1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
|
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* \file common.cpp
*
* This file defines the functions which can be utilized to develop new
* multisample test cases. Functions can be utilized to:
*
* - Draw a test image to default framebuffer.
* - Initialize test_fbo with specified sample count.
* - Draw a test image to test_fbo.
* - Draw a reference image.
* - Verify the accuracy of multisample antialiasing in FBO.
*
* Accuracy verification is done by rendering a scene consisting of
* triangles that aren't perfectly aligned to pixel coordinates. Every
* triangle in the scene is rendered using a solid color whose color
* components are all 0.0 or 1.0. The scene is renederd in two ways:
*
* - At normal resoluation, using MSAA.
*
* - At very high resolution ("supersampled" by a factor of 16 in both
* X and Y dimensions), without MSAA.
*
* Then, the supersampled image is scaled down to match the resolution
* of the MSAA image, using a fragment shader to manually blend each
* block of 16x16 pixels down to 1 pixel. This produces a reference
* image, which is then compared to the MSAA image to measure the
* error introduced by MSAA.
*
* (Note: the supersampled image is actually larger than the maximum
* texture size that GL 3.0 requires all implementations to support
* (1024x1024), so it is actually done in 1024x1024 tiles that are
* then stitched together to form the reference image).
*
* In the piglit window, the MSAA image appears on the left; the
* reference image is on the right.
*
* For each color component of each pixel, if the reference image has
* a value of exactly 0.0 or 1.0, that pixel is presumed to be
* completely covered by a triangle, so the test verifies that the
* corresponding pixel in the MSAA image is exactly 0.0 or 1.0. Where
* the reference image has a value between 0.0 and 1.0, we know there
* is a triangle boundary that MSAA should smooth out, so the test
* estimates the accuracy of MSAA rendering by computing the RMS error
* between the reference image and the MSAA image for these pixels.
*
* In addition to the above test (the "color" test), there are functions
* which can also verify the proper behavior of the stencil MSAA buffer.
* This can be done in two ways:
*
* - "stencil_draw" test: after drawing the scene, we clear the MSAA
* color buffer and run a "manifest" pass which uses stencil
* operations to make a visual representation of the contents of the
* stencil buffer show up in the color buffer. The rest of the test
* operates as usual. This allows us to verify that drawing
* operations that use the stencil buffer operate correctly in MSAA
* mode.
*
* - "stencil_resolve" test: same as above, except that we blit the
* MSAA stencil buffer to a single-sampled FBO before running the
* "manifest" pass. This allows us to verify that the
* implementation properly downsamples the MSAA stencil buffer.
*
* There are similar variants "depth_draw" and "depth_resolve" for
* testing the MSAA depth buffer.
*
* Note that when downsampling the MSAA color buffer, implementations
* are expected to blend the values of each of the color samples;
* but when downsampling the stencil and depth buffers, they are
* expected to just choose one representative sample (this is because
* an intermediate stencil or depth value would not be meaningful).
* Therefore, the pass threshold is relaxed for the "stencil_resolve"
* and "depth_resolve" tests.
*
* Functions also accepts the following flags:
*
* - "small": Causes the MSAA image to be rendered in extremely tiny
* (16x16) tiles that are then stitched together. This verifies
* that MSAA works properly on very small buffers (a critical corner
* case on i965).
*
* - "depthstencil": Causes the framebuffers to use a combined
* depth/stencil buffer (as opposed to separate depth and stencil
* buffers). On some implementations (e.g. the nVidia proprietary
* driver for Linux) this is necessary for framebuffer completeness.
* On others (e.g. i965), this is an important corner case to test.
