1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
|
# coding=utf-8
#
# Copyright © 2011 Intel Corporation
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice (including the next
# paragraph) shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
# This source file defines a set of test vectors that can be used to
# test GLSL's built-in functions and operators. It is intended to be
# used by Python code that generates Piglit tests.
#
# The key export is the dictionary test_suite. It contains an entry
# for each possible overload of every pure built-in function and
# operator. By iterating through this dictionary you can find a set
# of test vectors for testing nearly every built-in GLSL function.
#
# The following functions are not included, since they are not pure,
# so they can't be tested using simple vectors:
# - dFdx()
# - dFdy()
# - fwidth()
# - ftransform()
# - Increment and decrement operators
#
# The following functions are not included, since they need to be
# tested in specialized ways:
# - modf(): not tested because it has an out parameter
# - isnan() and isinf(): not tested because special effort is required
# to create values that cause these functions to return true.
#
# Also not tested are array subscripting, field/method selection,
# swizzling, the function call operator, assignment, and the sequence
# operator.
from __future__ import print_function, division, absolute_import
import collections
import itertools
import functools
from six.moves import range
import numpy as np
# Floating point types used by Python and numpy
DOUBLE_TYPES = (float, np.float64, np.float32)
class GlslBuiltinType(object):
"""Class representing a GLSL built-in type."""
def __init__(self, name, base_type, num_cols, num_rows,
version_introduced):
self.__name = name
if base_type is not None:
self.__base_type = base_type
else:
self.__base_type = self
self.__num_cols = num_cols
self.__num_rows = num_rows
self.__version_introduced = version_introduced
@property
def name(self):
"""The name of the type, as a string."""
return self.__name
@property
def base_type(self):
"""For vectors and matrices, the type of data stored in each
element. For scalars, equal to self.
"""
return self.__base_type
@property
def num_cols(self):
"""For matrices, the number of columns. For vectors and
scalars, 1.
"""
return self.__num_cols
@property
def num_rows(self):
"""For vectors and matrices, the number of rows. For scalars,
1.
"""
return self.__num_rows
@property
def is_scalar(self):
return self.__num_cols == 1 and self.__num_rows == 1
@property
def is_vector(self):
return self.__num_cols == 1 and self.__num_rows != 1
@property
def is_matrix(self):
return self.__num_cols != 1
@property
def version_introduced(self):
"""The earliest version of GLSL that this type appears in (as
a string, e.g. 110).
"""
return self.__version_introduced
def __eq__(self, other):
if isinstance(other, GlslBuiltinType):
return self.name == other.name
return NotImplemented
def __lt__(self, other):
if isinstance(other, GlslBuiltinType):
return self.name < other.name
return NotImplemented
def __hash__(self):
"""Hash the object.
This hash isn't super awesome, but it isn't prone to change since you
have to muck with private (__prefixed values) and some unlikely text in
addition.
"""
return hash('__GLslBuiltinType_{}__'.format(self.name))
def __str__(self):
return self.__name
def __repr__(self):
return 'glsl_{0}'.format(self.__name)
# Concrete declarations of GlslBuiltinType
glsl_bool = GlslBuiltinType('bool', None, 1, 1, 110)
glsl_bvec2 = GlslBuiltinType('bvec2', glsl_bool, 1, 2, 110)
glsl_bvec3 = GlslBuiltinType('bvec3', glsl_bool, 1, 3, 110)
glsl_bvec4 = GlslBuiltinType('bvec4', glsl_bool, 1, 4, 110)
glsl_double = GlslBuiltinType('double', None, 1, 1, 400)
glsl_dvec2 = GlslBuiltinType('dvec2', glsl_double, 1, 2, 400)
glsl_dvec3 = GlslBuiltinType('dvec3', glsl_double, 1, 3, 400)
glsl_dvec4 = GlslBuiltinType('dvec4', glsl_double, 1, 4, 400)
glsl_dmat2 = GlslBuiltinType('dmat2', glsl_double, 2, 2, 400)
glsl_dmat3 = GlslBuiltinType('dmat3', glsl_double, 3, 3, 400)
glsl_dmat4 = GlslBuiltinType('dmat4', glsl_double, 4, 4, 400)
glsl_dmat2x2 = glsl_dmat2
glsl_dmat3x2 = GlslBuiltinType('dmat3x2', glsl_double, 3, 2, 400)
glsl_dmat4x2 = GlslBuiltinType('dmat4x2', glsl_double, 4, 2, 400)
glsl_dmat2x3 = GlslBuiltinType('dmat2x3', glsl_double, 2, 3, 400)
glsl_dmat3x3 = glsl_dmat3
glsl_dmat4x3 = GlslBuiltinType('dmat4x3', glsl_double, 4, 3, 400)
glsl_dmat2x4 = GlslBuiltinType('dmat2x4', glsl_double, 2, 4, 400)
glsl_dmat3x4 = GlslBuiltinType('dmat3x4', glsl_double, 3, 4, 400)
