1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "piglit-test-pattern.h"
#include "piglit-fbo.h"
using namespace piglit_util_fbo;
using namespace piglit_util_test_pattern;
/**
* \file sample-coverage.cpp
*
* Verify glSampleCoverage() with and without coverage mask invert.
*
* This test operates by drawing a test pattern to multisample_fbo with
* GL_SAMPLE_COVERAGE disabled.
*
* Blit the multisample_fbo to top half of window system framebuffer. This
* is used as reference image to visually compare the difference caused by
* sample coverage value.
*
* Compute the expected color values based on the coverage value used to
* draw the test pattern and status of coverage mask invert flag.
*
* Clear the multisample framebuffer to a unique color. Draw the
* same test pattern in multisample buffer with GL_SAMPLE_COVERAGE enabled.
* Resolve the multisample FBO by blitting it to a single sample FBO. Blit
* the resolve_fbo to bottom half of window system framebuffer. This is our
* test image.
*
* Probe the rectangles in bottom half of window system framebuffer and
* compare with expected color values. OpenGL 3.0 specification intends
* to allow (but not require) the implementation to produce a dithering
* effect when the coverage value is not a strict multiple of 1/num_samples.
* We will skip computing expected values and probing for such rectangles.
* They are drawn just to look for dithering by human inspection.
*
* This test can be executed in inverted / non-inverted modes using command
* line options.
*
* Note: glSampleCoverage() takes effect in the graphics pipeline before
* the point where the output of the fragment shader is split into the
* various buffers. So it's very likely that if glSampleCoverage() works
* properly for color buffers, it will work properly for depth and stencil
* buffers too.
*
* Author: Anuj Phogat <anuj.phogat@gmail.com>
*/
PIGLIT_GL_TEST_CONFIG_BEGIN
config.supports_gl_compat_version = 10;
config.window_width = 512;
config.window_height = 256;
config.window_visual = PIGLIT_GL_VISUAL_DOUBLE | PIGLIT_GL_VISUAL_RGBA;
config.khr_no_error_support = PIGLIT_NO_ERRORS;
PIGLIT_GL_TEST_CONFIG_END
const int pattern_width = 512; const int pattern_height = 128;
static Fbo ms_fbo, resolve_fbo;
static GLbitfield buffer_to_test;
static bool coverage_invert = false;
static float *cov = NULL;
static float *color = NULL;
static float *expected = NULL;
static int num_samples;
static int num_rects;
static int prog;
static int color_loc;
static int depth_loc;
static const float bg_color[4] = { 0.4, 0.6, 0.0, 0.8 };
static const char *vert =
"#version 120\n"
"attribute vec2 pos;\n"
"uniform float depth;\n"
"void main()\n"
"{\n"
" vec4 eye_pos = gl_ModelViewProjectionMatrix * vec4(pos, 0.0, 1.0);\n"
" gl_Position = vec4(eye_pos.xy, depth, 1.0);\n"
"}\n";
static const char *frag =
"#version 120\n"
"uniform vec4 color;\n"
"void main()\n"
"{\n"
" gl_FragColor = color;\n"
"}\n";
void
shader_compile()
{
/* Compile program */
GLint vs = piglit_compile_shader_text(GL_VERTEX_SHADER, vert);
GLint fs = piglit_compile_shader_text(GL_FRAGMENT_SHADER, frag);
prog = piglit_link_simple_program(vs, fs);
if (!piglit_link_check_status(prog)) {
piglit_report_result(PIGLIT_FAIL);
}
glBindAttribLocation(prog, 0, "pos");
glEnableVertexAttribArray(0);
/* Set up uniforms */
glUseProgram(prog);
color_loc = glGetUniformLocation(prog, "color");
depth_loc = glGetUniformLocation(prog, "depth");
}
void
draw_pattern(bool sample_coverage)
{
glUseProgram(prog);
glClearColor(bg_color[0], bg_color[1],
bg_color[2], bg_color[3]);
glClear(buffer_to_test);
if (sample_coverage)
