1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
|
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** \file blit.c
*
* Test the sRGB behaviour of blits.
*
* The various GL 4.x specifications contain a lot of conflicting rules
* about how blits should be handled when the source or destination buffer
* is sRGB.
*
* Here are the latest rules from GL 4.4 (October 18th, 2013)
* section 18.3.1 Blitting Pixel Rectangles:
*
* (1) When values are taken from the read buffer, if [[FRAMEBUFFER_SRGB
* is enabled and]] the value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING
* for the framebuffer attachment corresponding to the read buffer is
* SRGB (see section 9.2.3), the red, green, and blue components are
* converted from the non-linear sRGB color space according to
* equation 8.14.
*
* (2) When values are written to the draw buffers, blit operations
* bypass most of the fragment pipeline. The only fragment
* operations which affect a blit are the pixel ownership test,
* the scissor test, and sRGB conversion (see section
* 17.3.9). Color, depth, and stencil masks (see section 17.4.2)
* are ignored.
*
* And from section 17.3.9 sRGB Conversion:
*
* (3) If FRAMEBUFFER_SRGB is enabled and the value of
* FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING for the framebuffer
* attachment corresponding to the destination buffer is SRGB1
* (see section 9.2.3), the R, G, and B values after blending are
* converted into the non-linear sRGB color space by computing
* ... [formula follows] ... If FRAMEBUFFER_SRGB is disabled or
* the value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING is not SRGB,
* then ... [no conversion is applied].
*
* Rules differ in other specifications:
*
* -------------------------------------------------------------------
*
* ES 3.0 contains identical rules, however, ES has no FRAMEBUFFER_SRGB
* setting. References to that are deleted, making encode and decode
* happen regardless.
*
* -------------------------------------------------------------------
*
* The GL 4.3 revision from February 14th, 2013 deletes the bracketed
* text in paragraph (1), which appears to indicate that sRGB decode
* should happen regardless of the GL_FRAMEBUFFER_SRGB setting.
*
* This forces decode, but allows encode or no encode. This makes it
* impossible to do blits in a linear colorspace, which is not ideal.
*
* I believe this was an oversight: it looks like Khronos imported
* paragraph (1) from ES 3.x but neglected to add a FRAMEBUFFER_SRGB
* interaction on decode.
*
* -------------------------------------------------------------------
*
* The older GL 4.3 revision from August 6th, 2012 contains that
* same decode-always version of paragraph (1), but also contains
* another paragraph immediately after:
*
* (4) When values are taken from the read buffer, no linearization is
* performed even if the format of the buffer is SRGB.
*
* These are irreconcilable: the first says that linearization should
* happen when reading from SRGB buffers, while the second says that
* it shouldn't. These rules are not implementable, which is probably
* why they changed in a point revision.
*
* -------------------------------------------------------------------
*
* GL 4.2 omits paragraph (1) entirely but contains (4), suggesting that
* decode should never happen, but encode might.
*
* -------------------------------------------------------------------
*
* GL 4.1 and earlier specifications omits both paragraphs (1) and (4),
* and contain an alternate version of paragraph (2):
*
* (2b) Blit operations bypass the fragment pipeline. The only fragment
* operations which affect a blit are the pixel ownership test and
* the scissor test.
*
* Notably missing is sRGB conversion.
*
* This suggests that neither encode nor decode should happen, regardless
* of the FRAMEBUFFER_SRGB setting. These are the traditional GL rules.
*
* -------------------------------------------------------------------
*
* To summarize the rule differences:
*
* Specification Decoding Encoding
* ES 3.x Yes Yes
* GL 4.1 No No
* GL 4.2 No Optional
* GL 4.3 2012 Yes & No Optional
* GL 4.3 2013 Yes Optional
* GL 4.4 Optional Optional
*
* -------------------------------------------------------------------
*
* When this test was written in 2012, the author surveyed the nVidia
* and AMD drivers of the time. They appeared to follow the simpler rule
* that blits preserved the underlying binary representation of the pixels,
* regardless of whether the format was sRGB and regardless of the setting
* of FRAMEBUFFER_SRGB. Left 4 Dead 2 appeared to rely on this behavior
* at the time, but no longer does as of 2016.