glsl_dmat4x4 = glsl_dmat4
# Named tuple representing the signature of a single overload of a
# built-in GLSL function or operator:
# - name is a name suitable for use in test filenames. For functions,
# this is the name of the function. For operators, it is a short
# description of the operator, beginning with "op", e.g. "op-plus".
# - template is a Python format string that can be used to construct
# GLSL code that invokes the function or operator.
# - version_introduced earliest version of GLSL the test applies to
# (as a string, e.g. 110).
# - rettype is the return type of the function or operator (as a
# GlslBuiltinType).
# - argtypes is a tuple containing the types of each parameter (as
# GlslBuiltinTypes).
#
# For example, the function
#
# vec3 step(float edge, vec3 x)
#
# has a signature of
#
# Signature(name='step', template='step({0}, {1})',
# version_introduced=110, rettype='vec3',
# argtypes=('float', 'vec3'))
Signature = collections.namedtuple(
'Signature',
('name', 'template', 'version_introduced', 'extension', 'rettype', 'argtypes'))
# Named tuple representing a single piece of test data for testing a
# built-in GLSL function:
# - arguments is a tuple containing the arguments to apply to the
# function. Each argument is of a type native to numpy (e.g.
# numpy.float32 or numpy.ndarray)
# - result is the value the function is expected to return. It is
# also of a type native to numpy.
# - tolerance is a float64 representing how much deviation from the
# result we expect, considering the floating point precision
# requirements of GLSL and OpenGL. The value may be zero for test
# vectors involving booleans and integers. If result is a vector or
# matrix, tolerance should be interpreted as the maximum permissible
# RMS error (as would be computed by the distance() function).
TestVector = collections.namedtuple(
'TestVector', ('arguments', 'result', 'tolerance'))
def glsl_type_of(value):
"""Return the GLSL type corresponding to the given native numpy
value, as a GlslBuiltinType.
"""
if isinstance(value, DOUBLE_TYPES):
return glsl_double
elif isinstance(value, (bool, np.bool_)):
return glsl_bool
else:
if len(value.shape) == 1:
# Vector
vector_length = value.shape[0]
assert 2 <= vector_length <= 4
if value.dtype in DOUBLE_TYPES:
return (glsl_dvec2, glsl_dvec3, glsl_dvec4)[vector_length - 2]
elif value.dtype == bool:
return (glsl_bvec2, glsl_bvec3, glsl_bvec4)[vector_length - 2]
else:
raise Exception(
'Unexpected vector base type {0}'.format(value.dtype))
else:
# Matrix
assert value.dtype in DOUBLE_TYPES
assert len(value.shape) == 2
matrix_rows = value.shape[0]
assert 2 <= matrix_rows <= 4
matrix_columns = value.shape[1]
assert 2 <= matrix_columns <= 4
matrix_types = ((glsl_dmat2x2, glsl_dmat2x3, glsl_dmat2x4),
(glsl_dmat3x2, glsl_dmat3x3, glsl_dmat3x4),
(glsl_dmat4x2, glsl_dmat4x3, glsl_dmat4x4))
return matrix_types[matrix_columns - 2][matrix_rows - 2]
def column_major_values(value):
"""Given a native numpy value, return a list of the scalar values
comprising it, in column-major order."""
if isinstance(value, np.ndarray):
return list(np.reshape(value, -1, 'F'))
else:
return [value]
def glsl_constant(value):
"""Given a native numpy value, return GLSL code that constructs
it."""
column_major = np.reshape(np.array(value), -1, 'F')
if column_major.dtype == bool:
values = ['true' if x else 'false' for x in column_major]
else:
values = ['{0}lf'.format(repr(x)) for x in column_major]
if len(column_major) == 1:
return values[0]
else:
return '{0}({1})'.format(glsl_type_of(value), ', '.join(values))
# Dictionary containing the test vectors. Each entry in the
# dictionary represents a single overload of a single built-in
# function. Its key is a Signature tuple, and its value is a list of
# TestVector tuples.
#
# Note: the dictionary is initialized to {} here, but it is filled
# with test vectors by code later in this file.
test_suite = {}
# Implementation
# ==============
#
# The functions below shouldn't be necessary to call from outside this
# file. They exist solely to populate test_suite with test vectors.
# Functions that simulate GLSL built-in functions (in the cases where
# the GLSL built-in functions have no python or numpy equivalent, or
# in cases where there is a behavioral difference). These functions
# return None if the behavior of the GLSL built-in is undefined for
# the given set of inputs.
def _multiply(x, y):
x_type = glsl_type_of(x)
y_type = glsl_type_of(y)
if x_type.is_vector and y_type.is_vector:
# vector * vector is done componentwise.
return x * y
else:
# All other cases are standard linear algebraic
# multiplication, which numpy calls "dot".
return np.dot(x, y)
def _divide(x, y):
if any(y_element == 0 for y_element in column_major_values(y)):
# Division by zero is undefined.
return None
return x / y
def _modulus(x, y):
if any(x_element < 0 for x_element in column_major_values(x)):
# Modulus operation with a negative first operand is
# undefined.
return None
if any(y_element <= 0 for y_element in column_major_values(y)):
# Modulus operation with a negative or zero second operand is
# undefined.
return None
return x % y
def _lshift(x, y):
if not all(0 <= y_element < 32 for y_element in column_major_values(y)):
