1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
|
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "draw-buffers-common.h"
using namespace piglit_util_fbo;
/**
* \file draw-buffers-common.cpp
*
* This file provides utility functions to draw a test pattern to multiple draw
* buffers attached to a FBO with GL_SAMPLE_ALPHA_TO_{COVERAGE, ONE}
* enabled / disabled.
*
* Expected color values are computed for each draw buffer based on the enabled
* GL_SAMPLE_ALPHA_TO_{COVERAGE, ONE} flags and coverage value used to draw the
* test pattern.
*
* Reference image for each draw buffer is drawn in to right half of default
* framebuffer. It is used to verify the accuracy of test image as well as to
* visually compare the difference caused by enabling above flags.
*
* Test image is drawn with the same test pattern in multisample buffer with
* GL_SAMPLE_ALPHA_TO_{COVERAGE, ONE} enabled. All multisample draw buffers
* are sequentially resolved by blitting them to a single sample FBO. resolve_fbo
* is then blitted to left half of window system framebuffer with appropriate y
* offset. This produces three test images in the left half, each corresponds to
* a color attachment.
*
* Test image is verified by comparing it with the corresponding reference
* image in the right half
*
* For sample coverage and sample alpha to coverage, test image should be
* verified by probing the rectangles in left half of window system framebuffer
* and comparing with expected color values. OpenGL 3.0 specification intends to
* allow (but not require) the implementation to produce a dithering effect when
* the coverage value is not a strict multiple of 1 / num_samples. We will skip
* computing expected values and probing for such rectangles. They are drawn
* just to look for dithering by human inspection.
*
* Note:
* At present, the test always uses three draw buffers. To test other
* numbers of draw buffers, we would have to modify the fragment shader in
* nontrivial ways at run time.
*
* Also, the test always uses GL_RGBA8I as integer format or GL_RGBA as float
* format for draw buffer zero.
*
* Author: Anuj Phogat <anuj.phogat@gmail.com>
*/
static Fbo ms_fbo, resolve_fbo, resolve_int_fbo;
static GLbitfield buffer_to_test;
static float *coverage = NULL;
static float *color = NULL;
static float *depth = NULL;
static float *expected_color = NULL;
static float *expected_depth = NULL;
static int num_draw_buffers;
static int num_samples;
static int num_rects;
static int prog;
static int color_loc;
static int depth_loc;
static int frag_0_color_loc;
static int alpha_to_coverage_loc;
static int pattern_width;
static int pattern_height;
static bool is_buffer_zero_integer_format = false;
static bool is_dual_src_blending = false;
static GLenum draw_buffer_zero_format;
static const int num_components = 4; /* for RGBA formats */
static const int num_color_bits = 8; /* for GL_RGBA & GL_RGBA8I formats */
static const float bg_depth = 0.8;
static const float bg_color[4] = {
0.0, 0.6, 0.0, 0.4 };
/* Testing for three draw buffers is supported */
static const GLenum draw_buffers[] = {
GL_COLOR_ATTACHMENT0_EXT,
GL_COLOR_ATTACHMENT1_EXT,
GL_COLOR_ATTACHMENT2_EXT };
/* Offset the viewport transformation on depth value passed to the vertex
* shader by setting it to (2 * depth - 1.0).
*/
static const char *vert_template =
"#version %s\n"
"attribute vec2 pos;\n"
"uniform float depth;\n"
"void main()\n"
"{\n"
" vec4 eye_pos = gl_ModelViewProjectionMatrix * vec4(pos, 0.0, 1.0);\n"
" gl_Position = vec4(eye_pos.xy, 2 * depth - 1.0, 1.0);\n"
"}\n";
/* Fragment shader generates three different color outputs. Different color
* values are generated based on if sample_alpha_to_coverage / dual_src_blend
* are enabled or not.