*/
#include "common.h"
using namespace piglit_util_fbo;
using namespace piglit_util_test_pattern;
void
DownsampleProg::compile(int supersample_factor)
{
static const char *vert =
"#version 120\n"
"attribute vec2 pos;\n"
"attribute vec2 texCoord;\n"
"varying vec2 texCoordVarying;\n"
"void main()\n"
"{\n"
" gl_Position = vec4(pos, 0.0, 1.0);\n"
" texCoordVarying = texCoord;\n"
"}\n";
static const char *frag_template =
"#version 120\n"
"uniform sampler2DRect samp;\n"
"varying vec2 texCoordVarying;\n"
"void main()\n"
"{\n"
" int supersample_factor = %d;\n"
" vec4 sum = vec4(0.0);\n"
" vec2 pixel = floor(texCoordVarying);\n"
" for (int i = 0; i < supersample_factor; ++i) {\n"
" for (int j = 0; j < supersample_factor; ++j) {\n"
" sum += texture2DRect(\n"
" samp, pixel * float(supersample_factor) + vec2(i, j));\n"
" }\n"
" }\n"
" gl_FragColor = sum / (supersample_factor * supersample_factor);\n"
"}\n";
char *frag;
if (asprintf(&frag, frag_template, supersample_factor) == -1)
piglit_report_result(PIGLIT_FAIL);
/* Compile program */
prog = piglit_build_simple_program_unlinked(vert, frag);
free(frag);
glBindAttribLocation(prog, 0, "pos");
glBindAttribLocation(prog, 1, "texCoord");
glLinkProgram(prog);
if (!piglit_link_check_status(prog)) {
piglit_report_result(PIGLIT_FAIL);
}
/* Set up uniforms */
glUseProgram(prog);
glUniform1i(glGetUniformLocation(prog, "samp"), 0);
/* Set up vertex array object */
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
/* Set up vertex input buffer */
glGenBuffers(1, &vertex_buf);
glBindBuffer(GL_ARRAY_BUFFER, vertex_buf);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 4*sizeof(float),
(void *) 0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 4*sizeof(float),
(void *) (2*sizeof(float)));
/* Set up element input buffer to tessellate a quad into
* triangles
*/
unsigned int indices[6] = { 0, 1, 2, 0, 2, 3 };
GLuint element_buf;
glGenBuffers(1, &element_buf);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, element_buf);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices,
GL_STATIC_DRAW);
}
void
DownsampleProg::run(const Fbo *src_fbo, int dest_width, int dest_height,
bool srgb)
{
float w = dest_width;
float h = dest_height;
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_RECTANGLE, src_fbo->color_tex[0]);
glUseProgram(prog);
glBindVertexArray(vao);
float vertex_data[4][4] = {
{ -1, -1, 0, 0 },
{ -1, 1, 0, h },
{ 1, 1, w, h },
{ 1, -1, w, 0 }
};
glBindBuffer(GL_ARRAY_BUFFER, vertex_buf);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertex_data), vertex_data,
GL_STREAM_DRAW);
if (srgb) {
/* If we're testing sRGB color, instruct OpenGL to
* convert the output of the fragment shader from
* linear color space to sRGB color space.
*/
glEnable(GL_FRAMEBUFFER_SRGB);
}
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, (void *) 0);
glDisable(GL_FRAMEBUFFER_SRGB);
}
Stats::Stats()
: count(0), sum_squared_error(0.0)
{
}
void
Stats::summarize()
{
printf(" count = %d\n", count);
if (count != 0) {
if (sum_squared_error != 0.0) {
printf(" RMS error = %f\n",
sqrt(sum_squared_error / count));
} else {
printf(" Perfect output\n");
}
}
}
bool
Stats::is_perfect()
{
return sum_squared_error == 0.0;
}
bool
Stats::is_better_than(double rms_error_threshold)
{
return sqrt(sum_squared_error / count) < rms_error_threshold;
}
Test::Test(TestPattern *pattern, ManifestProgram *manifest_program,
bool test_resolve, GLbitfield blit_type, bool srgb)
: pattern(pattern),