# Shifts by less than 0 or more than the number of bits in the
# type being shifted are undefined.
return None
# When the arguments to << don't have the same signedness, numpy
# likes to promote them to int64. To avoid this, convert y to be
# the same type as x.
y_orig = y
result = x << y
# Shifting should always produce a result with the same base type
# as the left argument.
assert glsl_type_of(result).base_type == glsl_type_of(x).base_type
return result
def _rshift(x, y):
if not all(0 <= y_element < 32 for y_element in column_major_values(y)):
# Shifts by less than 0 or more than the number of bits in the
# type being shifted are undefined.
return None
# When the arguments to >> don't have the same signedness, numpy
# likes to promote them to int64. To avoid this, convert y to be
# the same type as x.
y_orig = y
result = x >> y
# Shifting should always produce a result with the same base type
# as the left argument.
assert glsl_type_of(result).base_type == glsl_type_of(x).base_type
return result
def _equal(x, y):
return all(column_major_values(x == y))
def _not_equal(x, y):
return not _equal(x, y)
def _arctan2(y, x):
if x == y == 0.0:
return None
return np.arctan2(y, x)
def _pow(x, y):
if x < 0.0:
return None
if x == 0.0 and y <= 0.0:
return None
return np.power(x, y)
def _exp2(x):
# exp2() is not available in versions of numpy < 1.3.0 so we
# emulate it with power().
return np.power(2, x)
def _trunc(x):
# trunc() rounds toward zero. It is not available in version
# 1.2.1 of numpy so we emulate it with floor(), sign(), and abs().
return np.sign(x) * np.floor(np.abs(x))
def _clamp(x, minVal, maxVal):
if minVal > maxVal:
return None
return min(max(x, minVal), maxVal)
# Inefficient, but obvious
def _mid3(x, y, z):
return np.sort([x, y, z])[1]
def _smoothstep(edge0, edge1, x):
if edge0 >= edge1:
return None
t = _clamp((x-edge0)/(edge1-edge0), 0.0, 1.0)
return t*t*(3.0-2.0*t)
def _normalize(x):
return x/np.linalg.norm(x)
def _faceforward(N, I, Nref):
if np.dot(Nref, I) < 0.0:
return N
else:
return -N
def _reflect(I, N):
return I-2*np.dot(N, I)*N
def _refract(I, N, eta):
k = 1.0-eta*eta*(1.0-np.dot(N, I)*np.dot(N, I))
if k < 0.0:
return I*0.0
else:
return eta*I-(eta*np.dot(N, I)+np.sqrt(k))*N
def _argument_types_match(arguments, argument_indices_to_match):
"""Return True if all of the arguments indexed by
argument_indices_to_match have the same GLSL type.
"""
types = [glsl_type_of(arguments[i]) for i in argument_indices_to_match]
return all(x == types[0] for x in types)
def _strict_tolerance(arguments, result):
"""Compute tolerance using a strict interpretation of the GLSL and
OpenGL standards.
From the GLSL 1.20 spec (4.1.4 "Floats"):
"As an input value to one of the processing units, a
floating-point variable is expected to match the IEEE single
precision floating-point definition for precision and dynamic
range. It is not required that the precision of internal
processing match the IEEE floating-point specification for
floating-point operations, but the guidelines for precision
established by the OpenGL 1.4 specification must be met."
From the OpenGL 1.4 spec (2.1.1 "Floating-Point Computation"):
"We require simply that numbers' floating-point parts contain
enough bits ... so that individual results of floating-point
operations are accurate to about 1 part in 10^5."
A harsh interpretation of the above is that (a) no precision is
lost in moving numbers into or out of the GPU, and (b) any
built-in function constitutes a single operation, so therefore the
error in applying any built-in function should be off by no more
than 1e-5 times its theoretically correct value.
This is not the only possible interpretation, however. Certain
built-in functions, such as the cross product, are computed by a
formula consisting of many elementary multiplications and
additions, in which a large amount of cancellation sometimes
occurs. It's possible that these rules are meant to apply to
those elementary multiplications and additions, and not the full
built-in function. Other built-in functions, such as the trig
functions, are typically implemented by a series approximation, in
which 1 part in 10^5 accuracy seems like overkill. See below for
the tolerance computation we use on these other functions.
"""
return 1e-5 * np.linalg.norm(result)
def _trig_tolerance(arguments, result):
"""Compute a more lenient tolerance bound for trig functions.
The GLSL and OpenGL specs don't provide any guidance as to the
required accuracy of trig functions (other than the "1 part in
10^5" general accuracy requirement, which seems like overkill for
trig functions.
So the tolerance here is rather arbitrarily chosen to be either 1
part in 10^3 or 10^-4, whichever is larger.
"""
return max(1e-4, 1e-3 * np.linalg.norm(result))
def _cross_product_tolerance(arguments, result):
"""Compute a more lenient tolerance bound for cross product.
Since the computation of a cross product may involve a large
amount of cancellation, an error tolerance of 1 part in 10^5
(referred to the magnitude of the result vector) is overly tight.
So instead we allow the error to be 1 part in 10^5 referred to the
product of the magnitudes of the arguments.
"""
assert len(arguments) == 2
return 1e-5 * np.linalg.norm(arguments[0]) * np.linalg.norm(arguments[1])
def _simulate_function(test_inputs, python_equivalent, tolerance_function):
"""Construct test vectors by simulating a GLSL function on a list
of possible inputs, and return a list of test vectors.
test_inputs is a list of possible input sequences, each of which
represents a set of arguments that should be applied to the
function.
python_equivalent is the function to simulate--it should return
None if the GLSL function returns undefined results for the given
set of inputs, otherwise it should return the expected result.