*
* Unlike OpenGL, the ES 3.x rules have always been clear: always decode
* and encode. Both dEQP and WebGL conformance tests require this.
*
* The new GL 4.4 rules are flexible: if GL_FRAMEBUFFER_SRGB is disabled
* (the default setting), BlitFramebuffer will neither decode nor encode
* (the traditional GL rules). If it's enabled, then it follows the ES 3
* rules (both decode and encode). This isn't entirely compatible, but it
* seems like the best solution possible, and the one we should implement.
*
* This test verifies that blitting is permitted, and preserves the
* underlying binary representation of the pixels, under any specified
* combination of the following circumstances:
*
* - Using framebuffers backed by textures vs renderbuffers.
* - Blitting from sRGB vs linear, and to sRGB vs linear.
* - Doing a 1:1 blit from a single-sampled vs MSAA buffer, and to a
* single-sampled vs MSAA buffer, or doing a scaled blit between
* two single-sampled buffers.
* - With FRAMEBUFFER_SRGB enabled vs disabled.
*
* The combination to test is selected using command-line parameters.
*
* The test operates by rendering an image to a source framebuffer
* where each pixel's 8-bit color value is equal to its X coordinate.
* Then it blits this image to a destination framebuffer, and checks
* (using glReadPixels) that each pixel's 8-bit color value is still
* equal to its X coordinate.
*
* Since glReadPixels cannot be used directly on MSAA buffers, an
* additional resolve blit is added when necessary, to convert the
* image to single-sampled before reading the pixel values.
*
* Since the pixels in the test image depend only on the X coordinate,
* it is easy to test proper sRGB performance of scaled blits: we
* simply make the source rectangle one pixel high, so that the blit
* requires scaling. Note that the purpose of this test is to verify
* that blits exhibit correct sRGB behaviour, not to verify that
* scaling is performed correctly, so it is not necessary for us to
* exhaustively test a wide variety of scaling behaviours.
*/
#include "piglit-util-gl.h"
const int PATTERN_WIDTH = 256;
const int PATTERN_HEIGHT = 64;
const float src_clear_col = 128.0 / 255.0;
PIGLIT_GL_TEST_CONFIG_BEGIN
config.supports_gl_compat_version = 10;
config.window_visual = PIGLIT_GL_VISUAL_DOUBLE | PIGLIT_GL_VISUAL_RGBA;
config.khr_no_error_support = PIGLIT_NO_ERRORS;
PIGLIT_GL_TEST_CONFIG_END
/* Test parameters */
static bool use_textures;
static GLenum src_format;
static GLenum dst_format;
static GLsizei src_samples;
static GLsizei dst_samples;
static bool scaled_blit;
static bool enable_srgb_framebuffer;
static bool src_fill_mode_clear;
/* GL objects */
static GLuint src_fbo;
static GLuint dst_fbo;
static GLuint resolve_fbo;
static GLint prog;
static char *vs_text =
"#version 120\n"
"void main()\n"
"{\n"
" gl_Position = gl_Vertex;\n"
"}\n";
static char *fs_text =
"#version 120\n"
"void main()\n"
"{\n"
" float x = gl_FragCoord.x;\n"
" gl_FragColor = vec4((x - 0.5) / 255.0);\n"
"}\n";
static GLuint
setup_fbo(GLenum internalformat, GLsizei num_samples)
{
GLuint fbo;
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo);
if (use_textures && num_samples == 0) {
GLuint tex;
const GLint level = 0;
const GLint border = 0;
glGenTextures(1, &tex);
glBindTexture(GL_TEXTURE_2D, tex);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, level,
internalformat, PATTERN_WIDTH, PATTERN_HEIGHT,
