1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
# coding=utf-8
from __future__ import print_function, division, absolute_import
import os
import six
__all__ = ['gen', 'DATA_SIZES', 'MAX_VALUES', 'MAX', 'MIN', 'BMIN', 'BMAX',
'SMIN', 'SMAX', 'UMIN', 'UMAX', 'TYPE', 'T', 'U', 'B']
_NUMERIC_TYPES = tuple(list(six.integer_types) + [float])
DATA_SIZES = {
'char': 8,
'uchar': 8,
'short': 16,
'ushort': 16,
'int': 32,
'uint': 32,
'long': 64,
'ulong': 64
}
# By default, just test what is part of the CL1.1 spec, leave vec3 for later
# VEC_WIDTHS = [2, 3, 4, 8, 16]
VEC_WIDTHS = [2, 4, 8, 16]
# ALL_WIDTHS = [1, 2, 3, 4, 8, 16]
ALL_WIDTHS = [1, 2, 4, 8, 16]
MIN_VALUES = {
'char': -128,
'uchar': 0,
'short': -32768,
'ushort': 0,
'int': -2147483648,
'uint': 0,
'long': -9223372036854775808,
'ulong': 0
}
MAX_VALUES = {
'char': 127,
'uchar': 255,
'short': 32767,
'ushort': 65535,
'int': 2147483647,
'uint': 4294967295,
'long': 9223372036854775807,
'ulong': 18446744073709551615
}
# Define placeholders to reduce magic number usage
MAX = 'MAX_VAL'
MIN = 'MIN_VAL'
BMIN = 'min_for_larger_type'
BMAX = 'max_for_larger_type'
SMIN = 'signed_min_for_type'
SMAX = 'signed_max_for_type'
UMIN = 'unsigned_min_for_type'
UMAX = 'unsigned_max_for_type'
TYPE = 'TYPE'
SIZE = 'SIZE'
TRUE = 'true_value_for_type' #1 for scalar, -1 for vector
NEGNAN = 'Negative NAN as a string, because float("-nan") just produces nan'
# Identity type list
T = {
'char': 'char',
'uchar': 'uchar',
'short': 'short',
'ushort': 'ushort',
'int': 'int',
'uint': 'uint',
'long': 'long',
'ulong': 'ulong'
}
# Signed type for each type
SIGNED = {
'char': 'char',
'uchar': 'char',
'short': 'short',
'ushort': 'short',
'int': 'int',
'uint': 'int',
'long': 'long',
'ulong': 'long'
}
# Unsigned type for each source type
U = {
'char': 'uchar',
'uchar': 'uchar',
'short': 'ushort',
'ushort': 'ushort',
'int': 'uint',
'uint': 'uint',
'long': 'ulong',
'ulong': 'ulong'
}
# Next larger type with same signedness
B = {
'char': 'short',
'uchar': 'ushort',
'short': 'int',
'ushort': 'uint',
'int': 'long',
'uint': 'ulong',
}
# vecSizes has the layout [in0width, ..., inNwidth] where outType width is
# assumed to match the width of the first input
def gen_kernel(f, fnName, inTypes, outTypes, vecSizes, typePrefix, outLoc='private'):
f.write('kernel void test_' + typePrefix + str(vecSizes[0]) + '_' + fnName
+ (('_' + outLoc) if len(outTypes) > 1 else '')
+ '_' + inTypes[0] + '(global ' + outTypes[0] + '* out')
for arg in range(1, len(outTypes)):
f.write(', global '+outTypes[arg]+'* out'+str(arg))
for arg in range(0, len(inTypes)):
f.write(', global '+inTypes[arg]+'* in'+str(arg))
f.write('){\n')
for arg in range(1, len(outTypes)):
f.write(' ' + outLoc + ' ' + outTypes[arg] + ('' if vecSizes[0] == 1 else str(vecSizes[0])));
if (outLoc == 'global'):
f.write(' *tmp' + str(arg) + ' = out' + str(arg) + ';\n');
else:
#FIXME: This assumes WG size of 1
f.write(' tmp' + str(arg) + ';\n');
suffix = ';'
if (vecSizes[0] == 1):
f.write(' out[get_global_id(0)] = ')
else:
f.write(' vstore'+str(vecSizes[0])+'(')
suffix = ', get_global_id(0), out)' + suffix
f.write(fnName+'(')
suffix = ')' + suffix
for arg in range(0, len(inTypes)):
if (arg > 0):