Input sequences for which python_equivalent returns None are
ignored.
tolerance_function is the function to call to compute the
tolerance. It should take the set of arguments and the expected
result as its parameters. It is only used for functions that
return floating point values.
"""
test_vectors = []
for inputs in test_inputs:
expected_output = python_equivalent(*inputs)
if expected_output is not None:
tolerance = tolerance_function(inputs, expected_output)
test_vectors.append(TestVector(inputs, expected_output, tolerance))
return test_vectors
def _vectorize_test_vectors(test_vectors, scalar_arg_indices, vector_length):
"""Build a new set of test vectors by combining elements of
test_vectors into vectors of length vector_length. For example,
vectorizing the test vectors
[TestVector((10, 20), 30, tolerance), TestVector((11, 20), 31, tolerance)]
into vectors of length 2 would produce the result:
[TestVector((vec2(10, 11), vec2(20, 20)), vec2(30, 31), new_tolerance)].
Tolerances are combined in root-sum-square fashion.
scalar_arg_indices is a sequence of argument indices which should
not be vectorized. So, if scalar_arg_indices is [1] in the above
example, the result would be:
[TestVector((vec2(10, 11), 20), vec2(30, 31), new_tolerance)].
"""
def make_groups(test_vectors):
"""Group test vectors according to the values passed to the
arguments that should not be vectorized.
"""
groups = {}
for tv in test_vectors:
key = tuple(tv.arguments[i] for i in scalar_arg_indices)
if key not in groups:
groups[key] = []
groups[key].append(tv)
return groups
def partition_vectors(test_vectors, partition_size):
"""Partition test_vectors into lists of length partition_size.
If partition_size does not evenly divide the number of test
vectors, wrap around as necessary to ensure that every input
test vector is included.
"""
for i in range(0, len(test_vectors), partition_size):
partition = []
for j in range(partition_size):
partition.append(test_vectors[(i + j) % len(test_vectors)])
yield partition
def merge_vectors(test_vectors):
"""Merge the given set of test vectors (whose arguments and
result are scalars) into a single test vector whose arguments
and result are vectors. For argument indices in
scalar_arg_indices, leave the argument as a scalar.
"""
arity = len(test_vectors[0].arguments)
arguments = []
for j in range(arity):
if j in scalar_arg_indices:
arguments.append(test_vectors[0].arguments[j])
else:
arguments.append(
np.array([tv.arguments[j] for tv in test_vectors]))
result = np.array([tv.result for tv in test_vectors])
tolerance = np.linalg.norm([tv.tolerance for tv in test_vectors])
return TestVector(arguments, result, tolerance)
vectorized_test_vectors = []
groups = make_groups(test_vectors)
for key in sorted(groups.keys()):
test_vectors = groups[key]
vectorized_test_vectors.extend(
merge_vectors(partition)
for partition in partition_vectors(test_vectors, vector_length))
return vectorized_test_vectors
def _store_test_vector(test_suite_dict, name, glsl_version, extension, test_vector,
template=None):
"""Store a test vector in the appropriate place in
test_suite_dict. The dictionary key (which is a Signature tuple)
is generated by consulting the argument and return types of the
test vector, and combining them with name and glsl_version.
glsl_version is adjusted if necessary to reflect when the argument
and return types were introduced into GLSL.
If template is supplied, it is used insted as the template for the
Signature objects generated.
"""
if template is None:
arg_indices = range(len(test_vector.arguments))
template = '{0}({1})'.format(
name, ', '.join('{{{0}}}'.format(i) for i in arg_indices))
rettype = glsl_type_of(test_vector.result)
argtypes = tuple(glsl_type_of(arg) for arg in test_vector.arguments)
adjusted_glsl_version = glsl_version
signature = Signature(
name, template, adjusted_glsl_version, extension, rettype, argtypes)
if signature not in test_suite_dict:
test_suite_dict[signature] = []
test_suite_dict[signature].append(test_vector)
def _store_test_vectors(test_suite_dict, name, glsl_version, extension,
test_vectors, template=None):
"""Store multiple test vectors in the appropriate places in
test_suite_dict.
If template is supplied, it is used insted as the template for the
Signature objects generated.
"""
for test_vector in test_vectors:
_store_test_vector(test_suite_dict, name, glsl_version, extension,
test_vector, template=template)
def make_arguments(input_generators):
"""Construct a list of tuples of input arguments to test.
input_generators is a list, the ith element of which is a sequence
of values that are suitable for use as the ith argument of the
function under test.
Output is a list, each element of which is a tuple of arguments to
be passed to the function under test. These values are produced
by taking the cartesian product of the input sequences.
"""
return list(itertools.product(*input_generators))
def _make_componentwise_test_vectors(test_suite_dict):
"""Add test vectors to test_suite_dict for GLSL built-in
functions that operate on vectors in componentwise fashion.
Examples include sin(), cos(), min(), max(), and clamp().