manifest_program(manifest_program),
test_resolve(test_resolve),
blit_type(blit_type),
num_samples(0),
pattern_width(0),
pattern_height(0),
supersample_factor(0),
srgb(srgb),
downsample_prog(),
filter_mode(GL_NONE)
{
}
Test::~Test() {
delete pattern;
delete manifest_program;
}
void
Test::init(int num_samples, bool small, bool combine_depth_stencil,
int pattern_width, int pattern_height, int supersample_factor,
GLenum filter_mode)
{
this->num_samples = num_samples;
this->pattern_width = pattern_width;
this->pattern_height = pattern_height;
this->supersample_factor = supersample_factor;
this->filter_mode = filter_mode;
FboConfig test_fbo_config(0,
small ? 16 : pattern_width,
small ? 16 : pattern_height);
if (srgb)
test_fbo_config.color_internalformat = GL_SRGB8_ALPHA8;
test_fbo_config.combine_depth_stencil = combine_depth_stencil;
test_fbo.setup(test_fbo_config);
FboConfig multisample_fbo_config = test_fbo_config;
multisample_fbo_config.num_samples = num_samples;
multisample_fbo.setup(multisample_fbo_config);
resolve_fbo.setup(test_fbo_config);
FboConfig supersample_fbo_config = test_fbo_config;
supersample_fbo_config.width = 1024;
supersample_fbo_config.height = 1024;
supersample_fbo_config.num_tex_attachments = 1;
supersample_fbo_config.num_rb_attachments = 0;
supersample_fbo.setup(supersample_fbo_config);
FboConfig downsample_fbo_config = test_fbo_config;
downsample_fbo_config.width = 1024 / supersample_factor;
downsample_fbo_config.height = 1024 / supersample_factor;
downsample_fbo.setup(downsample_fbo_config);
pattern->compile();
downsample_prog.compile(supersample_factor);
if (manifest_program)
manifest_program->compile();
/* Only do depth testing in those parts of the test where we
* explicitly want it
*/
glDisable(GL_DEPTH_TEST);
}
/**
* Blit the data from multisample_fbo to resolve_fbo, forcing the
* implementation to do an MSAA resolve.
*/
void
Test::resolve(Fbo *fbo, GLbitfield which_buffers)
{
glBindFramebuffer(GL_READ_FRAMEBUFFER, fbo->handle);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, resolve_fbo.handle);
resolve_fbo.set_viewport();
if (srgb)
glEnable(GL_FRAMEBUFFER_SRGB);
glBlitFramebuffer(0, 0, fbo->config.width, fbo->config.height,
0, 0, resolve_fbo.config.width,
resolve_fbo.config.height,
which_buffers, filter_mode);
glDisable(GL_FRAMEBUFFER_SRGB);
}
/**
* Use downsample_prog to blend 16x16 blocks of samples in
* supersample_fbo, to produce a reference image in downsample_fbo.
*/
void
Test::downsample_color(int downsampled_width, int downsampled_height)
{
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, downsample_fbo.handle);
downsample_fbo.set_viewport();
downsample_prog.run(&supersample_fbo,
downsample_fbo.config.width,
downsample_fbo.config.height, srgb);
}
/**
* Blit the color data from src_fbo to the given location in the
* windowsystem buffer, so that the user can see it and we can read it
* using glReadPixels.
*/
void
Test::show(Fbo *src_fbo, int x_offset, int y_offset)
{
glBindFramebuffer(GL_READ_FRAMEBUFFER, src_fbo->handle);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, piglit_winsys_fbo);
glViewport(0, 0, piglit_width, piglit_height);
glBlitFramebuffer(0, 0, src_fbo->config.width, src_fbo->config.height,
x_offset, y_offset,
x_offset + src_fbo->config.width,
y_offset + src_fbo->config.height,
GL_COLOR_BUFFER_BIT, GL_NEAREST);
}
/**
* Draw a portion of the test pattern by setting up an appropriate
* projection matrix to map that portion of the test pattern to the
* full FBO.
