1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "piglit-util-gl.h"
/**
* @file time-elapsed.c
*
* Test TIME_ELAPSED and TIMESTAMP queries.
*/
PIGLIT_GL_TEST_CONFIG_BEGIN
config.supports_gl_compat_version = 10;
config.window_visual = PIGLIT_GL_VISUAL_DOUBLE | PIGLIT_GL_VISUAL_RGBA;
PIGLIT_GL_TEST_CONFIG_END
static char *vs_text =
"#version 110\n"
"void main()\n"
"{\n"
" gl_Position = gl_Vertex;\n"
"}\n";
/**
* Time-wasting fragment shader. This fragment shader computes:
*
* x = (sum(i=0..(iters-1): 2*i) % iters) / iters
*
* This value should always work out to 0.0, but it's highly unlikely
* that an optimizer will figure this out. Hence we can use this
* shader to waste an arbitrary amount of time (by suitable choice of
* the value of iters).
*
* The shader outputs a color of (x, 1.0, 0.0, 0.0).
*/
static char *fs_text =
"#version 110\n"
"uniform int iters;\n"
"void main()\n"
"{\n"
" int cumulative_sum = 0;\n"
" for (int i = 0; i < iters; ++i) {\n"
" cumulative_sum += i;\n"
" if (cumulative_sum >= iters)\n"
" cumulative_sum -= iters;\n"
" cumulative_sum += i;\n"
" if (cumulative_sum >= iters)\n"
" cumulative_sum -= iters;\n"
" }\n"
" float x = float(cumulative_sum) / float(iters);\n"
" gl_FragColor = vec4(x, 1.0, 0.0, 0.0);\n"
"}\n";
enum {
TIME_ELAPSED,
TIMESTAMP
} test = TIME_ELAPSED;
GLuint prog;
GLint iters_loc;
static float
draw(GLuint *q, int iters)
{
int64_t start_time, end_time;
glUseProgram(prog);
glUniform1i(iters_loc, iters);
start_time = piglit_time_get_nano();
if (test == TIMESTAMP) {
glQueryCounter(q[0], GL_TIMESTAMP);
} else {
glBeginQuery(GL_TIME_ELAPSED, q[0]);
}
piglit_draw_rect(-1, -1, 2, 2);
if (test == TIMESTAMP) {
glQueryCounter(q[1], GL_TIMESTAMP);
} else {
glEndQuery(GL_TIME_ELAPSED);
}
/* This glFinish() is important, since this is used in a
* timing loop.
*/
glFinish();
end_time = piglit_time_get_nano();
return (end_time - start_time)/ 1000.0 / 1000.0 / 1000.0;
}
static float
get_gpu_time(GLuint *q)
{
GLint64EXT elapsed;
if (test == TIMESTAMP) {
GLint64 start, end;
glGetQueryObjecti64vEXT(q[0], GL_QUERY_RESULT, &start);
glGetQueryObjecti64vEXT(q[1], GL_QUERY_RESULT, &end);
elapsed = end - start;
} else {
glGetQueryObjecti64vEXT(q[0], GL_QUERY_RESULT, &elapsed);
}
return elapsed / 1000.0 / 1000.0 / 1000.0;
}
enum piglit_result
piglit_display(void)
{
bool pass = true;
float green[4] = {0.0, 1.0, 0.0, 0.0};
GLuint q[2];
int iters;
#define NUM_RESULTS 5
float cpu_time[NUM_RESULTS];
float gpu_time[NUM_RESULTS];
float delta[NUM_RESULTS];
float cpu_time_mean;
float delta_mean, delta_stddev;
float cpu_overhead;
float t, t_cutoff;
int i;
glColor4f(0.0, 1.0, 0.0, 0.0);
glGenQueries(2, q);
/* Prime the drawing pipe before we start measuring time,
* since the first draw call is likely to be slower than all
* others.
*/
draw(q, 1);
/* Figure out some baseline difference between GPU time
* elapsed and CPU time elapsed for a single draw call (CPU
* overhead of timer query and glFinish()).
*
* Note that this doesn't take into account any extra CPU time
* elapsed from start to finish if multiple batchbuffers are
* accumulated by the driver in getting to our 1/10th of a
* second elapsed time goal, and some other client sneaks
* rendering in in between those batches.
*
* Part of the rendering size being relatively large is to
* hopefully avoid that, though it might be better to have
* some time-consuming shader with a single draw call instead.