*/
static const char *frag_template =
"#version %s\n"
"#define NUM_ATTACHMENTS %d\n"
"#define DUAL_SRC_BLEND %d\n"
"#define ALPHA_TO_COVERAGE %d\n"
"#define OUT_TYPE %s\n"
"#define FRAG_OUT_ZERO_WRITE %d\n"
"#if __VERSION__ == 130\n"
"out OUT_TYPE frag_out_0;\n"
"#if DUAL_SRC_BLEND\n"
"out vec4 frag_out_1;\n"
"#elif NUM_ATTACHMENTS > 1\n"
"out vec4 frag_out_1;\n"
"out vec4 frag_out_2;\n"
"#endif\n"
"#else\n"
"#define frag_out_0 gl_FragData[0]\n"
"#if NUM_ATTACHMENTS > 1\n"
"#define frag_out_1 gl_FragData[1]\n"
"#define frag_out_2 gl_FragData[2]\n"
"#endif\n"
"#endif\n"
"uniform OUT_TYPE frag_0_color;\n"
"uniform vec4 color;\n"
"void main()\n"
"{\n"
" #if FRAG_OUT_ZERO_WRITE\n"
" frag_out_0 = frag_0_color;\n"
" #endif\n"
" #if DUAL_SRC_BLEND\n"
" frag_out_1 = vec4(color.rgb, 1.0 - color.a / 2.0);\n"
" #elif ALPHA_TO_COVERAGE && NUM_ATTACHMENTS > 1\n"
" frag_out_1 = vec4(color.rgb, color.a / 2);\n"
" frag_out_2 = vec4(color.rgb, color.a / 4);\n"
" #elif NUM_ATTACHMENTS > 1\n"
" frag_out_1 = frag_out_2 = color;\n"
" #endif\n"
"}\n";
const char *
get_out_type_glsl(void)
{
if (is_buffer_zero_integer_format)
return "ivec4";
else
return "vec4";
}
void
shader_compile(bool sample_alpha_to_coverage,
bool dual_src_blend,
bool frag_out_zero_write)
{
bool need_glsl130 = is_buffer_zero_integer_format || dual_src_blend;
if (need_glsl130) {
piglit_require_gl_version(30);
}
is_dual_src_blending = dual_src_blend;
/* Compile program */
unsigned vert_alloc_len = strlen(vert_template) + 4;
char *vert = (char *) malloc(vert_alloc_len);
sprintf(vert, vert_template, need_glsl130 ? "130" : "120");
GLint vs = piglit_compile_shader_text(GL_VERTEX_SHADER, vert);
free(vert);
/* Generate appropriate fragment shader program */
const char *out_type_glsl = get_out_type_glsl();
unsigned frag_alloc_len = strlen(frag_template) +
strlen(out_type_glsl) + 4;
char *frag = (char *) malloc(frag_alloc_len);
sprintf(frag, frag_template, need_glsl130 ? "130" : "120",
num_draw_buffers,
is_dual_src_blending,
sample_alpha_to_coverage,
out_type_glsl,
frag_out_zero_write);
GLint fs = piglit_compile_shader_text(GL_FRAGMENT_SHADER, frag);
prog = piglit_link_simple_program(vs, fs);
if (!piglit_link_check_status(prog)) {
piglit_report_result(PIGLIT_FAIL);
}
free(frag);
if (need_glsl130) {
if (is_dual_src_blending) {
glBindFragDataLocationIndexed(prog, 0, 0, "frag_out_0");
glBindFragDataLocationIndexed(prog, 0, 1, "frag_out_1");
}
else if (num_draw_buffers > 1) {
glBindFragDataLocation(prog, 0, "frag_out_0");
glBindFragDataLocation(prog, 1, "frag_out_1");
glBindFragDataLocation(prog, 2, "frag_out_2");
}
else
glBindFragDataLocation(prog, 0, "frag_out_0");
}
glBindAttribLocation(prog, 0, "pos");
glEnableVertexAttribArray(0);
/* Linking is rquired after glBindFragDataLocation */
glLinkProgram(prog);
/* Set up uniforms */
glUseProgram(prog);
color_loc = glGetUniformLocation(prog, "color");
depth_loc = glGetUniformLocation(prog, "depth");
frag_0_color_loc = glGetUniformLocation(prog, "frag_0_color");
alpha_to_coverage_loc = glGetUniformLocation(prog, "alphatocoverage");
}
void
allocate_data_arrays(void)
{
float alpha_scale;
/* Draw 2N + 1 rectangles for N samples, each with a unique color
* and coverage value
*/
if (num_samples) {
num_rects = 2 * num_samples + 1;
alpha_scale = (1.0 / (2.0 * num_samples));
}
else {
num_rects = 9;
alpha_scale = 0.125;
}
/* Allocate data arrays based on number of samples used */
color = (float *) malloc(num_rects *
num_components *
sizeof(float));
expected_color = (float *) malloc(num_draw_buffers *
num_rects *
num_components *
sizeof(float));
depth = (float *) malloc(num_rects * sizeof(float));
expected_depth = (float *) malloc(num_draw_buffers *
num_rects *
sizeof(float));
coverage = (float *) malloc(num_rects * sizeof(float));
for (int i = 0; i < num_rects; i++) {
unsigned rect_idx = i * num_components;
for (int j = 0; j < num_components - 1; j++) {
color[rect_idx + j] =
(sin((float)(rect_idx + j)) + 1) / 2;
}
/* In case of alpha-to-coverage enabled, alpha values will be
* directly used as coverage.