f.write(', ')
# if scalar, don't print vload/vstore
if (vecSizes[arg] == 1):
f.write('in'+str(arg)+'[get_global_id(0)]')
else:
f.write('vload'+str(vecSizes[arg])+'(get_global_id(0), in'+str(arg)+')')
for arg in range(1, len(outTypes)):
if (outLoc == 'global'):
f.write(', &tmp' + str(arg) + '[get_global_id(0)]')
else:
f.write(', &tmp' + str(arg))
f.write(suffix + '\n')
if (outLoc != 'global'):
for arg in range(1, len(outTypes)):
if (vecSizes[0] == 1):
f.write(' out'+ str(arg) +'[get_global_id(0)] = tmp' + str(arg))
else:
f.write(' vstore' + str(vecSizes[0]) + '(tmp' + str(arg) + ', get_global_id(0), out' + str(arg) + ')')
f.write(';\n')
f.write('}\n\n')
def gen_kernel_1_arg(f, fnName, inType, outTypes, loc = 'private'):
for vecSize in ALL_WIDTHS:
gen_kernel(f, fnName, [inType], outTypes, [vecSize], '', loc)
# 2 argument kernel with input types that match their vector size
def gen_kernel_2_arg_same_size(f, fnName, inTypes, outTypes, loc = 'private'):
for vecSize in ALL_WIDTHS:
gen_kernel(f, fnName, inTypes, outTypes, [vecSize, vecSize],
'', loc)
# 2 argument kernel with 1 vector and one scalar input argument
def gen_kernel_2_arg_mixed_size(f, fnName, inTypes, outTypes):
for vecSize in VEC_WIDTHS:
gen_kernel(f, fnName, inTypes, outTypes, [vecSize, 1], 'tss_')
# 2 argument kernel with 1 vector and one scalar input argument with multiple
# input data types
def gen_kernel_2_arg_mixed_sign(f, fnName, inTypes, outTypes):
for vecSize in ALL_WIDTHS:
gen_kernel(f, fnName, inTypes, outTypes, [vecSize, vecSize],
'')
# 3-argument built-in functions
def gen_kernel_3_arg_same_type(f, fnName, inTypes, outTypes):
for vecSize in ALL_WIDTHS:
gen_kernel(f, fnName, inTypes, outTypes,
[vecSize, vecSize, vecSize], ''
)
def gen_kernel_3_arg_mixed_size_tss(f, fnName, inTypes, outTypes):
for vecSize in VEC_WIDTHS:
gen_kernel(f, fnName, inTypes, outTypes,
[vecSize, 1, 1], 'tss_')
def gen_kernel_3_arg_mixed_size_tts(f, fnName, inTypes, outTypes):
for vecSize in VEC_WIDTHS:
gen_kernel(f, fnName, inTypes, outTypes,
[vecSize, vecSize, 1], 'tts_')
def generate_kernels(f, dataType, fnName, fnDef):
argTypes = getArgTypes(dataType, fnDef['arg_types'])
# For len(argTypes), remember that this includes the output arg
if (len(argTypes) == 2):
gen_kernel_1_arg(f, fnName, argTypes[1], [argTypes[0]])
return
if (len(argTypes) == 3 and fnName != 'upsample'):
if (getNumOutArgs(fnDef) == 2):
gen_kernel_1_arg(f, fnName,
argTypes[2], [argTypes[0], argTypes[1]], 'private')
gen_kernel_1_arg(f, fnName,
argTypes[2], [argTypes[0], argTypes[1]], 'local')
gen_kernel_1_arg(f, fnName,
argTypes[2], [argTypes[0], argTypes[1]], 'global')
else:
gen_kernel_2_arg_same_size(f, fnName,
[argTypes[1], argTypes[2]], [argTypes[0]])
if (fnDef['function_type'] == 'tss'):
gen_kernel_2_arg_mixed_size(f, fnName,
[argTypes[1], argTypes[2]], [argTypes[0]])
return
if (len(argTypes) == 4):
if (getNumOutArgs(fnDef) == 2):
gen_kernel_2_arg_same_size(f, fnName, [argTypes[2], argTypes[3]],
[argTypes[0], argTypes[1]], 'private')
gen_kernel_2_arg_same_size(f, fnName, [argTypes[2], argTypes[3]],
[argTypes[0], argTypes[1]], 'local')
gen_kernel_2_arg_same_size(f, fnName, [argTypes[2], argTypes[3]],
[argTypes[0], argTypes[1]], 'global')