"""
# Make sure atan(x) and atan(x,y) don't misbehave for very large
# or very small input values.
atan_inputs = [0.0]
for exponent in (-10, -1, 0, 1, 10):
atan_inputs.append(pow(10.0, exponent))
atan_inputs.append(-pow(10.0, exponent))
# Make a similar set of inputs for acosh(), except don't use any
# values < 1, since acosh() is only defined for x >= 1.
acosh_inputs = [1.0 + x for x in atan_inputs if x >= 0]
ints = [np.int32(x) for x in [-5, -2, -1, 0, 1, 2, 5]]
uints = [np.uint32(x) for x in [0, 1, 2, 5, 34]]
bools = [True, False]
def f(name, arity, python_equivalent,
alternate_scalar_arg_indices, test_inputs,
tolerance_function=_strict_tolerance):
"""Create test vectors for the function with the given name
and arity, which was introduced in the given glsl_version.
python_equivalent is a Python function which operates on scalars,
and simulates the GLSL function. This function should return None
in any case where the output of the GLSL function is undefined.
If alternate_scalar_arg_indices is not None, also create test
vectors for an alternate vectorized version of the function,
in which some arguments are scalars.
alternate_scalar_arg_indices is a sequence of the indices of
the arguments which are scalars.
test_inputs is a list, the ith element of which is a list of
values that are suitable for use as the ith argument of the
function.
If tolerance_function is supplied, it is a function which
should be used to compute the tolerance for the test vectors.
Otherwise, _strict_tolerance is used.
"""
scalar_test_vectors = _simulate_function(
make_arguments(test_inputs), python_equivalent, tolerance_function)
_store_test_vectors(
test_suite_dict, name, 400, None, scalar_test_vectors)
_store_test_vectors(
test_suite_dict, name, 150, "ARB_gpu_shader_fp64", scalar_test_vectors)
if alternate_scalar_arg_indices is None:
scalar_arg_indices_list = [()]
else:
scalar_arg_indices_list = [(), alternate_scalar_arg_indices]
for scalar_arg_indices in scalar_arg_indices_list:
for vector_length in (2, 3, 4):
_store_test_vectors(
test_suite_dict, name, 400, None,
_vectorize_test_vectors(
scalar_test_vectors, scalar_arg_indices,
vector_length))
_store_test_vectors(
test_suite_dict, name, 150, "ARB_gpu_shader_fp64",
_vectorize_test_vectors(
scalar_test_vectors, scalar_arg_indices,
vector_length))
f('sqrt', 1, np.sqrt, None, [np.linspace(0.0, 2.0, 4)])
f('inversesqrt', 1, lambda x: 1.0/np.sqrt(x), None,
[np.linspace(0.1, 2.0, 4)])
f('abs', 1, np.abs, None, [np.linspace(-1.5, 1.5, 5)])
f('sign', 1, np.sign, None, [np.linspace(-1.5, 1.5, 5)])
f('floor', 1, np.floor, None, [np.linspace(-2.0, 2.0, 4)])
# Note: with trunc we want to test values in which the floating
# point exponent is < 0, > 52 or in the middle. Hence, we append
# some numbers to cover all possible scenarios. In addition, we
# want to check bitsize barriers (> 32, > 64, etc.) in case the
# conversion is done with a cast to and from another int based
# type.
f('trunc', 1, _trunc, None,
[np.append(np.linspace(-2.0, 2.0, 8),
[0.0, 45027112.98414, -45027112.98414,
19584198736.47329, -19584198736.47329,
7.51654162319e17, -7.51654162319e17,
4.502711234095857e19, -4.5027112340958570e19,
8.654196813385455e39, -8.6541968133854550e39,
6.54965168513655e83, -6.54965168513655e83])])
# Note: the direction of rounding used by round() is not specified
# for half-integer values, so we test it over a range that doesn't
# include exact half-integer values. roundEven() is required to
# round half-integer values to the nearest even integer, so we
# test it over a range that does include exact half-integer
# values. In both cases, we can use numpy's round() function,
# because it rounds half-integer values to even, and all other
# values to nearest.
f('round', 1, np.round, None, [np.linspace(-2.0, 2.0, 8)])
f('roundEven', 1, np.round, None, [np.linspace(-2.0, 2.0, 25)])
f('ceil', 1, np.ceil, None, [np.linspace(-2.0, 2.0, 4)])
f('fract', 1, lambda x: x-np.floor(x), None,
[np.linspace(-2.0, 2.0, 4)])
f('mod', 2, lambda x, y: x-y*np.floor(x/y), [1],
[np.linspace(-1.9, 1.9, 4), np.linspace(-2.0, 2.0, 4)])
f('min', 2, min, [1],
[np.linspace(-2.0, 2.0, 4), np.linspace(-2.0, 2.0, 4)])
f('max', 2, max, [1],
[np.linspace(-2.0, 2.0, 4), np.linspace(-2.0, 2.0, 4)])
f('clamp', 3, _clamp, [1, 2], [np.linspace(-2.0, 2.0, 4),
np.linspace(-1.5, 1.5, 3), np.linspace(-1.5, 1.5, 3)])
f('mix', 3, lambda x, y, a: x*(1-a)+y*a, [2],
[np.linspace(-2.0, 2.0, 2), np.linspace(-3.0, 3.0, 2),
np.linspace(0.0, 1.0, 4)])
f('mix', 3, lambda x, y, a: y if a else x, None,
[np.linspace(-2.0, 2.0, 2), np.linspace(-3.0, 3.0, 2), bools])
f('step', 2, lambda edge, x: 0.0 if x < edge else 1.0, [0],
[np.linspace(-2.0, 2.0, 4), np.linspace(-2.0, 2.0, 4)])
f('smoothstep', 3, _smoothstep, [0, 1],
[np.linspace(-1.9, 1.9, 4), np.linspace(-1.9, 1.9, 4),
np.linspace(-2.0, 2.0, 4)])
_make_componentwise_test_vectors(test_suite)
def _make_vector_relational_test_vectors(test_suite_dict):
"""Add test vectors to test_suite_dict for GLSL built-in functions
that operate on vectors of floats, ints, or bools, but not on
single floats, ints, or bools. Examples include lessThan(),
equal(), and not().