*/
if (buffer_to_test == GL_DEPTH_BUFFER_BIT)
/* For depth buffer testing with alpha-to-coverage,
* set more rects with alpha = 1.0.
*/
color[rect_idx + 3] = 2 * i * alpha_scale;
else
color[rect_idx + 3] = i * alpha_scale;
depth[i] = i * (alpha_scale / 2.0);
}
}
void
free_data_arrays(void)
{
free(color);
color = NULL;
free(depth);
depth = NULL;
free(coverage);
coverage = NULL;
free(expected_color);
expected_color = NULL;
}
void
float_color_to_int_color(int *dst, float *src)
{
float offset = 1 - (1 << (num_color_bits - 1));
float scale = -2.0 * offset;
for (int j = 0; j < num_rects; ++j) {
for (int k = 0; k < num_components; ++k) {
dst[j * num_components + k] =
scale * src[j * num_components + k] + offset;
}
}
}
void
draw_pattern(bool sample_alpha_to_coverage,
bool sample_alpha_to_one,
bool is_reference_image,
float *float_color)
{
glUseProgram(prog);
if (buffer_to_test == GL_COLOR_BUFFER_BIT)
glClearColor(bg_color[0], bg_color[1],
bg_color[2], bg_color[3]);
else if (buffer_to_test == GL_DEPTH_BUFFER_BIT)
glClearDepth(bg_depth);
glClear(buffer_to_test);
if (!is_reference_image) {
if (sample_alpha_to_coverage)
glEnable(GL_SAMPLE_ALPHA_TO_COVERAGE);
if (sample_alpha_to_one)
glEnable(GL_SAMPLE_ALPHA_TO_ONE);
}
glUniform1i(alpha_to_coverage_loc, sample_alpha_to_coverage);
unsigned indices[6] = {0, 1, 2, 0, 2, 3};
int *integer_color = (int *) malloc(num_rects *
num_components *
sizeof(int));
/* For integer color buffers convert the color data to integer format */
if (is_buffer_zero_integer_format) {
float_color_to_int_color(integer_color, float_color);
}
for (int i = 0; i < num_rects; ++i) {
float vertices[4][2] = {
{ 0.0f, 0.0f + i * (pattern_height / num_rects) },
{ 0.0f, (i + 1.0f) * (pattern_height / num_rects) },
{ pattern_width, (i + 1.0f) * (pattern_height / num_rects) },
{ pattern_width, 0.0f + i * (pattern_height / num_rects) } };
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE,
sizeof(vertices[0]),
(void *) vertices);
glUniform4fv(color_loc, 1, (float_color + i * num_components));
if (is_buffer_zero_integer_format) {
glUniform4iv(frag_0_color_loc, 1,
integer_color + i * num_components);
}
else {
glUniform4fv(frag_0_color_loc, 1,
(float_color + i * num_components));
}
glUniform1f(depth_loc, depth[i]);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT,
(void *) indices);
}
glDisable(GL_SAMPLE_ALPHA_TO_COVERAGE);
glDisable(GL_SAMPLE_ALPHA_TO_ONE);
free(integer_color);
}
float
get_alpha_blend_factor(float src0_alpha, float src1_alpha,
bool compute_src)
{
GLint blend_func;
if (compute_src)
glGetIntegerv(GL_BLEND_SRC_RGB, &blend_func);
else
glGetIntegerv(GL_BLEND_DST_RGB, &blend_func);
switch(blend_func) {
case GL_SRC_ALPHA:
return src0_alpha;
break;
case GL_ONE_MINUS_SRC_ALPHA:
return (1.0 - src0_alpha);
break;
case GL_SRC1_ALPHA:
return src1_alpha;
break;
case GL_ONE_MINUS_SRC1_ALPHA:
return (1.0 - src1_alpha);
break;
default:
printf("Blend function is not supported"
" by test case\n");
}
return -1;
}
void
compute_blend_color(float *frag_color, int rect_count,
bool sample_alpha_to_one)
{
float src_blend_factor, dst_blend_factor;
/* Taking in to account alpha values output by
* fragment shader.