else:
gen_kernel_3_arg_same_type(f, fnName,
[argTypes[1], argTypes[2], argTypes[3]], [argTypes[0]])
if (fnDef['function_type'] == 'tss'):
gen_kernel_3_arg_mixed_size_tss(f, fnName,
[argTypes[1], argTypes[2], argTypes[3]], [argTypes[0]])
if (fnDef['function_type'] == 'tts'):
gen_kernel_3_arg_mixed_size_tts(f, fnName,
[argTypes[1], argTypes[2], argTypes[3]], [argTypes[0]])
return
if (fnName == 'upsample'):
gen_kernel_2_arg_mixed_sign(f, fnName,
[argTypes[1], argTypes[2]],
[argTypes[0]])
return
def getValue(type, val, isVector):
# Check if val is a str, list, or value
if (isinstance(val, str)):
if (val == MIN):
return MIN_VALUES[type]
elif (val == MAX):
return MAX_VALUES[type]
elif (val == BMIN):
return MIN_VALUES[B[type]]
elif (val == BMAX):
return MAX_VALUES[B[type]]
elif (val == SMIN):
return MIN_VALUES[SIGNED[type]]
elif (val == SMAX):
return MAX_VALUES[SIGNED[type]]
elif (val == UMIN):
return MIN_VALUES[U[type]]
elif (val == UMAX):
return MAX_VALUES[U[type]]
elif (val == TYPE):
return type
elif (val == SIZE):
return DATA_SIZES[type]
elif (val == TRUE):
if (isVector):
return -1
else:
return 1
elif (val == NEGNAN):
return '-nan' #cl-program-tester translates this for us
else:
print('Unknown string value: ' + val + '\n')
elif (isinstance(val, list)):
# The list should be of the format: [op, arg1, ... argN] where op is a
# Fn ref and arg[1-n] are either MIN/MAX or numbers (They could be
# nested lists). The exception for arg1 is TYPE, which means to
# substitute the data type
# Evaluate the value of the requested function and arguments
# TODO: Change to varargs calls after unshifting the first list element
if (callable(val[0])):
if (len(val) == 2):
return (val[0])(getValue(type, val[1], isVector))
elif (len(val) == 3):
return (val[0])(getValue(type, val[1], isVector), getValue(type, val[2], isVector))
elif (len(val) == 4):
return (val[0])(getValue(type, val[1], isVector), getValue(type, val[2], isVector),
getValue(type, val[3], isVector))
else:
return (val[0])(getValue(type, val[1], isVector), getValue(type, val[2], isVector),
getValue(type, val[3], isVector), getValue(type, val[4], isVector))
else:
return map(lambda x: getValue(type, x, isVector), val);
# At this point, we should have been passed a number
if (isinstance(val, _NUMERIC_TYPES)):
return val
print('Invalid value '+repr(val)+' encountered in getValue\n')
def getStrVal(type, val, isVector):
return " ".join(map(str, getValue(type, val, isVector)))
def getArgType(baseType, argType):
# If the argType is a string, it's a literal data type... return it
if (isinstance(argType, str)):
return argType
# otherwise it's a list to pick from
return argType[baseType]
def getArgTypes(baseType, argTypes):
ret = []
for argType in argTypes:
ret.append(getArgType(baseType, argType))
return ret
def isFloatType(t):
return t not in U
def getNumOutArgs(functionDef):
if 'num_out_args' in functionDef:
return functionDef['num_out_args']
else:
return 1
def isOutArg(functionDef, argIdx):
return argIdx < getNumOutArgs(functionDef)
# Print a test with all-vector inputs/outputs and/or mixed vector/scalar args
def print_test(f, fnName, argType, functionDef, tests, numTests, vecSize, fntype):