glEnable (GL_SAMPLE_COVERAGE);
unsigned int indices[6] = {0, 1, 2, 0, 2, 3};
for (int i = 0; i < num_rects; ++i) {
float vertex_data[4][2] = {
{ 0.0f + i * (pattern_width / num_rects), 0.0f },
{ 0.0f + i * (pattern_width / num_rects), pattern_height },
{ (i + 1.0f) * (pattern_width / num_rects), pattern_height },
{ (i + 1.0f) * (pattern_width / num_rects), 0.0f } };
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE,
sizeof(vertex_data[0]),
(void *) vertex_data);
if(sample_coverage) {
if(coverage_invert)
glSampleCoverage (cov[i], GL_TRUE);
else
glSampleCoverage (cov[i], GL_FALSE);
}
glUniform4fv(color_loc, 1, (color + i * 4));
glUniform1f(depth_loc, 0.0f);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT,
(void *) indices);
}
if(sample_coverage)
glDisable (GL_SAMPLE_COVERAGE);
}
void
print_usage_and_exit(char *prog_name)
{
printf("Usage: %s <num_samples> <mode> \n"
" where <mode> is one of:\n"
" inverted\n"
" non-inverted\n",
prog_name);
piglit_report_result(PIGLIT_FAIL);
}
void
compute_expected(void)
{
int i, j;
/* Sample coverage doesn't affect single sample FBO */
if(num_samples == 0) {
for(i = 0; i < 4; i++)
expected[i] = color[i];
return;
}
float *coverage = new float[num_rects];
if(coverage_invert) {
for (i = 0; i < num_rects; i++)
coverage[i] = 1 - cov[i];
}
else
for (i = 0; i < num_rects; i++)
coverage[i] = cov[i];
/* Coverage value decides the number of samples in multisample buffer
* covered by an incoming fragment, which will then receive the fragment
* data. When the multisample buffer is resolved it will be blended
* with the background color which will be written to the remaining
* samples.
* Page 254 (page 270 of the PDF) of the OpenGL 3.0 spec says:
* "The method of combination is not specified, though a simple average
* computed independently for each color component is recommended."
*/
if(buffer_to_test == GL_COLOR_BUFFER_BIT) {
for (i = 0; i < num_rects; i++) {
float samples_used = coverage[i] * num_samples;
/* Exepected color values are computed only for integer
* number of samples_used
*/
if(samples_used == (int)samples_used) {
for(j =0; j < 4; j++)
expected[i * 4 + j] =
color[i * 4 + j] * coverage[i] +
bg_color[j] * (1 - coverage[i]);
}
}
}
delete [] coverage;
}
bool
probe_framebuffer_color(void)
{
bool result = true;
float *coverage = new float[num_rects];
if(coverage_invert) {
for (int i = 0; i < num_rects; i++)
coverage[i] = 1 - cov[i];
}
else
for (int i = 0; i < num_rects; i++)
coverage[i] = cov[i];
glBindFramebuffer(GL_READ_FRAMEBUFFER, piglit_winsys_fbo);
for (int i = 0; i < num_rects; i++) {
float samples_used = coverage[i] * num_samples;
/* Only probe rectangles with coverage value which is a strict
* multiple of 1 / num_samples.
*/
if(samples_used == (int)samples_used) {
result = piglit_probe_rect_rgba(
i * (pattern_width / num_rects),
0,
pattern_width / num_rects,
pattern_height,
expected + i * 4)
&& result;
}
}
delete [] coverage;
return result;
}
bool
test_sample_coverage(void)
{
bool result = true;
compute_expected();
/* Now draw test pattern in multisample ms_fbo with GL_SAMPLE_COVERAGE
* enabled
*/
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, ms_fbo.handle);
draw_pattern(true /* sample_coverage */);
/* Blit ms_fbo to resolve_fbo to resolve multisample buffer */
glBindFramebuffer(GL_READ_FRAMEBUFFER, ms_fbo.handle);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, resolve_fbo.handle);
glBlitFramebuffer(0, 0, pattern_width, pattern_height,
0, 0, pattern_width, pattern_height,
buffer_to_test, GL_NEAREST);
/* Blit resolve_fbo to the bottom half of window system framebuffer.
* This is the test image.