*/
float src0_alpha = color[rect_count * num_components + 3];
float src1_alpha = 1.0 - src0_alpha / 2.0;
if (sample_alpha_to_one && num_samples) {
/* Set fragment src0_alpha, src1_alpha to 1.0 and use them
* to compute blending factors.
*/
src0_alpha = 1.0;
src1_alpha = 1.0;
}
src_blend_factor = get_alpha_blend_factor(src0_alpha,
src1_alpha,
true);
dst_blend_factor = get_alpha_blend_factor(src0_alpha,
src1_alpha,
false);
/* Using default BlendEquation, blend_color is:
* src0_color * src_blend_factor + dst_color * dst_blend_factor
*/
for (int j = 0; j < num_components; j++) {
float blend_color=
color[rect_count * num_components + j] *
src_blend_factor +
bg_color[j] *
dst_blend_factor;
frag_color[rect_count * num_components + j] =
(blend_color > 1) ? 1.0 : blend_color;
}
}
void
compute_expected_color(bool sample_alpha_to_coverage,
bool sample_alpha_to_one,
int draw_buffer_count)
{
unsigned buffer_idx_offset = draw_buffer_count *
num_rects *
num_components;
for (int i = 0; i < num_rects; i++) {
float *frag_color = NULL;
float samples_used = coverage[i] * num_samples;
/* Expected color values are computed only for integer
* number of samples_used. Non-integer values may result
* in dithering effect.
*/
if (samples_used == (int) samples_used) {
int rect_idx_offset = buffer_idx_offset +
i * num_components;
frag_color = (float *) malloc(num_rects *
num_components *
sizeof(float));
/* Do dual source blending computations */
if (is_dual_src_blending) {
compute_blend_color(frag_color,
i /* rect_count */,
sample_alpha_to_one);
}
else {
memcpy(frag_color, color,
num_rects * num_components *
sizeof(float));
}
/* Coverage value decides the number of samples in
* multisample buffer covered by an incoming fragment,
* which will then receive the fragment data. When the
* multisample buffer is resolved it gets blended with
* the background color which is written to the
* remaining samples. Page 254 (page 270 of the PDF) of
* the OpenGL 3.0 spec says: "The method of combination
* is not specified, though a simple average computed
* independently for each color component is recommended."
* This is followed by NVIDIA and AMD in their proprietary
* linux drivers.
*/
for (int j = 0; j < num_components - 1 ; j++) {
expected_color[rect_idx_offset + j] =
frag_color[i * num_components + j] * coverage[i] +
bg_color[j] * (1 - coverage[i]);
}
/* Compute expected alpha values of draw buffers */
float frag_alpha = frag_color[i * num_components + 3];
int alpha_idx = rect_idx_offset + 3;
if ((!num_samples &&
!sample_alpha_to_coverage) ||
is_buffer_zero_integer_format) {
/* Taking in to account alpha values output by
* fragment shader.
*/
expected_color[alpha_idx] =
is_buffer_zero_integer_format ?
frag_alpha / (1 << draw_buffer_count) :
frag_alpha;
}
else if (sample_alpha_to_coverage) {
/* Taking in to account alpha values output by
* fragment shader.
