_addr, block *new_block, const public_t public_key, const private_t private_key, bool hash_value, bool sign, bool clear_sram) {
    std::vector<uint8_t> to_hash = get_lm_hash_data(bin, storage_addr, runtime_addr, new_block, nullptr, clear_sram);

    hash_andor_sign_block(new_block, public_key, private_key, hash_value, sign, to_hash);

    auto tmp = new_block->to_words();
    std::vector<uint8_t> data = words_to_lsb_bytes(tmp.begin(), tmp.end());

    bin.insert(bin.end(), data.begin(), data.end());

    return bin;
}


void verify_block(std::vector<uint8_t> bin, uint32_t storage_addr, uint32_t runtime_addr, block *block, verified_t &hash_verified, verified_t &sig_verified, get_more_bin_cb more_cb) {
    std::shared_ptr<load_map_item> load_map = block->get_item<load_map_item>();
    std::shared_ptr<hash_def_item> hash_def = block->get_item<hash_def_item>();
    hash_verified = none;
    sig_verified = none;
    if (load_map == nullptr || hash_def == nullptr) {
        return;
    }
    std::vector<uint8_t> to_hash = get_lm_hash_data(bin, storage_addr, runtime_addr, block, more_cb, false);

    // auto it = std::find(block->items.begin(), block->items.end(), hash_def);
    // assert (it != block->items.end());
    // int index = it - block->items.begin();

    // hash everything specified in the hash def
    auto tmp_words = block->to_words();
    tmp_words.resize(hash_def->block_words_to_hash);
    DEBUG_LOG("hash 0 + %08x\n", (int)(tmp_words.size())*4);
    if (block->items[0]->type() == PICOBIN_BLOCK_ITEM_1BS_IMAGE_TYPE) {
        if (((image_type_item *)block->items[0].get())->flags & 0x8000) {
            DEBUG_LOG("CLEARING TBYB FLAG\n");
            assert(tmp_words[1] & 0x80000000);
            tmp_words[1] &= ~0x80000000;
        }
    }
    auto block_hashed_contents = words_to_lsb_bytes(tmp_words.begin(), tmp_words.end());
    std::copy(block_hashed_contents.begin(), block_hashed_contents.end(), std::back_inserter(to_hash));

    message_digest_t sha256;
    message_digest_t block_sha256;
    sha256_buffer(to_hash.data(), to_hash.size(), &sha256);
    dumper("SHA256", sha256);

    std::shared_ptr<hash_value_item> hash_value = block->get_item<hash_value_item>();
    if (hash_value != nullptr) {
        memcpy(block_sha256.bytes, hash_value->hash_bytes.data(), hash_value->hash_bytes.size());
        if (std::equal(hash_value->hash_bytes.begin(), hash_value->hash_bytes.end(), sha256.bytes)) {
            DEBUG_LOG("It's a match!\n");
            hash_verified = passed;
        } else {
            hash_verified = failed;
        }
    }

    std::shared_ptr<signature_item> signature = block->get_item<signature_item>();
    if (signature != nullptr) {
        public_t public_key = {};
        memcpy(public_key.bytes, signature->public_key_bytes.data(), signature->public_key_bytes.size());
        dumper("PUBLIC KEY", public_key);

        signature_t sig {
            .bytes = {},
            .der = {},
            .der_len = 0,
        };
        memcpy(sig.bytes, signature->signature_bytes.data(), signature->signature_bytes.size());
        dumper("SIG", sig);

        uint32_t err = verify_signature_secp256k1(&sig, &public_key, &sha256);
        if (err) {
            sig_verified = failed;
        } else {
            DEBUG_LOG("It's a match!\n");
            sig_verified = passed;
        }
    }
}


void encrypt_guts(elf_file *elf, block *new_block, const aes_key_t aes_key, std::vector<uint8_t> &iv_data, std::vector<uint8_t> &enc_data) {
    std::vector<uint8_t> to_enc = get_lm_hash_data(elf, new_block);

    std::random_device rand{};
    assert(rand.max() - rand.min() >= 256);

    while (to_enc.size() % 16 != 0){
        to_enc.push_back(rand()); // todo maybe better padding? random should be fine though
    }
    DEBUG_LOG("size %08x\n", (int)to_enc.size());

    iv_t iv;
    for(auto &e : iv.bytes) {
        e = rand();
    }

    iv_data.resize(sizeof(iv.bytes));
    memcpy(iv_data.data(), iv.bytes, sizeof(iv.bytes));

    enc_data.resize(to_enc.size());

    aes256_buffer(to_enc.data(), to_enc.size(), enc_data.data(), &aes_key, &iv);
}


int encrypt(elf_file *elf, block *new_block, const aes_key_t aes_key, const public_t public_key, const private_t private_key, std::vector<uint8_t> iv_salt, bool hash_value, bool sign) {

    std::vector<uint8_t> iv_data;
    std::vector<uint8_t> enc_data;
    encrypt_guts(elf, new_block, aes_key, iv_data, enc_data);