border, GL_RGBA, GL_BYTE, NULL);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, tex, level);
} else {
GLuint rb;
glGenRenderbuffers(1, &rb);
glBindRenderbuffer(GL_RENDERBUFFER, rb);
glRenderbufferStorageMultisample(GL_RENDERBUFFER, num_samples,
internalformat, PATTERN_WIDTH,
PATTERN_HEIGHT);
glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
GL_RENDERBUFFER, rb);
}
return fbo;
}
static void
print_usage_and_exit(char *prog_name)
{
printf("Usage: %s <backing_type> <sRGB_types> <blit_type>\n"
" <framebuffer_srgb_setting>\n"
" <src_fill_mode>\n"
" where <backing_type> is one of:\n"
" texture (ignored for multisampled framebuffers)\n"
" renderbuffer\n"
" where <sRGB_types> is one of:\n"
" linear (both buffers linear)\n"
" srgb (both buffers sRGB)\n"
" linear_to_srgb\n"
" srgb_to_linear\n"
" where <blit_type> is one of:\n"
" single_sampled\n"
" upsample\n"
" downsample\n"
" msaa\n"
" scaled\n"
" where framebuffer_srgb_setting is one of:\n"
" enabled\n"
" disabled\n"
" where src_fill_mode is one of:\n"
" clear\n"
" render\n",
prog_name);
piglit_report_result(PIGLIT_FAIL);
}
void
piglit_init(int argc, char **argv)
{
GLint max_samples;
if (argc != 6) {
print_usage_and_exit(argv[0]);
}
if (strcmp(argv[1], "texture") == 0) {
use_textures = true;
} else if (strcmp(argv[1], "renderbuffer") == 0) {
use_textures = false;
} else {
print_usage_and_exit(argv[0]);
}
if (strcmp(argv[2], "linear") == 0) {
src_format = GL_RGBA;
dst_format = GL_RGBA;
} else if (strcmp(argv[2], "srgb") == 0) {
src_format = GL_SRGB8_ALPHA8;
dst_format = GL_SRGB8_ALPHA8;
} else if (strcmp(argv[2], "linear_to_srgb") == 0) {
src_format = GL_RGBA;
dst_format = GL_SRGB8_ALPHA8;
} else if (strcmp(argv[2], "srgb_to_linear") == 0) {
src_format = GL_SRGB8_ALPHA8;
dst_format = GL_RGBA;
} else {
print_usage_and_exit(argv[0]);
}
if (strcmp(argv[3], "single_sampled") == 0) {
src_samples = 0;
dst_samples = 0;
scaled_blit = false;
} else if (strcmp(argv[3], "upsample") == 0) {
src_samples = 0;
dst_samples = 1; /* selects minimum available sample count */
scaled_blit = false;
} else if (strcmp(argv[3], "downsample") == 0) {
src_samples = 1;
dst_samples = 0;
scaled_blit = false;
} else if (strcmp(argv[3], "msaa") == 0) {
src_samples = 1;
dst_samples = 1;
scaled_blit = false;
} else if (strcmp(argv[3], "scaled") == 0) {
src_samples = 0;
dst_samples = 0;
scaled_blit = true;
} else {
print_usage_and_exit(argv[0]);
}
if (strcmp(argv[4], "enabled") == 0) {
enable_srgb_framebuffer = true;
} else if (strcmp(argv[4], "disabled") == 0) {
enable_srgb_framebuffer = false;
} else {
print_usage_and_exit(argv[0]);
}
if (strcmp(argv[5], "clear") == 0) {
src_fill_mode_clear = true;
} else if (strcmp(argv[5], "render") == 0) {
src_fill_mode_clear = false;
} else {
print_usage_and_exit(argv[0]);
}
piglit_require_gl_version(21);
piglit_require_extension("GL_ARB_framebuffer_object");
piglit_require_extension("GL_ARB_framebuffer_sRGB");
/* skip the test if we don't support multisampling */
glGetIntegerv(GL_MAX_SAMPLES, &max_samples);
if (src_samples > max_samples ||
dst_samples > max_samples) {
piglit_report_result(PIGLIT_SKIP);
}
prog = piglit_build_simple_program(vs_text, fs_text);
src_fbo = setup_fbo(src_format, src_samples);
dst_fbo = setup_fbo(dst_format, dst_samples);
if (dst_samples != 0)
resolve_fbo = setup_fbo(dst_format, 0);
else
resolve_fbo = 0;
}
/**
* Implements GL 4.4 equation 8.14.