*/
frag_alpha /= (1 << draw_buffer_count);
if (sample_alpha_to_one) {
expected_color[alpha_idx] =
1.0 * coverage[i] +
bg_color[3] * (1 - coverage[i]);
}
else {
expected_color[alpha_idx] =
frag_alpha * coverage[i] +
bg_color[3] * (1 - coverage[i]);
}
}
else {
expected_color[alpha_idx] =
sample_alpha_to_one ? 1.0 : frag_alpha;
}
}
free(frag_color);
}
}
void
compute_expected_depth(void)
{
/* Compute the expected depth values only for coverage value equal to
* 0.0 and 1.0. Expected depth is not defined by OpenGL specification
* when coverage value is between 0.0 and 1.0 */
for (int i = 0; i < num_rects; i++) {
if (coverage[i] == 0.0)
expected_depth[i] = bg_depth;
else if (coverage[i] == 1.0)
expected_depth[i] = (depth[i] < 1.0) ? depth[i] : 1.0;
}
}
void
compute_expected(bool sample_alpha_to_coverage,
bool sample_alpha_to_one,
int draw_buffer_count)
{
int i;
/* Compute the coverage value used in the test */
if (num_samples &&
sample_alpha_to_coverage &&
!is_buffer_zero_integer_format) {
for (i = 0; i < num_rects; i++) {
/* Coverage value for all the draw buffers comes from
* the fragment alpha values of draw buffer zero
*/
float frag_alpha = color[i * num_components + 3];
coverage[i] = (frag_alpha < 1.0) ? frag_alpha : 1.0;
}
}
else {
for (i = 0; i < num_rects; i++)
coverage[i] = 1.0;
}
if (buffer_to_test == GL_COLOR_BUFFER_BIT) {
/* Don't compute expected color for color buffer zero
* if no renderbuffer is attached to it.
*/
if (draw_buffer_count == 0 && draw_buffer_zero_format == GL_NONE)
return;
compute_expected_color(sample_alpha_to_coverage,
sample_alpha_to_one,
draw_buffer_count);
}
else if (buffer_to_test == GL_DEPTH_BUFFER_BIT)
compute_expected_depth();
}
/* This function probes all the draw buffers blitted to downsampled FBO
* (resolve_fbo / resolve_int_fbo) and compare against expected color values.
*/
bool
probe_framebuffer_color(void)
{
bool result = true;
int * expected_int_color = NULL;
int rect_width = pattern_width;
int rect_height = pattern_height / num_rects;
for (int i = 0; i < num_draw_buffers; i++) {
/* Don't probe color buffer zero if no renderbuffer is
* attached to it.
*/
if (i == 0 && draw_buffer_zero_format == GL_NONE)
continue;
bool is_integer_operation = is_buffer_zero_integer_format && !i;
if (is_integer_operation) {
glBindFramebuffer(GL_READ_FRAMEBUFFER,
resolve_int_fbo.handle);
expected_int_color = (int*) malloc(num_rects *
num_components *
sizeof(int));
}
else {
glBindFramebuffer(GL_READ_FRAMEBUFFER,
resolve_fbo.handle);
}
for (int j = 0; j < num_rects; j++) {
float samples_used = coverage[j] * num_samples;
int rect_x = 0;
int rect_y = i * pattern_height +
j * rect_height;
int rect_idx_offset = (i * num_rects + j) *
num_components;
/* Only probe rectangles with coverage value which is a
* strict multiple of 1 / num_samples.
*/
if (samples_used == (int)samples_used) {
if (is_integer_operation) {
float_color_to_int_color(expected_int_color,
expected_color);
result = piglit_probe_rect_rgba_int(
rect_x,
rect_y,
rect_width,
rect_height,
expected_int_color +
rect_idx_offset)
&& result;
}
else {
result = piglit_probe_rect_rgba(
rect_x,
rect_y,
rect_width,
rect_height,
expected_color + rect_idx_offset)
&& result;
}
}
}
}
if (expected_int_color)
free(expected_int_color);
return result;
}
bool
probe_framebuffer_depth(void)
{
bool result = true;
int rect_width = pattern_width;
int rect_height = pattern_height / num_rects;
glBindFramebuffer(GL_READ_FRAMEBUFFER, resolve_fbo.handle);
for (int i = 0; i < num_rects; i++) {
if (coverage[i] == 0.0 || coverage[i] == 1.0) {
int rect_x = 0;
int rect_y = i * rect_height;
int rect_idx = i;
result = piglit_probe_rect_depth(
rect_x,
rect_y,
rect_width,
rect_height,
expected_depth[rect_idx])
&& result;
}
else {
/*Skip probing polygons which are drawn with fractional
* coverage value (between 0.0 and 1.0)*/
continue;
}
}
return result;
}
void
draw_image_to_window_system_fb(int draw_buffer_count, bool rhs)
{
unsigned rect_x = 0;
unsigned rect_y = draw_buffer_count * pattern_height;
unsigned array_size = num_components * pattern_width * pattern_height;
float *image = (float *) malloc(sizeof(float) * array_size);
if (is_buffer_zero_integer_format && draw_buffer_count == 0) {
glBindFramebuffer(GL_READ_FRAMEBUFFER, resolve_int_fbo.handle);
int *tmp = (int *) malloc(sizeof(int) * array_size);
glReadPixels(rect_x, rect_y,
pattern_width, pattern_height,
GL_RGBA_INTEGER,
GL_INT, tmp);
for (unsigned i = 0; i < array_size; ++i) {
image[i] = tmp[i];
}
/* Convert integer color data to float color data */
float color_offset = 1.0 - (1 << (num_color_bits - 1));
float color_scale = -2.0 * color_offset;
for (unsigned i = 0; i < array_size; ++i) {
image[i] = (image[i] - color_offset) / color_scale;
}
free(tmp);
}
else{
glBindFramebuffer(GL_READ_FRAMEBUFFER, resolve_fbo.handle);
glReadPixels(rect_x, rect_y,
pattern_width,
pattern_height,
GL_RGBA,
GL_FLOAT, image);
}
/* Rendering using gldrawPixels() with dual source blending enabled
* produces undefined results. So, disable blending in
* piglit_visualize_image function to avoid undefined behavior.