"""
_default_inputs = {
'v': np.linspace(-1.5, 1.5, 4),
'b': np.array([False, True])
}
def f(name, arity, python_equivalent, arg_types,
tolerance_function=_strict_tolerance,
extension=None):
"""Make test vectors for the function with the given name and
arity, which was introduced in the given glsl_version.
python_equivalent is a Python function which operates on scalars,
and simulates the GLSL function.
arg_types is a string containing 'v' if the function supports
standard "vec" inputs, 'i' if it supports "ivec" inputs, and 'b'
if it supports "bvec" inputs. The output type of the function is
assumed to be the same as its input type.
If tolerance_function is supplied, it is a function which
should be used to compute the tolerance for the test vectors.
Otherwise, _strict_tolerance is used.
"""
for arg_type in arg_types:
test_inputs = [_default_inputs[arg_type]]*arity
scalar_test_vectors = _simulate_function(
make_arguments(test_inputs), python_equivalent,
tolerance_function)
for vector_length in (2, 3, 4):
_store_test_vectors(
test_suite_dict, name, 400, None,
_vectorize_test_vectors(
scalar_test_vectors, (), vector_length))
_store_test_vectors(
test_suite_dict, name, 150, "ARB_gpu_shader_fp64",
_vectorize_test_vectors(
scalar_test_vectors, (), vector_length))
f('lessThan', 2, lambda x, y: x < y, 'v')
f('lessThanEqual', 2, lambda x, y: x <= y, 'v')
f('greaterThan', 2, lambda x, y: x > y, 'v')
f('greaterThanEqual', 2, lambda x, y: x >= y, 'v')
f('equal', 2, lambda x, y: x == y, 'v')
f('notEqual', 2, lambda x, y: x != y, 'v')
_make_vector_relational_test_vectors(test_suite)
def _make_vector_or_matrix_test_vectors(test_suite_dict):
"""Add test vectors to test_suite_dict for GLSL built-in functions
that operate on vectors/matrices as a whole. Examples include
length(), dot(), cross(), normalize(), and refract().
"""
def match_args(*indices):
"""Return a function that determines whether the type of the
arguments at the given indices match.
For example:
match(1, 3)
is equivalent to:
lambda a, b, c, d: glsl_type_of(b) == glsl_type_of(d)
"""
return lambda *args: _argument_types_match(args, indices)
def match_simple_binop(x, y):
"""Detemine whether the type of the arguments is compatible
for a simple binary operator (such as '+').
Arguments are compatible if one is a scalar and the other is a
vector/matrix with the same base type, or if they are the same
type.
"""
x_type = glsl_type_of(x)
y_type = glsl_type_of(y)
if x_type.base_type != y_type.base_type:
return False
if x_type.is_scalar or y_type.is_scalar:
return True
return x_type == y_type
def match_multiply(x, y):
"""Determine whether the type of the arguments is compatible
for multiply.
Arguments are compatible if they are scalars, vectors, or
matrices with the same base type, and the vector/matrix sizes
are properly matched.
"""
x_type = glsl_type_of(x)
y_type = glsl_type_of(y)
if x_type.base_type != y_type.base_type:
return False
if x_type.is_scalar or y_type.is_scalar:
return True
if x_type.is_vector and y_type.is_matrix:
# When multiplying vector * matrix, the vector is
# transposed to a row vector. So its row count must match
# the row count of the matrix.
return x_type.num_rows == y_type.num_rows
elif x_type.is_vector:
assert y_type.is_vector
# When multiplying vector * vector, the multiplication is
# done componentwise, so the types must match exactly.
return x_type == y_type
else:
assert x_type.is_matrix
# When multiplying matrix * matrix or matrix * vector, a
# standard linear algebraic multiply is used, so x's
# column count must match y's row count.
return x_type.num_cols == y_type.num_rows
def match_shift(x, y):
"""Determine whether the type of the arguments is compatible
for shift operations.
Arguments are compatible if they are the same length or the
first one is a vector and the second is a scalar. Their base
types need not be the same, but they both must be integral.