# If the test allows mixed vector/scalar arguments, handle the case with
# only vector arguments through a recursive call.
if (fntype == 'tss' or fntype == 'tts'):
print_test(f, fnName, argType, functionDef, tests, numTests, vecSize,
'ttt')
# The tss && vecSize==1 case is handled in the non-tss case.
if ((fntype != 'ttt') and vecSize == 1):
return
# If we're handling mixed vector/scalar input widths, the kernels have
# different names than when the vector widths match
tssStr = fntype + '_' if (fntype != 'ttt') else ''
argTypes = getArgTypes(argType, functionDef['arg_types'])
argCount = len(argTypes)
tolerance = functionDef['tolerance'] if 'tolerance' in functionDef else 0
# Write the test header
f.write('[test]\n' + 'name: ' + tssStr + fnName + ' ' + argType
+ str(vecSize) + '\n' + 'kernel_name: test_' + tssStr + str(vecSize)
+ '_' + fnName + '_' + argType + '\n' + 'global_size: '
+ str(numTests) + ' 0 0\n\n'
)
# For each argument, write a line containing its type, index, and values
for arg in range(0, argCount):
argInOut = ''
argVal = getStrVal(argType, tests[arg], (vecSize > 1))
if isOutArg(functionDef, arg):
argInOut = 'arg_out: '
else:
argInOut = 'arg_in: '
# The output argument and first tss argument are vectors, any that
# follow are scalar. If !tss, then everything has a matching vector
# width
if (fntype == 'ttt' or (arg < 2 and fntype == 'tss') or (arg < 3 and fntype == 'tts')):
f.write(argInOut + str(arg) + ' buffer ' + argTypes[arg] +
'[' + str(numTests * vecSize) + '] ' +
''.join(map(lambda x: (x + ' ') * vecSize, argVal.split()))
)
if isOutArg(functionDef, arg) :
f.write(' tolerance {0} '.format(tolerance))
# Use ulp tolerance for float types
if isFloatType(argTypes[arg]):
f.write('ulp')
f.write('\n')
else:
argInOut = 'arg_in: '
f.write(argInOut + str(arg) + ' buffer ' + argTypes[arg] + '[' +
str(numTests) + '] ' + argVal + '\n'
)
# Blank line between tests for formatting reasons
f.write('\n')
def gen(types, minVersions, functions, testDefs, dirName):
# Create the output directory if required
if not os.path.exists(dirName):
try:
os.makedirs(dirName)
except OSError as e:
if e.errno == 17: # file exists
pass
raise
# Loop over all data types being tested. Create one output file per data
# type
for dataType in types:
for fnName in functions:
# Merge all of the generic/signed/unsigned/custom test definitions
if (dataType, fnName) not in testDefs:
continue
functionDef = testDefs[(dataType, fnName)]
# Check if the function actually exists for this data type
if (not functionDef.keys()):
continue
clcVersionMin = minVersions[fnName]
fileName = 'builtin-' + dataType + '-' + fnName + '-' + \
str(float(clcVersionMin)/10)+'.generated.cl'
fileName = os.path.join(dirName, fileName)
with open(fileName, 'w') as f:
print(fileName)
# Write the file header
f.write('/*!\n' +
'[config]\n' +
'name: Test '+dataType+' '+fnName+' built-in on CL 1.1\n' +
'clc_version_min: '+str(clcVersionMin)+'\n' +
'dimensions: 1\n'
)
if (dataType == 'double'):
f.write('require_device_extensions: cl_khr_fp64\n')
# Blank line to provide separation between config header and tests
f.write('\n')
# Write all tests for the built-in function
tests = functionDef['values']
argCount = len(functionDef['arg_types'])
fnType = functionDef['function_type']
outputValues = tests[0]
numTests = len(outputValues)
# Handle all available scalar/vector widths
sizes = sorted(VEC_WIDTHS)
sizes.insert(0, 1) # Add 1-wide scalar to the vector widths
for vecSize in sizes:
if (getNumOutArgs(functionDef) == 1):
print_test(f, fnName, dataType, functionDef, tests,
numTests, vecSize, fnType)
else:
for loc in ['_private', '_local', '_global']:
print_test(f, fnName + loc, dataType, functionDef, tests,
numTests, vecSize, fnType)
# Terminate the header section
f.write('!*/\n\n')
if (dataType == 'double'):
f.write('#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n\n')
# Generate the actual kernels
generate_kernels(f, dataType, fnName, functionDef)
|