*/
void
Test::draw_pattern(int x_offset, int y_offset, int width, int height)
{
/* Need a projection matrix such that:
* xc = ((xe + 1) * pattern_width/2 - x_offset) * 2/width - 1
* yc = ((ye + 1) * pattern_height/2 - y_offset) * 2/height - 1
* zc = ze
* wc = we = 1.0
*
* Therefore
* xc = pattern_width / width * xe
* + pattern_width / width - x_offset * 2 / width - 1
* yc = pattern_height / height * ye
* + pattern_height / height - y_offset * 2 / height - 1
* zc = ze
* wc = we = 1.0
*/
float x_scale = float(pattern_width) / width;
float x_delta = x_scale - x_offset * 2.0 / width - 1.0;
float y_scale = float(pattern_height) / height;
float y_delta = y_scale - y_offset * 2.0 / height - 1.0;
float proj[4][4] = {
{ x_scale, 0, 0, x_delta },
{ 0, y_scale, 0, y_delta },
{ 0, 0, 1, 0 },
{ 0, 0, 0, 1 }
};
pattern->draw(proj);
}
/**
* Draw the entire test image, rendering it a piece at a time if
* multisample_fbo is very small.
*/
void
Test::draw_test_image(Fbo *fbo)
{
int num_h_tiles = pattern_width / fbo->config.width;
int num_v_tiles = pattern_height / fbo->config.height;
for (int h = 0; h < num_h_tiles; ++h) {
for (int v = 0; v < num_v_tiles; ++v) {
glBindFramebuffer(GL_DRAW_FRAMEBUFFER,
fbo->handle);
fbo->set_viewport();
int x_offset = h * fbo->config.width;
int y_offset = v * fbo->config.height;
draw_pattern(x_offset, y_offset,
fbo->config.width,
fbo->config.height);
if (test_resolve) {
resolve(fbo, blit_type);
if (manifest_program)
manifest_program->run();
} else {
if (manifest_program)
manifest_program->run();
resolve(fbo,
GL_COLOR_BUFFER_BIT);
}
show(&resolve_fbo, x_offset, y_offset);
}
}
}
/**
* Draw the test image to the default framebuffer
*/
void
Test::draw_to_default_framebuffer()
{
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, piglit_winsys_fbo);
glViewport(0, 0, pattern_width, pattern_height);
draw_pattern(0, 0, pattern_width, pattern_height);
}
/**
* Draw the entire test image, rendering it a piece at a time.
*/
void
Test::draw_reference_image()
{
int downsampled_width =
supersample_fbo.config.width / supersample_factor;
int downsampled_height =
supersample_fbo.config.height / supersample_factor;
int num_h_tiles = pattern_width / downsampled_width;
int num_v_tiles = pattern_height / downsampled_height;
for (int h = 0; h < num_h_tiles; ++h) {
for (int v = 0; v < num_v_tiles; ++v) {
glBindFramebuffer(GL_DRAW_FRAMEBUFFER,
supersample_fbo.handle);
supersample_fbo.set_viewport();
int x_offset = h * downsampled_width;
int y_offset = v * downsampled_height;
draw_pattern(x_offset, y_offset,
downsampled_width, downsampled_height);
if (manifest_program)
manifest_program->run();
downsample_color(downsampled_width, downsampled_height);
show(&downsample_fbo,
pattern_width + x_offset, y_offset);
}
}
}
/**
* Measure the accuracy of MSAA downsampling. Pixels that are fully
* on or off in the reference image are required to be fully on or off
* in the test image. Pixels that are not fully on or off in the
* reference image may be at any grayscale level; we mesaure the RMS
* error between the reference image and the test image.
*/
bool
Test::measure_accuracy()
{
bool pass = true;
glBindFramebuffer(GL_READ_FRAMEBUFFER, piglit_winsys_fbo);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, piglit_winsys_fbo);
glViewport(0, 0, piglit_width, piglit_height);
float *reference_data = new float[pattern_width * pattern_height * 4];
glReadPixels(pattern_width, 0, pattern_width, pattern_height, GL_RGBA,
GL_FLOAT, reference_data);
float *test_data = new float[pattern_width * pattern_height * 4];
glReadPixels(0, 0, pattern_width, pattern_height, GL_RGBA,
GL_FLOAT, test_data);
Stats unlit_stats;
Stats partially_lit_stats;
Stats totally_lit_stats;
for (int y = 0; y < pattern_height; ++y) {
for (int x = 0; x < pattern_width; ++x) {
for (int c = 0; c < 4; ++c) {
int pixel_pos = 4*(y*pattern_width + x) + c;
float ref = reference_data[pixel_pos];
float test = test_data[pixel_pos];
/* When testing sRGB, compare pixels
* linearly so that the measured error
* is comparable to the non-sRGB case.