"""
x_type = glsl_type_of(x)
y_type = glsl_type_of(y)
if x_type.base_type not in (glsl_int, glsl_uint):
return False
if y_type.base_type not in (glsl_int, glsl_uint):
return False
if y_type.is_scalar:
return True
assert not x_type.is_matrix
assert not y_type.is_matrix
return x_type.num_rows == y_type.num_rows
nz_doubles = [ -1.333333333333333259, 0.85]
doubles = [0.0] + nz_doubles
dvecs = [
np.array([-0.10, -1.20]),
np.array([-0.42, 0.48]),
np.array([-1.333333333333333259, -0.85, -0.94]),
np.array([1.67, 0.66, 1.87]),
np.array([-1.65, 1.33, 1.93, 0.76]),
np.array([0.80, -0.15, -0.51, 0.0])
]
nz_doubles_dvecs = nz_doubles + dvecs
dvec3s = [
np.array([-0.03, -0.85, -0.94]),
np.array([ -1.333333333333333259, 0.66, 1.87]),
]
norm_doubles_dvecs = [_normalize(x) for x in nz_doubles_dvecs]
squaremats = [
np.array([[ 1.60, 0.76],
[ 1.53, -1.00]]), # mat2
np.array([[-0.13, -0.87],
[-1.40, 1.40]]), # mat2
np.array([[-1.11, 1.67, -0.41],
[ 0.13, 1.09, -0.02],
[ 0.56, 0.95, 0.24]]), # mat3
np.array([[-1.69, -0.46, -0.18],
[-1.09, 1.75, 2.00],
[-1.53, -0.70, -1.47]]), # mat3
np.array([[-1.00, -0.55, -1.08, 1.79],
[ 1.77, 0.62, 0.48, -1.35],
[ 0.09, -0.71, -1.39, -1.21],
[-0.91, -1.82, -1.43, 0.72]]), # mat4
np.array([[ 0.06, 1.31, 1.52, -1.96],
[ 1.60, -0.32, 0.51, -1.84],
[ 1.25, 0.45, 1.90, -0.72],
[-0.16, 0.45, -0.88, 0.39]]), # mat4
]
mats = squaremats + [
np.array([[ 0.09, 1.30, 1.25],
[-1.19, 0.08, 1.08]]), # mat3x2
np.array([[-0.36, -1.08, -0.60],
[-0.53, 0.88, -1.79]]), # mat3x2
np.array([[-0.46, 1.94],
[-0.45, -0.75],
[ 1.03, -0.50]]), # mat2x3
np.array([[ 1.38, -1.08],
[-1.27, 1.83],
[ 1.00, -0.74]]), # mat2x3
np.array([[ 1.81, -0.87, 0.81, 0.65],
[-1.16, -1.52, 0.25, -1.51]]), # mat4x2
np.array([[ 1.93, -1.63, 0.29, 1.60],
[ 0.49, 0.27, 0.14, 0.94]]), # mat4x2
np.array([[ 0.16, -1.69],
[-0.80, 0.59],
[-1.74, -1.43],
[-0.02, -1.21]]), # mat2x4
np.array([[-1.02, 0.74],
[-1.64, -0.13],
[-1.59, 0.47],
[ 0.30, 1.13]]), # mat2x4
np.array([[-0.27, -1.38, -1.41, -0.12],
[-0.17, -0.56, 1.47, 1.86],
[-1.85, -1.29, 1.77, 0.01]]), # mat4x3
np.array([[-0.47, -0.15, 1.97, -1.05],
[-0.20, 0.53, -1.82, -1.41],
[-1.39, -0.19, 1.62, 1.58]]), # mat4x3
np.array([[ 1.42, -0.86, 0.27],
[ 1.80, -1.74, 0.04],
[-1.88, -0.37, 0.43],
[ 1.37, 1.90, 0.71]]), # mat3x4
np.array([[-1.72, 0.09, 0.45],
[-0.31, -1.58, 1.92],
[ 0.14, 0.18, -0.56],
[ 0.40, -0.77, 1.76]]), # mat3x4
]
dsquaredmats = [
np.array([[ 1.60, 0.76],
[ 1.53, -1.00]]), # mat2
np.array([[-0.13, -0.87],
[-1.40, 1.40]]), # mat2
np.array([[-1.11, 1.67, -0.41],
[ 0.13, 1.09, -0.02],
[ 0.56, 0.95, 0.24]]), # mat3
np.array([[-1.69, -0.46, -0.18],
[-1.09, 1.75, 2.00],
[-1.53, -0.70, -1.47]]), # mat3
np.array([[-1.00, -0.55, -1.08, 1.79],
[ 1.77, 0.62, 0.48, -1.35],
[ 0.09, -0.71, -1.39, -1.21],
[-0.91, -1.82, -1.43, 0.72]]), # mat4
np.array([[ 0.06, 1.31, 1.52, -1.96],
[ 1.60, -0.32, 0.51, -1.84],
[ 1.25, 0.45, 1.90, -0.72],
[-0.16, 0.45, -0.88, 0.39]]), # mat4
]
dmats = dsquaredmats + [
np.array([[ 0.09, 1.30, 1.25],
[-1.19, 0.08, 1.08]]), # mat3x2
np.array([[-0.36, -1.08, -0.60],
[-0.53, 0.88, -1.79]]), # mat3x2
np.array([[-0.46, 1.94],
[-0.45, -0.75],
[ 1.03, -0.50]]), # mat2x3
np.array([[ 1.38, -1.08],
[-1.27, 1.83],
[ 1.00, -0.74]]), # mat2x3
np.array([[ 1.81, -0.87, 0.81, 0.65],
[-1.16, -1.52, 0.25, -1.51]]), # mat4x2
np.array([[ 1.93, -1.63, 0.29, 1.60],
[ 0.49, 0.27, 0.14, 0.94]]), # mat4x2
np.array([[ 0.16, -1.69],
[-0.80, 0.59],
[-1.74, -1.43],
[-0.02, -1.21]]), # mat2x4
np.array([[-1.02, 0.74],
[-1.64, -0.13],
[-1.59, 0.47],
[ 0.30, 1.13]]), # mat2x4
np.array([[-0.27, -1.38, -1.41, -0.12],
[-0.17, -0.56, 1.47, 1.86],
[-1.85, -1.29, 1.77, 0.01]]), # mat4x3
np.array([[-0.47, -0.15, 1.97, -1.05],
[-0.20, 0.53, -1.82, -1.41],