*/
GLboolean isBlending;
glGetBooleanv(GL_BLEND, &isBlending);
glDisable(GL_BLEND);
piglit_visualize_image(image, GL_RGBA,
pattern_width, pattern_height,
draw_buffer_count + 1, rhs);
if (isBlending)
glEnable(GL_BLEND);
free(image);
}
void
draw_test_image(bool sample_alpha_to_coverage, bool sample_alpha_to_one)
{
/* Draw test pattern in multisample ms_fbo with
* GL_SAMPLE_ALPHA_TO_COVERAGE enabled
*/
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, ms_fbo.handle);
glDrawBuffers(num_draw_buffers, draw_buffers);
ms_fbo.set_viewport();
draw_pattern(sample_alpha_to_coverage,
sample_alpha_to_one,
false /* is_reference_image */,
color);
for (int i = 0; i < num_draw_buffers; i++) {
/* Blit ms_fbo to singlesample FBO to resolve multisample
* buffer.
*/
glBindFramebuffer(GL_READ_FRAMEBUFFER, ms_fbo.handle);
if (buffer_to_test == GL_COLOR_BUFFER_BIT)
glReadBuffer(GL_COLOR_ATTACHMENT0_EXT + i);
if (is_buffer_zero_integer_format && !i)
glBindFramebuffer(GL_DRAW_FRAMEBUFFER,
resolve_int_fbo.handle);
else
glBindFramebuffer(GL_DRAW_FRAMEBUFFER,
resolve_fbo.handle);
/* Blit all the draw buffers to resolve_fbo / resolve_int_fbo
* with different y_offset.
*/
unsigned y_offset = i * pattern_height;
glBlitFramebuffer(0, 0,
pattern_width, pattern_height,
0, y_offset,
pattern_width, pattern_height + y_offset,
buffer_to_test, GL_NEAREST);
if (buffer_to_test == GL_COLOR_BUFFER_BIT) {
draw_image_to_window_system_fb(i /* draw_buffer_count */,
false /* rhs */);
}
/* Expected color values for all the draw buffers are computed
* to aid probe_framebuffer_color() and probe_framebuffer_depth()
* in verification.
*/
if (sample_alpha_to_coverage || is_dual_src_blending) {
/* Expected color is different for different draw
* buffers
*/
compute_expected(sample_alpha_to_coverage,
sample_alpha_to_one,
i /* draw_buffer_count */);
}
}
}
void
draw_reference_image(bool sample_alpha_to_coverage, bool sample_alpha_to_one)
{
/* Draw test pattern in multisample ms_fbo with
* GL_SAMPLE_ALPHA_TO_COVERAGE disabled.
*/
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, ms_fbo.handle);
glDrawBuffers(num_draw_buffers, draw_buffers);
ms_fbo.set_viewport();
if (sample_alpha_to_coverage) {
draw_pattern(sample_alpha_to_coverage,
sample_alpha_to_one,
true /* is_reference_image */,
color);
}
else {
/* Value of draw_buffer_count doesn't matter in this case */
compute_expected(sample_alpha_to_coverage,
sample_alpha_to_one,
0 /* draw_buffer_count */);
draw_pattern(sample_alpha_to_coverage,
sample_alpha_to_one,
true /* is_reference_image */,
expected_color);
}
for (int i = 0; i < num_draw_buffers; i++) {
/* Blit ms_fbo to resolve_fbo to resolve multisample buffer */
glBindFramebuffer(GL_READ_FRAMEBUFFER, ms_fbo.handle);
if (buffer_to_test == GL_COLOR_BUFFER_BIT)
glReadBuffer(GL_COLOR_ATTACHMENT0_EXT + i);
if (is_buffer_zero_integer_format && !i) {
glBindFramebuffer(GL_DRAW_FRAMEBUFFER,
resolve_int_fbo.handle);
}
else {
glBindFramebuffer(GL_DRAW_FRAMEBUFFER,
resolve_fbo.handle);
}
/* Blit all the draw buffers to resolve_fbo with different
* y_offset.