*/
cpu_overhead = 0;
for (i = 0; i < NUM_RESULTS; i++) {
cpu_time[i] = draw(q, 1);
gpu_time[i] = get_gpu_time(q);
cpu_overhead += cpu_time[i] - gpu_time[i];
}
cpu_overhead /= NUM_RESULTS;
/* Find a number of draw calls that takes about 1/10th of a
* second.
*/
retry:
for (iters = 1; ; iters *= 2) {
if (draw(q, iters) > 0.1)
break;
if (iters * 2 <= iters) {
printf("Couldn't find appropriate number of iterations\n");
piglit_report_result(PIGLIT_FAIL);
}
}
/* Now, do several runs like this so we can determine if the
* timer matches up with wall time.
*/
for (i = 0; i < NUM_RESULTS; i++) {
cpu_time[i] = draw(q, iters);
gpu_time[i] = get_gpu_time(q);
}
cpu_time_mean = 0;
delta_mean = 0;
for (i = 0; i < NUM_RESULTS; i++) {
delta[i] = cpu_time[i] - cpu_overhead - gpu_time[i];
cpu_time_mean += cpu_time[i];
delta_mean += delta[i];
}
cpu_time_mean /= NUM_RESULTS;
delta_mean /= NUM_RESULTS;
/* There's some risk of our "get to 0.1 seconds" loop deciding
* that a small number of iters was sufficient if we got
* scheduled out for a while. Re-run if so.
*
* We wouldn't have that problem if we could rely on the GPU
* time elapsed query, but that's the thing we're testing.
*/
if (cpu_time_mean < 0.05)
goto retry;
/* Calculate stddevs. */
delta_stddev = 0;
for (i = 0; i < NUM_RESULTS; i++) {
float d = delta[i] - delta_mean;
delta_stddev += d * d / (NUM_RESULTS - 1);
}
delta_stddev = sqrt(delta_stddev);
/* Dependent t-test for paired samples.
*
* This is a good test, because we expect the two times (cpu
* and gpu) of the samples to be correlated, and we expect the
* stddev to match (since time it should arise from system
* variables like scheduling of other tasks and state of the
* caches). Unless maybe the variance of cpu time is greater
* than gpu time, because we may see scheduling accounted for
* in our CPU (wall) time, while scheduling other tasks
* doesn't end up counted toward our GPU time.
*/
t = delta_mean / (delta_stddev / sqrt(NUM_RESULTS));
/* Integral of Student's t distribution for 4 degrees of
* freedom (NUM_RESULTS = 5), two-tailed (we care about
* difference above or below 0, not just one direction), at
* p = .05.
*/
t_cutoff = 2.776;
/* Now test that our sampled distribution (rate of clock
* advance between CPU and GPU) was within expectations for a
* delta of 0. I actually want to be testing the likelihood
* that the real difference is enough that we actually care.
* I didn't find an easy way to account for that after a bunch
* of wikipedia browsing, so I'll punt on proper analysis for
* now and just check that the sampled delta isn't too small
* to care about.
*/
if (t > t_cutoff && fabs(delta_mean) > .05 * cpu_time_mean) {
fprintf(stderr, "GPU time didn't match CPU time\n");
printf("Estimated CPU overhead: %f\n", cpu_overhead);
printf("Difference: %f secs (+/- %f secs)\n",
delta_mean, delta_stddev);
printf("t = %f\n", t);
printf("%20s %20s %20s\n",
"gpu_time", "cpu_time", "delta");
for (i = 0; i < NUM_RESULTS; i++) {
printf("%20f %20f %20f\n",
gpu_time[i], cpu_time[i], delta[i]);
}
pass = false;
}
pass = piglit_probe_rect_rgba(0, 0, piglit_width, piglit_height,
green) && pass;
piglit_present_results();
glDeleteQueries(2, q);
return pass ? PIGLIT_PASS : PIGLIT_FAIL;
}
void
piglit_init(int argc, char **argv)
{
piglit_require_gl_version(20);
prog = piglit_build_simple_program(vs_text, fs_text);
iters_loc = glGetUniformLocation(prog, "iters");
piglit_require_extension("GL_EXT_timer_query");
if (argc == 2 && strcmp(argv[1], "timestamp") == 0) {
piglit_require_extension("GL_ARB_timer_query");
test = TIMESTAMP;
}
}
|