    // Salt IV
    assert(iv_data.size() == iv_salt.size());
    for (int i=0; i < iv_data.size(); i++) {
        iv_data[i] ^= iv_salt[i];
    }

    unsigned int i=0;
    for(const auto &seg : sorted_segs(elf)) {
        if (!seg->is_load()) continue;
        std::vector<uint8_t> data(enc_data.begin() + i, enc_data.begin() + i + seg->physical_size());
        // std::cout << "virt = " << std::hex << seg->virtual_address() << " + " << std::hex << seg->virtual_size() << ", phys = " << std::hex << seg->physical_address() << " + " << std::hex << seg->physical_size() << std::endl;
        if (data.size() != seg->physical_size()) {
            fail(ERROR_INCOMPATIBLE, "Elf segment physical size (%" PRIx32  ") does not match data size in file (%zx)", seg->physical_size(), data.size());
        }
        if (seg->physical_size() && seg->physical_address() < new_block->physical_addr) {
            DEBUG_LOG("ENCRYPTED %08x + %08x\n", (int)seg->physical_address(), (int)seg->physical_size());
            elf->content(*seg, data);
            i += data.size();
            assert(i <= enc_data.size());
        }
    }
    assert(i <= enc_data.size());
    if (i < enc_data.size()) {
        elf->append_segment(new_block->physical_addr, new_block->physical_addr, enc_data.size() - i, ".enc_pad");
        auto pad_section = elf->get_section(".enc_pad");
        assert(pad_section);
        assert(pad_section->virtual_address() == new_block->physical_addr);

        if (pad_section->size < enc_data.size() - i) {
            fail(ERROR_UNKNOWN, "Block is too big for elf section\n");
        }

        std::vector<uint8_t> pad_data(enc_data.begin() + i, enc_data.end());

        DEBUG_LOG("Adding padding len %d\n", (int)pad_data.size());
        for (auto x : pad_data) DEBUG_LOG("%02x", x);
        DEBUG_LOG("\n");

        elf->content(*pad_section, pad_data);
    }

    block link_block(0x20000000, enc_data.size());
    // ignored_item ign(1, {0});
    std::shared_ptr<image_type_item> image_def = new_block->get_item<image_type_item>();
    link_block.items.push_back(image_def);

    link_block.next_block_rel += (link_block.to_words().size())*4 + iv_data.size();

    auto tmp = link_block.to_words();
    DEBUG_LOG("Link block\n");
    for (auto x : tmp) DEBUG_LOG("%08x", x);
    DEBUG_LOG("\n");

    std::vector<uint8_t> link_data = words_to_lsb_bytes(tmp.begin(), tmp.end());

    elf->move_all(link_data.size() + iv_data.size());

    elf->append_segment(link_block.physical_addr, link_block.physical_addr, link_data.size(), ".enc_link");
    auto link_section = elf->get_section(".enc_link");
    assert(link_section);
    assert(link_section->virtual_address() == link_block.physical_addr);
    if (link_section->size < link_data.size()) {
        fail(ERROR_UNKNOWN, "Block is too big for elf section\n");
    }
    elf->content(*link_section, link_data);

    elf->append_segment(link_block.physical_addr + link_data.size(), link_block.physical_addr + link_data.size(), iv_data.size(), ".enc_iv");
    auto iv_section = elf->get_section(".enc_iv");
    assert(iv_section);
    if (iv_section->size < iv_data.size()) {
        fail(ERROR_UNKNOWN, "Block is too big for elf section\n");
    }
    elf->content(*iv_section, iv_data);

    new_block->physical_addr = link_block.physical_addr + link_block.next_block_rel;
    new_block->next_block_rel = -link_block.next_block_rel;

    std::shared_ptr<load_map_item> load_map = new_block->get_item<load_map_item>();
    if (load_map != nullptr) {
        new_block->items.erase(std::remove(new_block->items.begin(), new_block->items.end(), load_map), new_block->items.end());
    }

    hash_andor_sign(elf, new_block, public_key, private_key, hash_value, sign);

    return 0;
}


std::vector<uint8_t> encrypt(std::vector<uint8_t> bin, uint32_t storage_addr, uint32_t runtime_addr, block *new_block, const aes_key_t aes_key, const public_t public_key, const private_t private_key, std::vector<uint8_t> iv_salt, bool hash_value, bool sign) {
    std::random_device rand{};
    assert(rand.max() - rand.min() >= 256);

    while (bin.size() % 16 != 0){
        bin.push_back(rand()); // todo maybe better padding? random should be fine though
    }
    DEBUG_LOG("size %08x\n", (int)bin.size());

    iv_t iv;
    for(auto &e : iv.bytes) {
        e = rand();
    }

    std::vector<uint8_t> iv_data(iv.bytes, iv.bytes + sizeof(iv.bytes));

    // Salt IV
    assert(iv_data.size() == iv_salt.size());
    for (int i=0; i < iv_data.size(); i++) {
        iv_data[i] ^= iv_salt[i];
    }

    std::vector<uint8_t> enc_data;
    enc_data.resize(bin.size());

    aes256_buffer(bin.data(), bin.size(), enc_data.data(), &aes_key, &iv);
    std::copy(enc_data.begin(), enc_data.end(), bin.begin());

    block link_block(0x20000000, enc_data.size());
    // ignored_item ign(1, {0});
    std::shared_ptr<image_type_item> image_def = new_block->get_item<image_type_item>();
    link_block.items.push_back(image_def);

    link_block.next_block_rel += (link_block.to_words().size())*4 + iv_data.size();

    auto tmp = link_block.to_words();
    DEBUG_LOG("Link block\n");
    for (auto x : tmp) DEBUG_LOG("%08x", x);
    DEBUG_LOG("\n");

    std::vector<uint8_t> link_data = words_to_lsb_bytes(tmp.begin(), tmp.end());

    bin.insert(bin.begin(), link_data.begin(), link_data.end());

    bin.insert(bin.begin() + link_data.size(), iv_data.begin(), iv_data.end());

    new_block->physical_addr = link_block.physical_addr + link_block.next_block_rel;
    new_block->next_block_rel = -link_block.next_block_rel;

    std::shared_ptr<load_map_item> load_map = new_block->get_item<load_map_item>();
    if (load_map != nullptr) {
        new_block->items.erase(std::remove(new_block->items.begin(), new_block->items.end(), load_map), new_block->items.end());
    }

    return hash_andor_sign(bin, storage_addr, runtime_addr, new_block, public_key, private_key, hash_value, sign);;
}
#endif