*/
unsigned y_offset = i * pattern_height;
glBlitFramebuffer(0, 0,
pattern_width, pattern_height,
0, y_offset,
pattern_width, pattern_height + y_offset,
buffer_to_test, GL_NEAREST);
if (buffer_to_test == GL_COLOR_BUFFER_BIT) {
draw_image_to_window_system_fb(i /* draw_buffer_count */,
true /* rhs */);
}
}
}
void
ms_fbo_and_draw_buffers_setup(int samples,
int width,
int height,
int n_attachments,
GLenum test_buffer,
GLenum color_buffer_zero_format)
{
int maxBuffers;
glGetIntegerv(GL_MAX_COLOR_ATTACHMENTS, &maxBuffers);
/* Ensure that requested number of color attachments are
* supported by the implementation and fragment shader.
*/
if (n_attachments <= (int) ARRAY_SIZE(draw_buffers) &&
n_attachments <= maxBuffers)
num_draw_buffers = n_attachments;
else {
printf("Number of attachments requested are not supported\n");
piglit_report_result(PIGLIT_SKIP);
}
pattern_width = width;
pattern_height = height;
draw_buffer_zero_format = color_buffer_zero_format;
/* Setup frame buffer objects with required configuration */
FboConfig ms_config(samples, pattern_width, pattern_height);
ms_config.color_internalformat = color_buffer_zero_format;
ms_fbo.setup(ms_config);
/* Create resolve_fbo with dimensions large enough to accomodate
* all the draw buffers
*/
FboConfig resolve_config(0, pattern_width,
num_draw_buffers * pattern_height);
resolve_config.color_internalformat = GL_RGBA;
resolve_fbo.setup(resolve_config);
/* Create resolve_int_fbo to store downsampled integer draw buffer */
if (color_buffer_zero_format == GL_RGBA8I) {
resolve_config.color_internalformat = GL_RGBA8I;
/* Assuming single integer buffer */
resolve_config.height = pattern_height;
resolve_int_fbo.setup(resolve_config);
is_buffer_zero_integer_format = true;
}
else if (color_buffer_zero_format != GL_RGBA &&
color_buffer_zero_format != GL_NONE) {
printf("Draw buffer zero format is not"
" supported by test functions.\n");
piglit_report_result(PIGLIT_FAIL);
}
if (!piglit_check_gl_error(GL_NO_ERROR)) {
printf("Error setting up frame buffer objects\n");
piglit_report_result(PIGLIT_FAIL);
}
/* Query the number of samples used in ms_fbo. OpenGL implementation
* may create FBO with more samples per pixel than what is requested.
*/
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, ms_fbo.handle);
glGetIntegerv(GL_SAMPLES, &num_samples);
/* Attach additional color buffers to multisample FBO with default
* non-integer format (GL_RGBA.)
*/
GLuint *color_rb = (GLuint *)malloc((num_draw_buffers - 1) *
sizeof(GLuint));
glGenRenderbuffers(num_draw_buffers - 1, color_rb);
for (int i = 0; i < num_draw_buffers - 1; i++) {
glBindRenderbuffer(GL_RENDERBUFFER, color_rb[i]);
glRenderbufferStorageMultisample(GL_RENDERBUFFER,
ms_fbo.config.num_samples,
GL_RGBA,
ms_fbo.config.width,
ms_fbo.config.height);
glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0 + (i + 1),
GL_RENDERBUFFER,
color_rb[i]);
}
GLenum status = glCheckFramebufferStatus(GL_DRAW_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
printf("Error attaching additional color buffers\n");
piglit_report_result(PIGLIT_FAIL);
}
buffer_to_test = test_buffer;
free(color_rb);
}
|