*/
glBindFramebuffer(GL_READ_FRAMEBUFFER, resolve_fbo.handle);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, piglit_winsys_fbo);
glBlitFramebuffer(0, 0, pattern_width, pattern_height,
0, 0, pattern_width, pattern_height,
buffer_to_test, GL_NEAREST);
/* Probe the bottom half of default framebuffer and compare to the
* expected values */
if (buffer_to_test == GL_COLOR_BUFFER_BIT)
result = probe_framebuffer_color() && result;
result = piglit_check_gl_error(GL_NO_ERROR) && result;
return result;
}
void
allocate_data_arrays(void)
{
/* Draw 2N + 1 rectangles for N samples, each with a unique color
* and coverage value
*/
num_rects = 2 * num_samples + 1;
/* Allocate data arrays based on number of samples used */
color = (float *) malloc(num_rects * 4 * sizeof(float));
cov = (float *) malloc(num_rects * sizeof(float));
expected = (float *) malloc(num_rects * 4 * sizeof(float));
for(int i = 0; i < num_rects; i++) {
color[i * 4 + 0] = (sin((float)(i * 4 + 0)) + 1) / 2;
color[i * 4 + 1] = (sin((float)(i * 4 + 1)) + 1) / 2;
color[i * 4 + 2] = (sin((float)(i * 4 + 2)) + 1) / 2;
color[i * 4 + 3] = (sin((float)(i * 4 + 3)) + 1) / 2;
cov[i] = i * (1.0 / (2 * num_samples));
}
}
void
free_data_arrays(void)
{
if(color != NULL) {
free(color);
color = NULL;
}
if(cov != NULL) {
free(cov);
cov = NULL;
}
if(expected != NULL) {
free(expected);
expected = NULL;
}
}
void
piglit_init(int argc, char **argv)
{
int samples;
if (argc < 3)
print_usage_and_exit(argv[0]);
{
char *endptr = NULL;
samples = strtol(argv[1], &endptr, 0);
if (endptr != argv[1] + strlen(argv[1]))
print_usage_and_exit(argv[0]);
}
for (int i = 2; i < argc; ++i) {
if (strcmp(argv[i], "inverted") == 0)
coverage_invert = true;
else if (strcmp(argv[i], "non-inverted") == 0)
coverage_invert = false;
}
piglit_require_gl_version(21);
piglit_require_extension("GL_ARB_framebuffer_object");
piglit_require_extension("GL_ARB_vertex_array_object");
piglit_ortho_projection(pattern_width, pattern_height, GL_TRUE);
/* Skip the test if samples > GL_MAX_SAMPLES */
GLint max_samples;
glGetIntegerv(GL_MAX_SAMPLES, &max_samples);
if (samples > max_samples)
piglit_report_result(PIGLIT_SKIP);
/* Setup frame buffer objects with required configuration */
ms_fbo.setup(FboConfig(samples, pattern_width, pattern_height));
resolve_fbo.setup(FboConfig(0, pattern_width, pattern_height));
if (!piglit_check_gl_error(GL_NO_ERROR)) {
printf("Error setting up frame buffer objects\n");
piglit_report_result(PIGLIT_FAIL);
}
/* Query the number of samples used in ms_fbo. OpenGL implementation
* may create FBO with more samples per pixel than what is requested.
*/
glBindRenderbuffer(GL_RENDERBUFFER, ms_fbo.color_rb[0]);
glGetRenderbufferParameteriv(GL_RENDERBUFFER,
GL_RENDERBUFFER_SAMPLES,
&num_samples);
buffer_to_test = GL_COLOR_BUFFER_BIT;
shader_compile();
}
enum piglit_result
piglit_display()
{
bool pass = true;
allocate_data_arrays();
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, piglit_winsys_fbo);
glClearColor(0.0, 0.0, 0.0, 1.0);
glClear(buffer_to_test);
/* Draw test pattern in multisample ms_fbo with GL_SAMPLE_COVERAGE
* disabled.
*/
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, ms_fbo.handle);
ms_fbo.set_viewport();
draw_pattern(false /* sample_coverage */);
/* Blit ms_fbo to the top half of window system framebuffer. This
* is our reference image to visually compare the effect of MSAA with
* sample coverage.
*/
glBindFramebuffer(GL_READ_FRAMEBUFFER, ms_fbo.handle);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, piglit_winsys_fbo);
glBlitFramebuffer(0, 0,
pattern_width, pattern_height,
0, pattern_height,
pattern_width, 2 * pattern_height,
buffer_to_test, GL_NEAREST);
pass = test_sample_coverage() && pass;
/* Free the memory allocated for data arrays */
free_data_arrays();
if (!piglit_automatic &&
buffer_to_test != GL_DEPTH_BUFFER_BIT)
piglit_present_results();
return pass ? PIGLIT_PASS : PIGLIT_FAIL;
}
|