*/
if (srgb && c < 3) {
ref = piglit_srgb_to_linear(ref);
test = piglit_srgb_to_linear(test);
}
if (ref <= 0.0)
unlit_stats.record(test - ref);
else if (ref >= 1.0)
totally_lit_stats.record(test - ref);
else
partially_lit_stats.record(test - ref);
}
}
}
double error_threshold;
if (test_resolve) {
/* For depth and stencil resolves, the implementation
* typically just picks one of the N multisamples, so
* we have to allow for a generous amount of error.
*/
error_threshold = 0.4;
} else {
/* Empirically, the RMS error for no oversampling is
* about 0.25, and each additional factor of 2
* overampling reduces the error by a factor of about
* 0.6. Leaving some room for variation, we'll set
* the error threshold to 0.333 * 0.62 ^
* log2(num_samples).
*/
int effective_num_samples = num_samples == 0 ? 1 : num_samples;
error_threshold = 0.333 *
pow(0.62, ffs(effective_num_samples) - 1);
}
/* The unlit and totally_lit stats are supposed to count the
* pixels where either a primitive completely covers the pixel
* or no primitive touches it at all. However this is
* effectively only determined by checking whether any
* primitive has intersected one of the supersample positions
* of the reference image. It's completely possible for a
* primitive to intersect the pixel boundary but completely
* miss any of the supersample positions. The GL
* implementation is free to pick whatever multisample
* positions it wants within the pixel boundary so it's also
* possible for a primitive to intersect a multisample
* position but miss all of the supersample positions of the
* reference image. To cope with this we allow a small margin
* of error for the pixels that are either fully lit or fully
* unlit.
*/
double full_pixel_threshold = error_threshold * 0.05f;
printf("Pixels that should be unlit\n");
unlit_stats.summarize();
pass = unlit_stats.is_better_than(full_pixel_threshold) && pass;
printf("Pixels that should be totally lit\n");
totally_lit_stats.summarize();
pass = totally_lit_stats.is_better_than(full_pixel_threshold) && pass;
printf("The error threshold for unlit and totally lit "
"pixels test is %f\n",
full_pixel_threshold);
printf("Pixels that should be partially lit\n");
partially_lit_stats.summarize();
printf("The error threshold for partially lit pixels is %f\n",
error_threshold);
pass = partially_lit_stats.is_better_than(error_threshold) && pass;
// TODO: deal with sRGB.
return pass;
}
bool
Test::run()
{
draw_test_image(&multisample_fbo);
draw_reference_image();
return measure_accuracy();
}
Test *
create_test(test_type_enum test_type, int n_samples, bool small,
bool combine_depth_stencil, int pattern_width, int pattern_height,
int supersample_factor, GLenum filter_mode)
{
Test *test = NULL;
switch (test_type) {
case TEST_TYPE_COLOR:
test = new Test(new Triangles(), NULL, false, 0, false);
break;
case TEST_TYPE_SRGB:
test = new Test(new Triangles(), NULL, false, 0, true);
break;
case TEST_TYPE_STENCIL_DRAW:
test = new Test(new StencilSunburst(),
new ManifestStencil(),
false, 0, false);
break;
case TEST_TYPE_STENCIL_RESOLVE:
test = new Test(new StencilSunburst(),
new ManifestStencil(),
true,
GL_STENCIL_BUFFER_BIT, false);
break;
case TEST_TYPE_DEPTH_DRAW:
test = new Test(new DepthSunburst(),
new ManifestDepth(),
false, 0, false);
break;
case TEST_TYPE_DEPTH_RESOLVE:
test = new Test(new DepthSunburst(),
new ManifestDepth(),
true,
GL_DEPTH_BUFFER_BIT, false);
break;
default:
printf("Unrecognized test type\n");
piglit_report_result(PIGLIT_FAIL);
break;
}
test->init(n_samples, small, combine_depth_stencil, pattern_width,
pattern_height, supersample_factor, filter_mode);
return test;
}
|