*/
static float
srgb_to_linear(float c_s)
{
return c_s <= 0.04045 ? c_s / 12.92f
: powf((c_s + 0.055f) / 1.055f, 2.4f);
}
/**
* Implements GL 4.4 equation 17.1.
*/
static float
linear_to_srgb(float c_l)
{
if (c_l <= 0.0f)
return 0.0f;
else if (c_l < 0.0031308f)
return 12.92f * c_l;
else if (c_l < 1.0f)
return 1.055f * powf(c_l, 0.41666f) - 0.055f;
return 1.0f;
}
static bool
analyze_image(GLuint fbo)
{
GLfloat *expected_data = malloc(PATTERN_WIDTH * PATTERN_HEIGHT * 4 *
sizeof(GLfloat));
unsigned x, y, component;
bool pass;
for (y = 0; y < PATTERN_HEIGHT; ++y) {
for (x = 0; x < PATTERN_WIDTH; ++x) {
for (component = 0; component < 4; ++component) {
float val = src_fill_mode_clear ?
src_clear_col : x / 255.0;
if (component < 3 && enable_srgb_framebuffer) {
if (src_format == GL_SRGB8_ALPHA8)
val = srgb_to_linear(val);
if (dst_format == GL_SRGB8_ALPHA8)
val = linear_to_srgb(val);
}
expected_data[(y * PATTERN_WIDTH + x)
* 4 + component] = val;
}
}
}
glBindFramebuffer(GL_READ_FRAMEBUFFER, fbo);
pass = piglit_probe_image_rgba(0, 0, PATTERN_WIDTH, PATTERN_HEIGHT,
expected_data);
free(expected_data);
return pass;
}
enum piglit_result
piglit_display()
{
bool pass;
glUseProgram(prog);
glDisable(GL_FRAMEBUFFER_SRGB);
/* Clear buffers */
if (resolve_fbo != 0) {
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, resolve_fbo);
glClear(GL_COLOR_BUFFER_BIT);
}
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, dst_fbo);
glClear(GL_COLOR_BUFFER_BIT);
/* Draw the source image */
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, src_fbo);
if (src_fill_mode_clear) {
/* This case is of particular interest to Intel GPUs. */
glClearColor(src_clear_col, src_clear_col,
src_clear_col, src_clear_col);
glClear(GL_COLOR_BUFFER_BIT);
} else {
glViewport(0, 0, PATTERN_WIDTH, PATTERN_HEIGHT);
piglit_draw_rect(-1, -1, 2, 2);
}
/* Do the blit */
glBindFramebuffer(GL_READ_FRAMEBUFFER, src_fbo);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, dst_fbo);
if (enable_srgb_framebuffer)
glEnable(GL_FRAMEBUFFER_SRGB);
glBlitFramebuffer(0, 0, PATTERN_WIDTH,
scaled_blit ? 1 : PATTERN_HEIGHT,
0, 0, PATTERN_WIDTH, PATTERN_HEIGHT,
GL_COLOR_BUFFER_BIT, GL_NEAREST);
glDisable(GL_FRAMEBUFFER_SRGB);
/* If necessary, do a resolve blit */
if (resolve_fbo != 0) {
glBindFramebuffer(GL_READ_FRAMEBUFFER, dst_fbo);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, resolve_fbo);
glBlitFramebuffer(0, 0, PATTERN_WIDTH, PATTERN_HEIGHT,
0, 0, PATTERN_WIDTH, PATTERN_HEIGHT,
GL_COLOR_BUFFER_BIT, GL_NEAREST);
pass = analyze_image(resolve_fbo);
} else {
pass = analyze_image(dst_fbo);
}
return pass ? PIGLIT_PASS : PIGLIT_FAIL;
}
|