[-1.39, -0.19, 1.62, 1.58]]), # mat4x3
np.array([[ 1.42, -0.86, 0.27],
[ 1.80, -1.74, 0.04],
[-1.88, -0.37, 0.43],
[ 1.37, 1.90, 0.71]]), # mat3x4
np.array([[-1.72, 0.09, 0.45],
[-0.31, -1.58, 1.92],
[ 0.14, 0.18, -0.56],
[ 0.40, -0.77, 1.76]]), # mat3x4
]
def f(name, arity, python_equivalent,
filter, test_inputs, tolerance_function=_strict_tolerance,
template=None):
"""Make test vectors for the function with the given name and
arity, which was introduced in the given glsl_version.
python_equivalent is a Python function which simulates the GLSL
function. This function should return None in any case where the
output of the GLSL function is undefined. However, it need not
check that the lengths of the input vectors are all the same.
If filter is not None, it will be called with each set of
arguments, and test cases will only be generated if the filter
returns True.
test_inputs is a list, the ith element of which is a list of
vectors and/or scalars that are suitable for use as the ith
argument of the function.
If tolerance_function is supplied, it is a function which
should be used to compute the tolerance for the test vectors.
Otherwise, _strict_tolerance is used.
If template is supplied, it is used insted as the template for
the Signature objects generated.
"""
test_inputs = make_arguments(test_inputs)
if filter is not None:
test_inputs = \
[arguments for arguments in test_inputs if filter(*arguments)]
_store_test_vectors(
test_suite_dict, name, 400, None,
_simulate_function(
test_inputs, python_equivalent, tolerance_function),
template=template)
_store_test_vectors(
test_suite_dict, name, 150, "ARB_gpu_shader_fp64",
_simulate_function(
test_inputs, python_equivalent, tolerance_function),
template=template)
f('op-add', 2, lambda x, y: x + y, match_simple_binop,
[doubles+dvecs+dmats,
doubles+dvecs+dmats],
template='({0} + {1})')
f('op-sub', 2, lambda x, y: x - y, match_simple_binop,
[doubles+dvecs+dmats,
doubles+dvecs+dmats],
template='({0} - {1})')
f('op-mult', 2, _multiply, match_multiply,
[doubles+dvecs+dmats,
doubles+dvecs+dmats],
template='({0} * {1})')
f('op-div', 2, _divide, match_simple_binop,
[doubles+dvecs+dmats,
doubles+dvecs+dmats],
template='({0} / {1})')
f('length', 1, np.linalg.norm, None, [doubles+dvecs])
f('distance', 2, lambda x, y: np.linalg.norm(x-y), match_args(0, 1),
[doubles+dvecs, doubles+dvecs])
f('dot', 2, np.dot, match_args(0, 1), [doubles+dvecs, doubles+dvecs])
f('cross', 2, np.cross, match_args(0, 1), [dvec3s, dvec3s],
_cross_product_tolerance)
f('normalize', 1, _normalize, None, [nz_doubles_dvecs])
f('faceforward', 3, _faceforward, match_args(0, 1, 2),
[doubles+dvecs, doubles+dvecs, doubles+dvecs])
f('reflect', 2, _reflect, match_args(0, 1),
[doubles+dvecs, norm_doubles_dvecs])
f('refract', 3, _refract, match_args(0, 1),
[norm_doubles_dvecs, norm_doubles_dvecs, [0.5, 2.0]])
f('matrixCompMult', 2, lambda x, y: x*y, match_args(0, 1),
[dmats, dmats])
f('outerProduct', 2, np.outer, None, [dvecs, dvecs])
f('transpose', 1, np.transpose, None, [dmats])
f('inverse', 1, np.linalg.inv, None, [dsquaredmats])
f('determinant', 1, np.linalg.det, None, [dsquaredmats])
_make_vector_or_matrix_test_vectors(test_suite)
def _check_signature_safety(test_suite_dict):
"""As a final safety check, verify that for each possible
combination of name and argtypes, there is exactly one
signature.
"""
name_argtype_combos = set()
for signature in test_suite_dict:
name_argtype_combo = (signature.name, signature.argtypes, signature.extension)
if name_argtype_combo in name_argtype_combos:
raise Exception(
'Duplicate signature found for {0}'.format(name_argtype_combo))
name_argtype_combos.add(name_argtype_combo)
_check_signature_safety(test_suite)
|